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Abstract: Nitrogen deprivation is known to improve lipid accumulation in microalgae and thraus-
tochytrids. However, the patterns of fatty acid production and the molecular mechanisms underlying
the accumulation of unsaturated and saturated fatty acids (SFAs) under nitrogen starvation remain
largely unknown for thraustochytrids. In this study, batch culture experiments under nitrogen
replete and nitrogen starvation conditions were performed, and the changes in the transcriptome
of Aurantiochytrium sp. PKU#SW8 strain between these conditions were investigated. Our results
showed improved yields of total fatty acids (TFAs), total unsaturated fatty acids, and total SFAs
under nitrogen starvation, which suggested that nitrogen starvation favors the accumulation of
both unsaturated and saturated fatty acids in PKU#SW8. However, nitrogen starvation resulted
in a more than 2.36-fold increase of SFAs whereas a 1.7-fold increase of unsaturated fatty acids
was observed, indicating a disproportionate increase in these groups of fatty acids. The fabD and
enoyl-CoA hydratase genes were significantly upregulated under nitrogen starvation, supporting
the observed increase in the yield of TFAs from 2.63 ± 0.22 g/L to 3.64 ± 0.16 g/L. Furthermore, the
pfaB gene involved in the polyketide synthase (PKS) pathway was significantly upregulated under
nitrogen starvation. This suggested that the increased expression of the pfaB gene under nitrogen
starvation may be one of the explanations for the increased yield of docosahexaenoic acid by 1.58-fold.
Overall, our study advances the current understanding of the molecular mechanisms that underlie
the response of thraustochytrids to nitrogen deprivation and their fatty acid biosynthesis.

Keywords: thraustochytrids; docosahexaenoic acid; yield; nitrogen starvation; transcriptome; mechanism

1. Introduction

Thraustochytrids are unicellular marine heterotrophic protists that have the unique
ability to accumulate lipids up to 55% of their biomass [1,2]. Owing to their high lipid
content, thraustochytrids have potential biotechnological applications, particularly in
the nutraceutical and biofuel industries [3]. Certain thraustochytrids, namely the strains
that belong to Aurantiochytrium (formerly Schizochytrium) genus, have shown the unique
ability to accumulate large amounts of polyunsaturated fatty acids (PUFAs), especially
docosahexaenoic acid (DHA) [4–8]. In addition to PUFAs, some studies have also suggested
the high potential of thraustochytrids to accumulate saturated fatty acids (SFAs) [9–12].
Similar to other oleaginous microorganisms, the accumulation of these fatty acids in
thraustochytrids is initiated when an essential nutrient limits cell division [13,14]. In recent
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years, there has been a growing interest in the mechanisms that underpin the connections
between nutrients and biosynthetic gene expressions in thraustochytrids [15–18].

The unique fatty acids that are produced by different species or strains of thraus-
tochytrids depend on the culture conditions. For example, nitrogen source plays a crucial
role in the regulation of cellular growth and lipid biosynthesis in thraustochytrids [7,19,20].
Several studies have shown that a high carbon-to-nitrogen ratio is advantageous for lipid
accumulation in thraustochytrids grown in complex media containing yeast extract [21–23]
or corn steep liquor [24]. The specific productivity (q) of total fatty acids (TFAs) produced
by Aurantiochytrium sp. T66 under nitrogen starvation (q = 10 mg/g-h at 112 h) was two-
fold that under nitrogen in excess (q = 5 mg/g-h at 140 h) [15]. A previous study reported
that nitrogen starvation induces lipid and DHA biosynthesis but limits cellular growth in
Aurantiochytrium sp. [25]. Furthermore, nitrogen limitation combined with O2 limitation
can raise the lipid content to 63% (w/w) of dry cell weight in Aurantiochytrium sp. T66 [19].
How nitrogen limitation regulates the fatty acids biosynthesis in thraustochytrids at a
molecular level remains less studied [13,20].

