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Quantification of salt stress 
in wheat leaves by Raman 
spectroscopy and machine learning
Ibrahim Kecoglu1,6, Merve Sirkeci2,6, Mehmet Burcin Unlu1,3, Ayse Sen4, Ugur Parlatan1* & 
Feyza Guzelcimen5

The salinity level of the growing medium has diverse effects on the development of plants, including 
both physical and biochemical changes. To determine the salt stress level of a plant endures, one can 
measure these structural and chemical changes. Raman spectroscopy and biochemical analysis are 
some of the most common techniques in the literature. Here, we present a combination of machine 
learning and Raman spectroscopy with which we can both find out the biochemical change that occurs 
while the medium salt concentration changes and predict the level of salt stress a wheat sample 
experiences accurately using our trained regression models. In addition, by applying different machine 
learning algorithms, we compare the level of success for different algorithms and determine the 
best method to use in this application. Production units can take actions based on the quantitative 
information they get from the trained machine learning models related to salt stress, which can 
potentially increase efficiency and avoid the loss of crops.

Wheat (Triticum aestivum L.) is one of the cereal products that can quickly adapt to environmental conditions. 
Besides, it is one of the most widely cultivated and produced herbal products globally thanks to the high amount 
of protein and carbohydrates it  contains1. Wheat is a nutritious plant that meets 20–80% of the energy and protein 
needs of  humans2. Turkey produced approximately 23 million tons of wheat in 2015. This production decreased 
to 20 million tons in 2018.

One of the significant reasons for this decrease is climate change, which affects the weather and plant growth 
via stressor factors such as salinity. Salinity occurs due to the accumulation of water-soluble salts in the upper part 
of the  soil3. Salinity affects the morphology,  anatomy4, growth, root length, and osmotic pressure of the  plants5,6.

To determine the amount of malondialdehyde, chlorophyll, and carotenoids under optimum conditions and 
stress factors, biochemical methods are frequently used. The most commonly practiced technique in this type 
of biochemical analysis is UV-visible spectrophotometry. However, this method has some limitations in prepar-
ing, measuring, and analyzing a sample, which led scientists to seek alternatives. Recent studies utilized Raman 
spectroscopy to reveal the effects of salinity stress on the microstructure of wheat plants.

Raman spectroscopy is a vibrational spectral technique that gives information about the samples’ internal 
molecular structure illuminated with a coherent source. Since inelastically scattered photons change their fre-
quencies as much as the molecules’ vibrational frequencies, the peaks in the spectra have intrinsic information 
about the sample, such as the type and amount of molecular bond  vibrations7,8. Raman spectroscopy has a broad 
use in biology due to its advantageous properties like non-invasiveness and  rapidness9,10. Schulz and Baranska 
documented the use of Raman spectroscopy in plant biology with a detailed list of tentative  assignments11. Studies 
have been carried out using Raman Spectroscopy on many plants, including fennel fruits, chamomile clusters, 
turmeric roots, untreated summer wheat leaves, wheat grains, and fresh  soybeans12–15.

Raman spectroscopy provides rapid results with little or no sample preparation. Specifically, drought stress 
has already been investigated employing benchtop Raman  spectroscopy13,15,16 with the help of statistical methods.

In addition to the contributions mentioned above, the chemometric analysis helped intensely interpret the 
plant Raman  signals17–19. Cebi et al. detected the amino acid l-Cysteine in the wheat floor using chemometric 
methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA)17. In a food 
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chemistry application, Raman spectroscopy and PCA were used to predict malting barley husk adhesion  quality19. 
In another application, Farber et al. measured the pathogen Raman spectra from Maize Kernels and distinguished 
healthy and diseased states with 100% accuracy using PCA and discriminant analysis (DA)18.

We employed a machine learning-supported Raman Spectroscopy approach to determine the amount of salt 
stress factor the plant was exposed to. The outline of the procedure of our study is shown in Fig. 1. Our study 
employed a range of machine learning algorithms and compared their training times, prediction speeds, and 
success rates.

Results and discussion
Biochemical analysis using Raman spectroscopy. To determine the biochemical change per week due 
to different levels of salt stress, we employed Raman spectroscopy. In Fig. 2 we compared the average of normal-
ized Raman spectra corresponding to each medium salt concentrations (0, 50, 100, 150 mM) for each week. 
There was an expected general trend in the spectra regarding the concentration change.

