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Abstract

Blast-induced traumatic brain injury has dramatically increased in combat troops in today’s military operations. We
previously reported that antioxidant treatment can provide protection to the peripheral auditory end organ, the
cochlea. In the present study, we examined biomarker expression in the brains of rats at different time points (3
hours to 21 days) after three successive 14 psi blast overpressure exposures to evaluate antioxidant treatment
effects on blast-induced brain injury. Rats in the treatment groups received a combination of antioxidants (2,4-
disulfonyl α-phenyl tertiary butyl nitrone and N-acetylcysteine) one hour after blast exposure and then twice a day for
the following two days. The biomarkers examined included an oxidative stress marker (4-hydroxy-2-nonenal, 4-HNE),
an immediate early gene (c-fos), a neural injury marker (glial fibrillary acidic protein, GFAP) and two axonal injury
markers [amyloid beta (A4) precursor protein, APP, and 68 kDa neurofilament, NF-68]. The results demonstrate that
blast exposure induced or up-regulated the following: 4-HNE production in the dorsal hippocampus commissure and
the forceps major corpus callosum near the lateral ventricle; c-fos and GFAP expression in most regions of the brain,
including the retrosplenial cortex, the hippocampus, the cochlear nucleus, and the inferior colliculus; and NF-68 and
APP expression in the hippocampus, the auditory cortex, and the medial geniculate nucleus (MGN). Antioxidant
treatment reduced the following: 4-HNE in the hippocampus and the forceps major corpus callosum, c-fos expression
in the retrosplenial cortex, GFAP expression in the dorsal cochlear nucleus (DCN), and APP and NF-68 expression in
the hippocampus, auditory cortex, and MGN. This preliminary study indicates that antioxidant treatment may provide
therapeutic protection to the central auditory pathway (the DCN and MGN) and the non-auditory central nervous
system (hippocampus and retrosplenial cortex), suggesting that these compounds have the potential to
simultaneously treat blast-induced injuries in the brain and auditory system.
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Introduction

Blast-induced traumatic brain injury (bTBI) has dramatically
increased in combat troops and civilians due to improvements
in explosive devices employed in military conflicts and terrorist
activities [1-3]. Blast exposure primarily affects gas-containing
organs, such as the middle ear, lung, and gastrointestinal tract
[4-9]. More recent evidence indicates that blast exposure also
causes solid organ injury. Among these solid organs, the brain
is very vulnerable to blast overpressure, due to the fact that
shock waves can penetrate through the skull without significant
change in amplitude and waveform [3,10,11]. bTBI causes

acute and chronic neuropsychiatric sequelae both in human
victims and in animal models [12,13]. Symptoms of mild TBI
caused by blast include altered cognition, memory, motor
coordination, and behavior [14-17]. Blast exposure can cause
hemorrhage, edema, pseudoaneurysm formation,
vasoconstriction, hypoperfusion in the brain, and disruption of
the blood-brain barrier [3,18-25].

The mechanisms of blast-induced brain injury remain
controversial [3,11,26]. Blast pressure waves may cause brain
injury by directly transmitting blast energy into the brain and/or
indirectly through dysfunction of the pulmonary and circulatory
systems. Activation of the autonomic nervous system and the
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neuroendocrine-immune system may contribute to molecular
changes and cellular injuries in the brain [19,27-35]. Cellular
injuries include oxidative stress [18,22,28,36-38], astrocytic
hyperplasia [11,17,23,34,39], diffuse axonal injury
[14,17,20,21,32], inflammation [39-42], apoptosis [20,42,43],
and neurodegeneration [12,20,23,42,43]. Degenerative
processes, such as darkened atrophic dendrites and the
accumulation of heavy subunits of neurofilament protein in
neuronal soma, have been observed in the cerebral (i.e.
temporal cortex) and cerebellar cortices and the hippocampus
[33,35]. Long CNS axon tracts are particularly vulnerable to the
effects of blast [44]. Cellular injury in the brain is blast dose-
dependent. High-overpressure (> 10 MPa, 10 MPa ≈ 1450 psi)
underwater shock wave exposure has been shown to result in
hemorrhage, necrosis, and neuronal apoptosis mediated by a
caspase-dependent pathway in the brain, while low-
overpressure (1 MPa ≈ 145 psi) shock wave exposure has been
shown to result in spindle-shaped changes in neurons and
elongation of nuclei without marked neuronal injury [45,46].
Additionally, altered gene expression profiles, including factors
responsible for cell death, inflammation, neurotransmission,
and auditory function have been observed in the brain after
blast exposure [43,47,48].