Two distinct enzyme complexes, namely the fatty acid synthase (FAS) and PUFA synthase
are known to be involved in the de novo biosynthesis of DHA in thraustochytrids [26–28].
However, these pathways lack the full complement of genes for standalone DHA synthesis
and their relative contribution to the synthesis of DHA remains unclear [29]. Previous
studies reported that genes involved in assembling the triacylglycerols (TAGs) and syn-
thesis of the lipid body membrane were strongly upregulated after nitrogen depletion,
whereas the FAS gene was not, or only slightly, upregulated in Schizochytrium spp. [18,30],
Yarrowia lipolytica [31], and Mortierella alpina [32]. There was no upregulation of genes in-
volved in the generation of precursors (NADPH and acetyl-CoA) in the Schizochytrium spp.
and Y. lipolytica. However, a strong upregulation of the NADPH-generating enzymes of the
pentose phosphate pathway was observed during lipid accumulation in Mortierella alpina [32].
Other studies reported that isocitrate dehydrogenase (ICDH) and malic enzyme (ME)
provide the NADPH for fatty acids biosynthesis upon nitrogen exhaustion and facilitate
lipid and DHA accumulation in Schizochytrium sp. ATCC 20888 [17]. Overall, the previous
studies on thraustochytrids suggest that one or more genes of lipid biosynthesis pathways
may show differential regulation upon nitrogen deprivation.

In this study, a laboratory strain, Aurantiochytrium sp. PKU#SW8 was used to inves-
tigate the differential regulation of fatty acid biosynthesis between nitrogen replete and
nitrogen starvation conditions. The molecular mechanisms of fatty acid biosynthesis under
these two conditions were revealed through the analysis of global transcriptomes. The
ultimate goal is to understand the patterns of fatty acid production and the molecular
mechanisms underlying the differential accumulation of fatty acids in thraustochytrids
under nitrogen starvation.

2. Results and Discussion
2.1. Effect of Nitrogen Concentration on Biomass and DHA Production

To understand the effect of nitrogen concentration on the biomass and DHA produc-
tion of PKU#SW8, different concentrations (0–1.2 g/L) of monosodium glutamate (MSG) in
the culture medium were tested. MSG has been reported to be one of the optimal nitrogen
sources for high yields of DHA (g per g biomass) produced by thraustochytrids [7,17,33]. A
defined nitrogen source such as MSG can generally be easily utilized by microorganisms for
rapid cell growth and the glutamate can be converted into other nitrogen-containing com-
pounds [34]. In this study, with increasing concentrations of nitrogen, the biomass increased
almost linearly (R2 = 0.96), reaching the highest concentration (14.75 ± 0.13 g/L) at the ni-
trogen concentration of 1.2 g/L (Figure 1). A similar increasing trend of biomass production
was reported when Aurantiochytrium sp. was cultivated on MSG as the nitrogen source [35].
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T66 resulted in the production of DHA up to 29% of TFAs [19]. These results suggest that 
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Figure 1. Effects of nitrogen concentration on the DCW and DHA yield of Aurantiochytrium sp.
PKU#SW8 culture. Each bar represents the mean ± SD of triplicate experiments. Data are provided
for samples taken at 96 h of batch fermentation. The carbon source was glucose and its concentration
in the medium was 20 g/L. The incubation time of the culture was 96 h. One-way analysis of variance
(ANOVA) was used to determine the statistically significant differences between the means. The
significant differences (alpha = 0.05) of DCW and DHA yield are indicated by different lowercase and
uppercase letters, respectively.