Although this anticipated structure was observed in the period of maturity (Fig. 2c,d), there were some dis-
crepancies in the early and late developmental periods. In the first 2 weeks (Fig. 2a,b) plants were not yet fully 
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Figure 1.  Outline of the Raman-based machine learning procedure for predicting salt stress.

Figure 2.  (a) Application of baseline correction on an example spectrum. (b–f) Averages of normalized Raman 
spectra of each week.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7197  | https://doi.org/10.1038/s41598-022-10767-y

www.nature.com/scientificreports/

grown and they showed some heterogeneity when we scanned different areas of the leaf sample. A similar but 
less prominent effect was also apparent in the fifth-week spectra (Fig. 2e). According to the studies, when plants 
are exposed to long-term salt stress, they give various responses at vegetative, physiological, and biochemical 
levels to adapt themselves to this situation and to continue their lives under stress conditions. These responses 
may differ between genotypes in short-term and long-term exposure to salt stress, as in the strawberry  plant20.

To get a close-up of the important biochemical changes, we plotted the trend of Raman intensities regarding 
522  cm−1, 747  cm−1, 855  cm−1, 1515  cm−1, and 1563  cm−1 bands (Fig. 3). As given in Table 1, these bands cor-
respond to cellulose, pectin, serine, carotenoid, and chlorophyll b  respectively11,21–24. We observed that cellulose, 
pectin, and serine bands tend to decrease as the salt concentration of the medium increases, particularly for the 
period of maturity, which corresponds to weeks three to five. In week five, these bands have shown an increase 
for 150 mM concentration which contradicts the general trend. Oligosaccharides such as cellulose, pectin, and 
amino acids are important components that participate in cell wall formation. Therefore, in our study, cell wall 
components are negatively affected depending on the duration of the stress exposed to harmful metabolites such 
as reactive oxygen metabolites that occur due to salt  stress26. The sudden increase in the fifth week suggests that 
the plant strives to preserve its integrity. The increase in this week suggests two possibilities. Firstly, by regulat-
ing the whole metabolism of the plant for adaptation to salt stress, it moves to a new level from the fifth week, or 
secondly, the measurements in the fifth week suggest that there may be an experimental error. The change in the 
amount of chlorophyll and carotenoid depends on the concentration of the applied salt stress and the application 

Table 1.  Tentative assignments of Raman shift values. ν—symmetric stretching, ω—wagging, δ—symmetric 
bending, δa—antisymmetric bending.

Raman shift  (cm−1) Tentative assignments

522 ν(C–O–C),  cellulose21

747 ν(C–O–H),  pectin22

855 ω(Cǫ–H),  serine23

1515 ν(C=C),  carotenoid24

1563 Chlorophyll  b11

1619 δ(H–N–H),  methionine25; δa(NH+

3
 ),  lysine23; ν(C=C), tyrosine

1646 δ(H2O),  water22; ν(C=C),  ethylene11

1657 ν(C=O) + ω(N–H), amide  I11

1669 ν(C=O) + ω(N–H), amide  I11

1686 ν(C=O) + ω(N–H), amide  I11

Figure 3.  Normalized Raman intensity distributions of different concentrations for each week of plant growth. 
All colors correspond to different Raman shifts  (cm−1) which is given in bottom right.
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time, strengthening the first possibility. The decrease of these two components under normal conditions was 
reported in the  literature26.

We also followed the approach of Huang et al. to investigate further the signals related to vital  markers27. We 
modified the approach by investigating the whole Amide I region instead of taking only 1602  cm−1 since the sam-
ples and their responses are not the same. We utilized band component analysis to reveal the sub-components of 
the broad peaks measured by Raman spectroscopy. We used Grams AI 8 software for this analysis, a curve-fitting 
process that takes the type of the line shape from the user such as Gaussian, Lorentz, or Voigt. We chose the line 
shape as Gaussian since it is more suitable for the broadening profile of the biological samples. In the analysis, 
first, we determined the number of peaks under the curve using the software’s second derivative option. Then, 
we iterated the curve-fitting procedure until the fitting converged. The calculated peak parameters were band 
center position, height, width, and area. To find the changes in the applied salt level change in particular weeks, 
we compared peak heights and locations in the Amide region and showed them in Fig. 4.