Oxidative stress and antioxidant depletion are associated
with blast-induced brain and lung injuries [5,12,18,22,28,37,49].
Under these conditions, oxidative stress can lead to
peroxidation of cellular and vascular structures, oxidation of
cellular proteins, DNA damage, and inhibition of the
mitochondrial electron transport chain, thus potentiating
secondary damage in brain and lung tissues after these acute
insults [50,51]. Consistent with these observations, brief
pharmacological doses of antioxidant (vitamin E, vitamin C, or
lipoic acid) loading have been shown to reduce blast-induced
oxidative stress in the lung by increasing hemoglobin
oxygenation and reducing lipid peroxidation [52,53]. The
antioxidant N-acetylcysteine amide (NACA) significantly
reduced pulmonary inflammation after blast exposure by
blocking inflammatory chemokine mRNA expression in the lung
[10]. These findings suggest that antioxidants have the
potential to block the molecular cascades that are triggered by
the blast exposure by opposing the oxidative stress conditions
that lead to permanent brain damage and functional disability.

Previously, we demonstrated that N-acetylcysteine (NAC)
plus 2,4-disulfonyl α-phenyl tertiary butyl nitrone (HPN-07)
treatment can reduce both temporary and permanent hearing
threshold shift and hair cell loss in the cochlea when
administrated shortly after blast exposure [54]. Herein, we
address the potential of this combinatorial treatment of
antioxidants to also block damage within the CNS caused by
blast overpressure. We chose a series of biomarkers that are
expressed in brain tissue or cerebrospinal fluid after blast injury
[20,32,55,56] to examine both the immediate (within a few
hours) to intermediate (21 days after blast) effects of
antioxidant treatment on bTBI. These biomarkers include 4-
hydroxy-2-nonenal (4-HNE), a marker for oxidative stress; c-
fos, a marker for neuronal activity; glial fibrillary acidic protein
(GFAP), a marker for astrocyte activation; amyloid beta (A4)
precursor protein (APP) [43,57] and 68 kDa neurofilament

(NF-68), markers for axonal injury [58]; and caspase 3, a
marker for apoptotic cell death.

Methods

Animals, blast exposure, auditory brainstem responses
(ABR), and distortion product otoacoustic emission
(DPOAE) recording

All procedures regarding the use and handling of animals
were reviewed and approved by the Oklahoma Medical
Research Foundation (OMRF) Institutional Animal Care and
Use Committee (IACUC) and the U.S. Department of the Navy
Office of Naval Research. Male Long-Evans pigmented rats
with body weights between 360 and 400g (Harlan Laboratories,
Indianapolis, Indiana) were used in this study. The animals
were housed and maintained in the animal care facility at
OMRF.

Blast exposure, administration of antioxidants, and details
regarding measurement of ABR and DPOAE were detailed
previously [54]. Only rats exposed to three blast overpressures
at 14 psi were used in the present study. In brief, a blast
simulator was custom built to generate blasts using
compressed nitrogen against a plastic film. The body of the rat
was protected by a holding tube and the top of its head was
positioned perpendicular to the nozzle of the blast simulator.
Each rat was exposed to 14 psi blasts repeated three times at
1.5-minute intervals under deep anesthesia (50 mg/kg of
ketamine and 6 mg/kg of xylazine). Seventy-nine rats were
exposed to this blast regimen. ABR thresholds and DPOAE
levels were obtained for each rat prior to blast exposure and at
3 hours (H), 24H, 7 days (D), and 21D after exposure. ABR
threshold shifts and DPOAE levels were recorded in a sound-
attenuated, electrically shielded booth, using three stainless
steel needle electrodes and a computerized Intelligent Hearing
System (IHS) with Smart-EP software 3.96 (for ABR recording)
or Smart OAE software 4.54 (for DPOAE recording). ABR
thresholds for tonal bursts ranging from 2-16 kHz were
determined. ABR threshold shifts were calculated by
subtracting pre-blast exposure thresholds from post-blast
exposure thresholds. DPOAE measurements were performed
for pure tones ranging from 2-16 kHz. DPOAE level shifts were
calculated by subtracting post-blast exposure levels from pre-
blast exposure levels.