The highest (1.60 ± 0.18 g/L) and lowest (1.07 ± 0.09 g/L) DHA concentrations were
achieved at a nitrogen concentration of 0.7 g/L and 1.2 g/L, respectively. Whereas, the
highest DHA yield (185.6 mg DHA per g of biomass) was at the nitrogen concentration
of 0 g/L, i.e., when the cells were nitrogen starved (Figure 1). Similar DHA yields were
reported in previous studies where peptone was used as the nitrogen source for the cul-
tivation of PKU#SW8 strain [7,20]. Similarly, nitrogen starvation of Aurantiochytrium sp.
strain T66 resulted in the production of DHA up to 29% of TFAs [19]. These results suggest
that nitrogen starvation can be a useful strategy for promoting the DHA yields of certain
Aurantiochytrium strains.

2.2. Patterns of Fatty Acids under Nitrogen Replete and Starvation Conditions

The accumulation of various intracellular fatty acids in the PKU#SW8 strain under
nitrogen starvation was compared with that of under nitrogen replete conditions. The
concentrations of nitrogen for the nitrogen starvation and nitrogen replete conditions
were set to 0 g/L and 1.2 g/L, which were determined based on the results obtained in
this study (see Section 2.1). The comparative results showed that the PKU #SW8 strain
accumulated significantly (p < 0.01) higher concentrations and yields of TFAs under the
nitrogen starvation condition (Figure 2). The yields of TFAs under nitrogen starvation and
nitrogen replete conditions were 522.2 ± 24.4 mg/g and 175.1 ± 13.6 mg/g, respectively.
Thus, nitrogen starvation resulted in an almost two-fold increase in TFAs in PKU#SW8.
The increase in TFAs under nitrogen-limited culture conditions has also been reported in
previous studies [21,22]. When the nitrogen sources provided in the medium are used up
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by the cells, the division and proliferation rate of thraustochytrids decreases or even stops.
However, glucose can still be transported into the cells, and the excess glucose transported
into the cells can be used to synthesize fatty acids for storage [27].
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Figure 2. Comparison of the concentrations and yields of total fatty acids (TFA), total unsaturated
fatty acids (TUFA), and total saturated fatty acids (TSFA) in Aurantiochytrium sp. PKU#SW8 cells
grown between nitrogen replete (N+) and nitrogen starvation (N-) conditions. Data are provided
for samples taken at 96 h of batch fermentation. The carbon source was glucose and its initial
concentration was 20 g/L. The yield represents the fatty acid content of the biomass. Each bar
represents the mean ± SD of triplicate experiments. One-way analysis of variance (ANOVA) was
used to determine the statistically significant differences between the means. ** indicate the significant
differences between the group means of TFA, TSFA, or TUFA at alpha = 0.01.

Interestingly, nitrogen starvation favored the accumulation of both SFAs and unsatu-
rated fatty acids in PKU#SW8 (Figure 3). The yields of these two groups of fatty acids under
nitrogen starvation were significantly (p < 0.01) higher than those under nitrogen replete
conditions. However, nitrogen starvation resulted in more than a 2.36-fold increase of SFAs,
whereas a 1.7-fold increase of unsaturated fatty acids was observed. Particularly, more
than a two-fold increase in C15:0 (pentadecanoic acid), C16:0 (palmitic acid), C18:0 (stearic
acid), and more than a three-fold increase in C17:1 (heptadecenoic acid) were observed
under nitrogen starvation. In a previous study, Aurantiochytrium sp. T66 also showed a
significant increase in the production of SFAs under nitrogen limitation conditions, whereas
the increase in unsaturated fatty acids production was small [36]. These results suggest
that nitrogen deprivation of certain Aurantiochytrium strains can cause a disproportionate
accumulation of intracellular fatty acids. It is therefore likely that nitrogen starvation
differentially regulates the accumulation of fatty acids in thraustochytrids via different
biochemical pathways.
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Figure 3. Comparison of fatty acid production by Aurantiochytrium sp. PKU#SW8 between nitrogen
replete and nitrogen starvation conditions. Data are provided for samples taken at 96 h of batch
fermentation. Each bar represents the mean ± SD of triplicate experiments. For each fatty acid,
Students t-test was used to determine the statistically significant differences between the means.
** indicate the significant differences at alpha = 0.01.