Most of the Raman intensities shown in the figure had a common decreasing trend as the weeks progressed. 
On the other hand, the Raman shift values have a consistent decrease only for the bands at 1619, 1669, and 1686 
 cm−1. An amide bond is a chemical bond formed between a hydroxyl group of a carboxylic group (–COOH) of 
one molecule and a hydrogen of an amino group (–NH2) of another molecule. Therefore, amide bonds take part 
in the formation of the polypeptide chain that makes up the proteins. Proteins play an important role in regulat-
ing metabolism to maintain cellular integrity under  stress28. Therefore, the changes in the bands of amide bonds 
detected in our study show that the plant struggles with stress. The Raman bands characterize the amino acids 
methionine, lysine, and tyrosine, all of which participate in the structure of proteins and can be found freely in 
the cell. Because these amino acids participate in the regulation of the intracellular defense system depending 
on the stress factors such as salt stress as well as many metabolic processes in the  cell28. In our study, although a 
decrease was detected in the amount of these amino acids depending on the duration of the applied salt stress, 
it was determined that they increased when we evaluated the increase in the applied salt stress concentrations 
within themselves every week. Farhangi-Abriz and Ghassemi-Golezani28 obtained similar results to our study 
on soybean. Alfosea-Simon et al., on the other hand, showed that giving amino acids such as methionine, lysine, 
and tyrosine exogenously to tomatoes reduced the harmful effects of salt stress in their  study29.

The changes in the Raman shift are a sign of molecular structure change in the plant we measured. As the 
number of oxidative stress products increases with the increasing salt levels, the Amide I band  positions30 and the 
level of proteins during stress  changes31. These changes were in line with the band components analysis results.

Quantification of the acquired Raman spectra using a wide variety of machine learning regres-
sion algorithms. To quantify the salt stress level a plant endures, we trained various machine learning algo-
rithms. We used regression models with output in terms of medium salt concentration. The output of the models 
can be used to determine the level of stress a plant goes through. We used five subgroups of regression models: 
linear regression, Gaussian process regression (GPR), neural network (NN), support vector machine (SVM), 
and regression tree. We gave all these models and their respective success rates, train times, and prediction 
speeds in Table 2. The first 2 weeks have shown heterogeneity. Their spectra were capriciously changing when we 

Table 2.  Comparison of the outputs of different machine learning regression algorithms. Coloring of the mean 
section is done for each column separately, and the performance increases as the color shifts from red to green. 
Abbreviations, Train: Training time (sec), Pred: Prediction speed (predictions/sec), Lin: Linear, Reg: Regression, 
Rob: Robust, Quad: Quadratic, Gauss: Gaussian.

naeM5keeW4keeW3keeW
RMSE R 2 Train Pred RMSE R 2 Train Pred RMSE R 2 Train Pred RMSE R 2 Train Pred

Lin. Reg.
Rob. Lin. Reg.

Exponential
Rational Quad.

Narrow
Medium
Wide
Bilayered
Trilayered

Linear
Cubic
Quadratic
Coarse Gauss
Medium Gauss

Coarse
Medium
Fine
Bagged
Boosted
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scanned different areas of the same sample. Consequently, we did not perform regression analysis on the spectra 
of the first 2 weeks. As a measure to determine the success rate of the models, we examined R2 and root mean 
square error (RMSE). Even though we did not consider training time and prediction speed when we determined 
the best-performing model, they are significant parameters, especially in real-time applications. Gaussian pro-
cess regression (RMSE = 14.192–14.634, R2 = 0.923–0.933) and neural network models (RMSE = 14.837–15.784, 
R
2 = 0.913–0.923) gave the best results.

In terms of mean RMSE and R2 , the best performing model among all was rational quadratic Gaussian process 
regression (RQGPR). We used the test portion of the data to determine the model’s success rate. In Fig. 5a–c, we 
showed the RQGPR model’s predictions for the test set. The median of the predictions corresponding to each 
true concentration value is approximately equal to the true concentration value, an indicator of a well-performing 
model. To make this observation more visible, we also presented residuals for each concentration in Fig. 5d–f. 
The medians in the residual plots are all around zero. This indicates that if the age of the observed leaf is entered 
in terms of weeks, the model can predict the salt level of the plant.