After blast exposure, rats were randomly assigned to either
an antioxidant treatment group (B/T), which received NAC plus
HPN-07 (see below), or a blast control group (B), which
received an equivalent volume of saline. Each group of control
and treated rats was designated for terminal analysis at 3H,
24H, 7D, or 21D, at which time ABR and DPOAE analyses
were performed. Following the final ABR and DPOAE
recording, all animals were euthanized and intracardially
perfused with 4% paraformaldehyde in 0.1 M phosphate-
buffered saline (PH 7.2) prior to harvesting brain and cochlear
tissues for histological analyses of relevant biomarker levels
and hair cell counts, respectively (detailed below).

Following the final blast exposure, the outer ears of each rat
were examined using a surgical microscope to assess the
condition of the tympanic membrane. Eleven rats, each
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exhibiting dually-ruptured tympanic membranes, were excluded
from the study. In total, 74 rats (6 in the normal control group,
68 in blast and blast plus treatment groups, with 6-7 rats in
each group at each time point) were examined and analyzed in
the present study. Rats in the normal control group (NC) did
not receive blast exposure or drug treatment.

Drug administration
NAC was purchased from Hospira, Inc. (Lake Forest, IL),

and HPN-07 was provided at greater than 98.5% purity by
APAC Pharmaceuticals LLC (Columbia, MD). The two
antioxidants were combined and dissolved in a physiological
saline solution to final concentrations of 60 mg/ml for each
drug. Animals in the treatment group were injected
intraperitoneally with a volume of the drug combination
equivalent to 300 mg/kg of NAC and 300 mg/kg of HPN-07,
beginning 1 hour after blast exposure and then twice-daily for
the following two days. Rats in the blast control group received
an equal volume of physiological saline solution according to
the same schedule as the treatment group. According to the
schedule, the 3H groups received one dose of drugs or saline,
the 24H groups received three doses, and the 7D and 21D
groups received five doses in total.

Collection and sectioning of brains and brainstems
All tissue samples used in this study were collected and

prepared for histological examination as described previously
[54]. The brainstems ipsilateral to the ears exhibiting intact
tympanic membranes and the corresponding cerebral tissues
from the contralateral side were processed for histological
study. Cochleae (total 108), brains (total 54), and brainstems
(total 54) were removed and post-fixed in the same fixative
(overnight for the cochleae and 1 week for the brain tissue) and
then washed and stored in PBS at 4°C. The right cochlea from
each animal was used for whole mount and TRITC-phalloidin
staining for hair cell counting under a fluorescent microscope
(Olympus BX51, Melville, NY). The percentage of missing hair
cells was reported in a previous report [54]. The brain and
brainstem from each animal was cryoprotected in 30% sucrose
in PBS, embedded in Tissue-Tek (Sakura Finetek USA Inc.
Torrance, CA), and serially sectioned in a coronal plane with a
Thermo Cryotome (Thermo Fisher Scientific, Inc. Waltham,
MA) at 18-20 µm. Every tenth section from each brainstem or
brain was mounted onto a gelatin pre-coated slide (total of 10
slides for brainstem and of 20 slides for brain with 10-12
sections on each slide).

Biomarker expression analyses in the brain and
brainstem

The biomarkers used in the present study included 4-HNE, c-
fos, APP, GFAP, NF-68, and caspase 3. Most of these
biomarkers have previously been reported to be expressed in
brain tissue or cerebrospinal fluid after blast injury
[20,32,55,56]. Anti-NeuN antibody was used to label neurons in
the dorsal cochlear nucleus (DCN) 21 days after blast
exposure to examine neuron loss in the DCN. The brain
sections were washed with PBS, blocked in 1% bovine serum
albumin (fraction V) and either 1% normal goat or horse serum

in PBS, and permeabilized in 0.2% triton X-100 in PBS
(PBS/T). The tissues were then incubated with either rabbit
anti-c-fos IgG (1:100, Santa Cruz Biotechnology, Inc. Santa
Cruz, CA), rabbit anti-GFAP IgG (1:500, EMD Millipore,
Billerica, MA), rabbit anti-caspase 3 IgG (1:25, Santa Cruz
Biotechnology, Inc. Santa Cruz, CA), rabbit anti-NeuN IgG
(1:500, Chemicon International, Inc. Temecula, CA), or mouse
anti-NF-68 IgG (1:200, Sigma, St. Louis, MO) overnight. After
PBS/T washing, either biotinylated anti-rabbit IgG or anti-
mouse IgG (1:200, Vector Laboratories, Inc. Burlingame, CA)
was applied to the slides for 1 hour, and Vectastain ABC and
DAB kits (Vector Laboratories, Inc. Burlingame, CA) were then
used for the immunolabeling visualization. Immunopositive
cells had a brown reaction product. Methyl green was used for
nuclear counter-staining. C-fos expression was analyzed at all
time points after blast exposure in the retrosplenial cortex (RC)
and the DCN and at one time point (3H) in the rest of the brain
regions [the auditory cortex (AC), the hippocampus, and the
inferior colliculus (IC)]. Sections of rat brains from 7D and 21D
groups were used for GFAP and NF-68 staining. Sections of
brains from the normal control group were used as normal
controls for each staining method.