2.3. Relative Changes in PKU#SW8 Transcriptome under Nitrogen Starvation

The results of this study indicated that nitrogen starvation can enhance both saturated
and unsaturated fatty acids in PKU#SW8 strain. To further understand the molecular
mechanisms that underline the increased accumulation of these fatty acids, transcriptomic
analysis of fatty acid biosynthesis under nitrogen starvation relative to the nitrogen replete
condition was carried out. After removing the low-quality reads and rRNA sequences, we
obtained 24,491,255 (nitrogen replete) and 22,574,182 (nitrogen starvation) clean reads with a
total of 42.18 Gigabase (Gb) of clean reads. The clean data of all samples reached 6.41Gb and
the percentage of Q30 base was above 93.97%. Clean reads of each sample were sequentially
aligned with the reference genome. The alignment efficiency ranged from 97.43% to 97.79%
(Table S1). Based on the alignment results, variable splicing prediction, gene structure
optimization, and new gene discovery were conducted (Figures S1–S3); a total of 303 new
genes were discovered (Table S2), 22 of which were functional annotations (Table S3).

Furthermore, we identified 2116 DEGs, comprising 887 upregulated and 1229 down-
regulated, when q-value ≤ 0.05 and log2 fold change ≥1 were applied as the cutoff values.
A majority of these DEGs were significantly enriched in the biological process, followed by
cellular components and molecular function (Figure 4). To validate the RNA-seq results,
certain DEGs were chosen for verification by qPCR experiments. The qPCR results showed
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that the expression levels of those genes were mostly consistent with the RNA-seq results
(Table 1), indicating the reliability of the RNA-seq data. The DEGs related to carbohydrate
and lipid metabolism, including glycolysis, gluconeogenesis, TCA cycle, fatty acids biosyn-
thesis, fatty acids metabolism, fatty acids biosynthesis, biosynthesis of unsaturated fatty
acids, fatty acids elongation pathway, fatty acids degradation, fatty acids synthase (FAS),
and polyketide synthase (PKS) pathways were further analyzed.
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Figure 4. Gene Ontology classification (p ≤ 0.001) of DEGs under nitrogen starvation. The strain
Aurantiochytrium sp. PKU#SW8 was used in RNA-seq experiments. The strain was cultivated on
glucose (20 g/L) as the carbon source and MSG (0 g/L and 1.2 g/L) as the nitrogen source for 96 h.

Under nitrogen starvation, the glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
phosphoglycerate kinase (PGK), and enolase (ENO) encoding genes were downregulated
(Figure 5), which may have resulted in the downregulation of the glycolytic pathway,
ultimately leading to the decrease in glucose to pyruvate conversion. This is consistent
with a previous study in which nitrogen limitation weakened the glucose metabolism in
Phaeodactylum tricornutum and made the carbon flow more into lipid biosynthesis via the
pentose phosphate pathway [37]. Furthermore, the gene encoding pyruvate dehydrogenase
(PDH) enzyme which catalyzes pyruvate to acetyl-COA was significantly upregulated
in the PKU#SW8 strain (Figure 5), which might have resulted in the increased flux of
acetyl-COA to fatty acids biosynthetic pathways.
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Table 1. Results of qPCR validation of RNA-seq experiments.

Gene ID KEGG Pathway Annotation log2FC
(qPCR)

log2FC
(RNA-Seq)