To test the overestimation, we took new wheat leaves from different plants from biology department mem-
bers that we did not measure before. The ages and the concentrations of the leaves were mixed, and initially, we 
used only the current week information in the predictions. We tried our models and performed the predictions 
depending on the given information. In Fig. 6 we showed the residuals of the predictions when compared to the 
actual salt concentrations. Our predictions deviated from the true concentration by around 20 mM.

Figure 4.  Normalized Raman intensity and peak center location change per week of different concentrations 
and peaks.
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On the other hand, to test our ability to predict the week and the salt concentrations together using the trained 
models, we used the untrained test samples and found the weeks corresponding to the minimum deviation from 
the actual value. In Fig. 6b, we demonstrate the residuals in all weeks. Since this is a second-week sample, our 
results are consistent with the current state of the plant. As we also predicted the salt concentration of the plant 
before, our developed tool can be used to find the salt levels of a wheat leave whose age is not known.

To test our tool’s ability to predict an untrained group, we left the 100 mM group out of the training group 
and trained using others. We tested our model using the left-out group and found that the median of the pre-
diction deviates − 25.35 mM from the expected value. Although this value is smaller for the 80/20 partitioned 
model where the training set includes data from all the concentrations, the value for the untrained trial is still 
reasonable and practical.

Methods
Wheat growth. Wheat (Triticum aestivum L.) seeds of the  Selimiye variety were obtained from Trakya 
Agricultural Research Institute (Edirne). Murashige and Skoog (MS) medium was used as the basic medium for 
the creation of a tissue culture medium. 20 g/l sucrose  (C12H22O11), 50 μg/l 2.4-D (2.4-Dichlorophenoxyacetic 

Figure 5.  Rational Quadratic Gaussian Process Regression results (RQGPR). Out of all the models trained 
RQGPR has given the best results. (a–c) Prediction results of the model on the test set. (d–f) Residuals of the 
model predictions on the test set.

Figure 6.  Test results for untrained samples. (a) Salt concentration prediction on the untrained blind-test 
groups. A: Week 3, 100 mM, B: Week 3, Control, C: Week 4, 50 mM, D: Week 2, 150 mM. (b) Week prediction 
example using a week 2 sample. The residual is at its minimum value at week 2.
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Acid), and 8 g/l Agar regeneration medium were added into the medium as a carbon source, a plant growth 
regulator, and as a thickener, respectively. To determine the sensitivity of wheat embryos to salt stressors, differ-
ent concentrations of NaCl (50 mM–100 mM–150 mM NaCl) were added to the regeneration medium whose 
content was given above. The pH values of the mixtures formed were adjusted to be between about 5.8 and 6.0. 
The created nutrient media were sterilized in an autoclave at 121  °C at 1.2 atm pressure for 20 min and poured 
into sterile magendas in an aseptic environment in equal  amounts32.

For sterilization, the wheat seeds were kept in 70% ethyl alcohol for 20 seconds, passed through the sterile 
distilled water series 3 times, then kept in 20% commercial bleach for 20 min, and passed through the distilled 
water series three times to remove the bleach. Then, the seeds were incubated in sterile distilled water for 2 h in 
an oven at 35 °C, and swelling was  allowed32,33. The mature seed embryos were left to swell after surface steriliza-
tion. They were separated from their endosperms under aseptic conditions and inoculated into media prepared 
for salt stressor application. Cultures were observed at 25±2  °C temperature for 4 weeks in a daily illumination 
period of 16 h light/8 h  dark32.

Wheat leaf samples were prepared for Raman spectral measurements by cutting leaves from the plant near 
their tip using a scalpel. For consistency, we cut nearly the same size leaves for each sample. We measured leaves 
while they are still fresh.

Experimental setup and data acquisition. Leaf specimens were compressed between two slides to 
make sure that the region of interest of the sample will be in the focal plane during the measurement. The 
thicknesses of the slides were 1 mm. Prepared specimens were scanned with our hand-built motorized Raman 
spectral scanning setup.