A set of brain sections (NC, 24H, and 7D groups) was used
for fluorescence APP immunolabeling. After incubation with
mouse anti-APP IgG (1:50, Lot # NG1850184, EMD Millipore,
Billerica MA), the sections were incubated with Alexa Fluor®

568 donkey anti-mouse IgG (1:1000, Life technologies, Co.
Grand Island, NY). DAPI was used to label nuclei. Images were
collected with a confocal microscope (Leica SP2 Confocal
Microscope, Heidenberg, Germany). For 4-HNE fluorescence
immunolabeling, a set of brain sections (NC, 3H, and 24H
groups) were incubated with rabbit anti-4-HNE Michael adducts
IgG (1:100, chemically Reduced, EMD Millipore, Billerica, MA).
After washing with PBS, the sections were then incubated with
Alexa Fluor® 594 donkey anti-rabbit IgG (1:1000, Life
technologies, Co. Grand Island, NY). DAPI was used to label
nuclei. Fluorescence images were collected with an Olympus
BX51 microscope (Melville, NY). Representative images were
also collected with a Leica SP2 confocal microscope
(Heidenberg, Germany).

Blast- or noise-induced trauma have been shown to impair
neurogenesis in the hippocampus [59,60]. To study whether
blast exposure impaired neurogenesis in the brain in our
experimental system, doublecortin antibody (goat anti-
doublecortin IgG, 1:100, Santa Cruz Biotechnology, Inc. Santa
Cruz, CA), a neurogenesis marker, was used to stain the brain
sections of the NC and 21D groups.

To control for specificity of immunolabeling, negative controls
were prepared for each staining by omitting the primary
antibody incubation step. Positive control sections (Chemicon
International, Temecula, CA) were used in caspase 3 staining
analyses.

Quantification of biomarker immunostaining
For quantification of immunostaining, images were collected

from the RC (retrosplenial granular and dysgranular cortices),
the DCN [the medial third (medial), the middle third (middle)
and the lateral third (lateral)], the molecular layer of the dentate
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gyrus (MoDG), the radiatum and lacumosum molecular layers
near the CA2 region of the hippocampus, the medial geniculate
nucleus (MGN, dorsal and ventral), layers 2-5 of the primary
AC, and the central nucleus of the IC. Images used for
quantification were collected from all DCN sections (2-4
sections on each slide), 4-7 hippocampal sections, and 3-4 AC
or IC sections from each rat. Identification of the nuclei or brain
regions was guided by anatomical landmarks described within
a pictorial atlas of the rat brain [61]. A modified two-
dimensional quantification method was employed to count
positive immunostained cells in these nuclei or regions [62,63].
A color camera (DP70) attached to an Olympus microscope
(BX51) and DPController and DPManager programs (Olympus,
Melville, NY) were used to obtain images. The distance
between two adjacent sections on each slide was about 200
µm to ensure non-duplicate counting. The total number of
positive cells within each image was counted using ImageJ
software (National Institutes of Health), and cell density was
calculated (cells/mm2) and statistically analyzed as detailed
below. The density of doublecortin in the hippocampus was
obtained by dividing the number of doublecortin-positive
neurons in the subgranular zone by the length of the
subgranular zone in each image (cells/mm). Only dark brown-
stained cells were counted. Cell counting was blindly
conducted by a technician who was unaware of the identity of
each slide.

Collection and sectioning of cochleae and toluidine
blue staining

Cochleae from ears exhibiting an intact tympanic membrane
were decalcified in 10% EDTA for approximately two weeks,
with fresh solution exchanges every other day. The cochleae
were then embedded in paraffin and sectioned at 6 µm. Every
twentieth section from each cochlea was mounted onto a slide
(total of 10 slides). The distance between two adjacent sections
on each slide was about 120 µm. The cochlear sections were
stained with toluidine blue [64]. Images used for cell counting
were collected from spiral ganglia of basal and middle turns of
3-4 midmodiolar sections from each cochlea (6 cochleae in
each group). Spiral ganglion cells were identified according to
established criteria [64]. The number of neurons in the spiral
ganglion was counted with ImageJ software, and cell density
(cells/mm2) was calculated and statistically analyzed as
detailed below.