Regulation

SW8_14063 Polyunsaturated fatty acid synthase gene pfaB 2.98 2.82 up
SW8_00409 S-(hydroxymethyl) glutathione dehydrogenase/alcohol

dehydrogenase [EC:1.1.1.284/1.1.1.1]
1.47 1.24 up

SW8_03618 Mitochondrial trans-2-enoyl-CoA reductase [EC:1.3.1.38] 2.01 1.50 up
SW8_10781 Acyl-CoA oxidase [EC:1.3.3.6] 2.21 2.55 up
SW8_11882 [acyl-carrier-protein] S-malonyl transferase [EC:2.3.1.39] 0.32 3.14 up
SW8_13715 Pyruvate dehydrogenase E2 component (dihydrolipoamide

acetyltransferase) [EC:2.3.1.12]
1.66 1.08 up

SW8_10069 Dual specificity phosphatase 10 [EC:3.1.3.16/3.1.3.48] 1.72 7.05 up
SW8_10649 Oxidoreductase NAD-binding domain; Ferric reductase NAD

binding domain
1.83 3.22 up

SW8_08004 Long-chain acyl-CoA synthetase [EC:6.2.1.3] −1.70 −1.57 down
SW8_09042 Long-chain-fatty-acid–CoA ligase ACSBG [EC:6.2.1.3] −1.64 −1.30 down
SW8_11448 Palmitoyl-protein thioesterase [EC:3.1.2.22] −1.29 −1.20 down
SW8_12262 Enoyl-CoA hydratase [EC:4.2.1.17] −1.90 −1.99 down

The strain Aurantiochytrium sp. PKU#SW8 was used in RNA-seq experiments; The strain was cultivated on
glucose (20 g/L) as the carbon source and MSG (0 g/L and 1.2 g/L) as the nitrogen source for 96 h.
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The malate dehydrogenase (MDH) and succinyl-CoA synthetase (SCOAS) encoding
genes involved in the tricarboxylic acid (TCA) cycle were downregulated (Figure 5), which
indicated that nitrogen starvation can also affect the TCA cycle and biosynthetic precursors.
Particularly, the downregulation of SCOAS, which catalyzes the reversible reaction of
succinyl-CoA to succinate, possibly indicated that the resulting increased pool of succinyl-
CoA can act as a precursor for the biosynthesis of certain amino acids. As cells are deprived
of nitrogen, they may utilize those synthesized amino acids for growth.
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Furthermore, the relative expression levels of the genes encoding ICDH and ME upon
nitrogen starvation did not change significantly. This result indicated that NADPH required
for fatty acids biosynthesis in PKU#SW8 strain under nitrogen starvation was not provided
mainly by the TCA cycle. ICDH and ME are two important enzymes in the TCA cycle
and previous studies on their activities in Schizochytrium sp. ATCC 20888 in response to
ammonia exhaustion in the culture medium showed that nitrogen exhaustion decreases
the activities of these two enzymes [17].

The expression of [acyl carrier protein] s-malonyl transferase gene (fabD) was sig-
nificantly upregulated (Figure 5), which has been previously reported to increase the
production of fatty acids in E. coli [38]. This was consistent with the fermentation data that
showed an increase in the production of TFAs from 2.63± 0.22 g/L to 3.64± 0.16 g/L when
PKU#SW8 was cultured under nitrogen starvation. Moreover, the enoyl-CoA hydratase
gene essential to metabolizing fatty acids in beta-oxidation was significantly downregulated
by 1.99-fold under nitrogen starvation (Table 1), supporting the increased accumulation
of TFAs. Furthermore, the expression of the polyketide synthase subunit B (pfaB) gene
involved in the polyketide synthase (PKS) pathway was significantly upregulated, perhaps
suggesting an elevated activity of the PKS pathway. In previous research [20], although
there was a significantly upregulated expression of the pfaB gene under nitrogen starvation,
the DHA concentration did not increase concomitantly. Interestingly, in this study, there
was a 1.58-fold increase in DHA yield (mg/g biomass) under nitrogen starvation. On the
other hand, a previous study on Aurantiochytrium sp. T66 showed significant upregula-
tion of FAS under nitrogen-deficient conditions, but only marginal upregulation of the
PUFA-synthase genes [15].

Taken together, these results raise the possibility of multiple mechanisms for the in-
creased levels of unsaturated fatty acids when thraustochytrids are cultivated in a nitrogen-
deprived medium.