We utilized a diode laser with 785 nm wavelength and 500 mW output power. The output of the laser was 
steered to a spatial filtering section to select the portion of the beam with the Gaussian distribution. This Gauss-
ian beam was directed to the microscope objective (MO) by reflecting from a dichroic mirror (Thorlabs, DMLP 
805) and some beam steering mirrors. The diameter of the beam was adjusted to fill the numerical aperture of 
the MO. The magnification and numerical aperture of the MO were 10× and 0.25. Since the working distance 
was greater than the thickness of the slides, we were able to illuminate the wheat leaves with this configuration. 
The backscattered photons follow the same path with 180° geometry until the dichroic mirror. The inelastically 
scattered portion of the beam (Raman beam) transmits through the dichroic mirror since the wavelength of the 
stokes photons are higher (we selected Stokes photons due to their higher intensity). This transmitted beam was 
coupled into the fiber coupling port using an achromatic lens with a nine mm focal length. The coupled photons 
are transferred into the Czerny-Turner type USB spectrometer (Ocean QE Pro) via a multimode fiber (NA 0.22).

We collected the spectra with two seconds of integration time. We used boxcar-width averaging with a win-
dow size of 3 pixels to denoise the spectra, which allows us to avoid averaging and saving a significant amount 
of time. We scanned the samples with 5 μm step sizes along the axes of the 300 μm × 300 μm region of interest. 
The total number of spectra was 3721 (61 × 61) for each scan. This procedure were repeated for varying regions 
of different leaves.

Data analysis. Raman spectra pre‑processing. Raman spectroscopy measurements include fluorescent 
profiles, as well. To analyze only the Raman peaks, one should estimate and clean this baseline profile. We de-
termined local minimum points and applied linear fit using the Raman shift of consecutive pairs of minimum 
points to achieve this task. Concatenating these lines creates the total estimated fluorescence profile. We calcu-
lated this profile for each spectrum and subtracted it.

After correction, we applied an L2 normalization, also known as vector normalization. We calculated the 
vector norm of each spectrum and divided each element of the spectrum by this norm value. This operation 
provides a normalized spectrum whose vector norm equals one. It was shown that L2 normalization after fluo-
rescent baseline correction is one of the most efficient methods in Raman  spectroscopy34.

Outliers in the data are eliminated by just keeping the portion between quantiles 0.5% and 99.5%. After 
elimination 56,067 spectra were left in the data set and used in further analysis. The number of spectra left in 
each group is given in Table 3. Each week was treated as a separate data set and models were trained for each 
week separately.

Machine learning application. After pre-processing, we trained a collection of machine learning regression 
models, such as linear regression, Gaussian process regression, neural network, support vector machines, and 
regression tree algorithms. We used MATLAB (R2021a, The MathWorks, Inc., Natick) and its regression learner 
app provided under the statistics and machine learning toolbox. Prior to training the models, we randomly split 
the data into train and test sets with a ratio of 80 to 20, respectively. While training, we used five cross-validation 
folds. After training, we tested the model using the aforementioned test set. The best result was given by a Gauss-
ian process regression model with a rational quadratic kernel which is both stationary and non-degenerate 
covariance function (Eq. 1), where r is the Euclidean distance between two values ( x, x′ ) in the input domain 
(Eq. 2), l is the characteristic length scale, and α is the scale-mixture parameter.

(1)kRQ(r) =

(

1+
r
2

2αl2

)−α

(2)r =|x − x
′|
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Kernel function maps the pair ( x, x′ ) from input domain to IR35. Basis function used was constant with a basis 
matrix H that is an n-by-1 vector of 1s, such that n is the number of observations. Initial values of the parameters 
were determined automatically by the regression learner app.

Conclusion
We showed that with the help of machine learning, Raman spectroscopy could be used to quantitatively deter-
mine the level of salt stress a plant is exposed to. The shifts in the Raman spectra give precise information 
about how much a plant struggles from the stressor factors and how close it is to dying. We also presented that 
models show high levels of success rates with this data; therefore, these models can be used with high accuracy. 
Our proposed models can quickly provide information on leaf salinity levels when used in a hand-held Raman 
spectrometer.

Data availability
The spectroscopy data and the trained models that support the findings of this study are openly available in 
Zenodo at https:// doi. org/ 10. 5281/ zenodo. 58312 0336.

Received: 2 February 2022; Accepted: 12 April 2022
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