3. Materials and Methods
3.1. Strain and Culture Media

A previously isolated thraustochytrid strain, Aurantiochytrium sp. PKU#SW8 (CGMCC
No. 20069), was used in this study [39]. The purified strain was maintained on 2% modified
Vishniac’s (MV) agar plates prepared with 100% artificial seawater (ASW, 33 g/L sea salt)
at 28 ◦C [40]. The strain was subcultured every four weeks on 2% MV agar plates. The seed
culture was prepared by inoculating a single colony from the 2% MV agar plate into an M4
medium (glucose, 20 g/L; peptone, 1.5 g/L; yeast extract, 1.0 g/L; KH2PO4, 0.25 g/L; 100%
ASW, and pH 7.0) [41] and incubating at 28 ◦C on an orbital shaker at 170 rpm for 36 h.

3.2. Batch Culture Experiments

To study the effects of different nitrogen concentrations on the DHA yield, batch
culture experiments were carried out in two sequential stages. In the first stage, the seed
culture (5% v/v) was transferred to a 100 mL shake flask containing 50 mL fresh M4 medium
and incubated at 28 ◦C on an orbital shaker at 170 rpm for 72 h. In the second stage, the
cells harvested at 72 h of fermentation in the first stage were centrifuged (4000 rpm, 4 ◦C,
10 min) and washed twice with sterile ddH2O. The resulting cell pellet was transferred to a
100 mL shake flask containing 50 mL fresh M4 medium (glucose, 20 g/L; KH2PO4, 0.25 g/L;
nitrogen, 0–1.2 g/L; 100% ASW, and pH 7). The nitrogen source in the M4 medium was
replaced with monosodium glutamate (MSG). The culture was cultivated at 28 ◦C on an
orbital shaker at 170 rpm for seven days. All experiments were conducted in triplicate.

3.3. Quantification of Biomass and Fatty Acids

Aurantiochytrium sp. PKU #SW8 cells were collected by centrifugation (4000 rpm, 4
◦C, 10 min) and washed twice with distilled water followed by lyophilization for 48 h.
The dry cell weight was determined by the gravimetric method. Fatty acid methyl esters
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were prepared using the direct transesterification method [42] and analyzed following the
procedures described in our previous study [43].

3.4. Transcriptome Analysis

Samples for the transcriptome analyses of nitrogen-replete and nitrogen-starved cells
were collected from the cultures grown on 0 g/L and 1.2 g/L of MSG, respectively. The sam-
ples were taken at 96 h of fermentation, which was based on the preliminary experimental
data that suggested maximum concentration and yield of DHA production at 96 h (data
not shown). Experiments were performed in triplicates for each condition. The total RNA
was isolated from a fresh culture (5 mL) of Aurantiochytrium sp. PKU#SW8. The culture
broth was centrifuged at 12,000 rpm for 5 min at 4 ◦C and the resulting cell pellet was used
for total RNA isolation using the Trizol extraction method. The isolated total RNA was
quantified on NanoDrop 2000c (Thermo Fisher Scientific, Waltham, MA, USA). Genomic
DNA was removed with gDNase and cDNA was synthesized using random hexamers
with a FastKing RT kit (Tiangen, Beijing, China). The synthesized cDNA was used as the
template for qPCR experiments.

mRNA was purified from total RNA with poly-T oligo-attached magnetic beads. The
first strand of cDNA was synthesized using random hexamer primers after fragmentation
and the second strand was synthesized using RNase H and DNA polymerase I. The
overhangs were converted into blunt ends, the 3′ ends of the cDNA fragments were
adenylated, and the adaptors were ligated to the fragments. The cDNA fragments with a
specific length were separated by agarose gel electrophoresis and purified. The size-selected
cDNA fragments were PCR amplified to prepare the library, which was then sequenced on
an Illumina HiSeq 2500 platform by Biomarker Technologies (Beijing, China).

Raw sequencing reads were filtered by removing reads with adapter and those contain-
ing more than 10% unknown bases or having low quality. Clean reads were then mapped to
Ribosomal Database Project using Bowtie 2 [44] and the reads that belonged to rRNA were
removed. The remaining clean reads were mapped to the reference genome (PKU#SW8
genome) by TopHat2 [45]. The transcriptome was assembled using the Cuffmerge script
in Cufflinks [46]. Differential expression analysis was performed with the edgeR pack-
age [47]. The gene expression level was normalized by the FPKM (fragments per kilobases
of transcript per million mapped reads) method. FDR (false discovery rate) was used to
determine the p-value threshold in multiple tests. The genes with FDR ≤ 0.05 and the
absolute value of log2 fold change ≥1 were regarded as differentially expressed genes
(DEGs). All downstream sequencing analyses were performed by Biomarker Technologies
(Beijing, China).

3.5. Validation of RNA-Seq Experiments by qPCR

Quantitative PCR assays were performed on the CFX Connect Real-Time PCR system
(Bio-Rad, USA) using the CharmQ SYBR qPCR master mix (Vazyme, China). The gene-
specific primer sequences (Table S1) were designed by Primer Premier 6.0 (PREMIER
Biosoft International, Palo Alto, CA, USA). PCR amplification was carried out in a 10 µL
reaction volume containing 5 µL of qPCR master mix, 0.25 µL of each primer (10 µM),
1 µL cDNA, and 3.5 µL nuclease-free water. The PCR program was set to 95 ◦C for 3 min
followed by 40 cycles of amplification steps at 95 ◦C for 20 s, 55 ◦C for 20 s, and 72 ◦C for
30 s. The expression level of each target gene relative to β-actin was calculated following
the 2−∆∆Ct method [48]. The amplification efficiencies for target and reference genes ranged
between 101.48% and 106.16%. Melt curve analysis showed a single peak for each of these
genes. All assays were conducted in triplicate.

3.6. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). ANOVA and Students T-test
were used to determine the statistically significant differences between the means of three
or more groups and between two groups, respectively, using IBM SPSS Statistics software.
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Prior to performing ANOVA, the homogeneity of variance was tested using Levene’s test
in IBM SPSS Statistics software.

4. Conclusions

This study provides the first evidence for the differential regulation of key fatty acid
biosynthetic genes in the transcriptome of Aurantiochytrium sp. PKU#SW8 under nitrogen
starvation. The fermentation data suggested a significant increase in the accumulation
of fatty acids, including SFA and unsaturated fatty acids. RNA-seq results revealed the
regulation of key genes involved in the biosynthesis of these fatty acids. Particularly, the
fabD and pfaB genes were significantly upregulated under nitrogen starvation, which was
one of the possible explanations for the increased yield of TFAs. In addition, the enoyl-CoA
hydratase gene involved in the beta-oxidation of fatty acids was significantly downregu-
lated, which further supported the observed increase in TFA yield. Interestingly, this study
showed the increased expression of the pfaB gene concomitant with the observed increase
in DHA yield in thraustochytrids for the first time. However, more research on molecular
mechanisms needs to be undertaken before the association between nitrogen starvation
and disproportionate accumulation of intracellular fatty acids in thraustochytrids is more
clearly understood. Overall, our study provides the molecular mechanisms underpinning
the increased accumulation of fatty acids under nitrogen deprivation conditions.
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//www.mdpi.com/article/10.3390/md20100621/s1, Figure S1: Cluster of Orthologous Groups
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of unigenes. The vertical coordinate represents the names of the KEGG metabolic pathway and the
horizontal coordinate is the number of genes annotated to the pathway. The values in percentage
indicate the proportion of the genes annotated to the pathway.; Figure S3: KEGG pathway enrichment
of the differentially expressed genes.; Table S1: primers used in qPCR experiments for the RNA-seq
data validation.; Table S2: list of new genes discovered through RNA-seq data analysis.; Table S3: list
of genes with functional annotations.
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