Statistical analysis
All parameters measured are expressed as means ±

standard error of the mean (SEM). One-way (biomarker data)
or two-way (ABR and DPOAE data) ANOVA (SPSS 14.0 for
windows) was used to determine if there were statistically
significant differences among the three experimental groups
(NC, B, and B/T) at each time point. When a significant
difference among groups was found, a post hoc test was used
to determine if there were statistically significant differences
between group pairings (i.e. NC vs. B; NC vs. B/T; B vs. B/T at
each time point), and p-values were corrected for multiple
comparisons. For these comparisons, the more conservative
Bonferroni test was used in the ABR and DPOAE data

analyses due to the smaller number of data sets, while the
Tukey HSD test was applied in the biomarker and hair cell
counting data analyses, where the number of statistical
comparisons was more expansive. Statistical analyses were
conducted using GraphPad Prism 4 software (GraphPad
Software, Inc., La Jolla, CA). A p-value of less than 0.05 was
considered to be significant.

Results

Antioxidant treatment reduced blast-induced ABR
threshold shifts, DPOAE level shifts, and hair cell loss

The ABR, DPOAE, and hair cell counting results have been
detailed in our previous report [54] and are summarized in
Table 1. In general, we found that antioxidant treatment
significantly reduced both ABR threshold and DPOAE level
shifts, as well as reduced blast-induced hair cell loss. ABR
threshold shifts in the antioxidant treatment group were about
10 dB lower at 24 hours and 20 dB lower at 7 and 21 days
when compared to the untreated blast exposed group (p < 0.01
or < 0.001). Significant recovery in ABR threshold shifts in the
antioxidant treatment group was observed at all test
frequencies (2–16 kHz) at 7 and 21 days after blast exposure
(p < 0.01 or 0.001, Table 1 and [54]).

A significant decrease in DPOAE level shifts was found in
the treatment group (7.5-15 dB) at 7 days after blast exposure
in the higher frequency range of 4-16 kHz when compared to
the blast group (20-28 dB, p < 0.05 or 0.01). At 21 days after
blast exposure a significant decrease in the level shift was
seen at all test frequencies in the treatment group (2.5-13.5 dB)
compared to the blast group (15-30 dB, p < 0.05, 0.01 or 0.001,
Table 1 and [54]).

There was also a significant difference in average outer hair
cell loss observed between the antioxidant-treated and
untreated groups at 7 (p < 0.05) and 21 (p < 0.001) days after
blast exposure. At 21 days after blast exposure, significant
reduction in outer hair cell loss in the region corresponding to
5–36 kHz was observed in the antioxidant-treated group
compared to the untreated group (p < 0.001). Significant
reduction in inner hair cell loss in the same area was also
observed in the treatment group compared to the untreated
group (p < 0.001, Table 1 and [54]).

Table 1. Comparison of mean ABR threshold shifts,
DPOAE level shifts, and hair cell loss in the blast and blast/
treatment groups (21 days after blast exposure).

 Blast Blast/Treatment p value
ABR threshold shift (2-16 kHz) 31.33 ± 1.00 dB 10.58 ± 0.70 dB < 0.001
DPOAE level shift (2.2-15.3 kHz) 23.69 ± 1.50 dB 7.27 ± 0.77 dB < 0.001
Outer hair cell loss (5-36 kHz) 39.68 ± 2.19 % 7.75 ± 1.12 % < 0.001
Inner hair cell loss (5-36 kHz) 1.39 ± 0.21 % 0.17 ± 0.06 % < 0.001

doi: 10.1371/journal.pone.0080138.t001
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Antioxidant treatment reduced production of an
oxidative stress biomarker in the blast-exposed brain

To examine the extent of oxidative stress that is induced in
brain tissue from our bTBI experimental approach, 4-HNE
production was evaluated by fluorescence microscopy. Positive
blast-induced 4-HNE immunolabeling was observed primarily in
the hippocampus (dorsal hippocampal commissure, Figure 1B)
and the forceps major corpus callosum near the lateral
ventricle, with lesser staining in the cerebral cortex (data not

shown), 24 hours following bTBI. 4-HNE-positive
immunolabeling was also observed in these regions of the
brain after only 3H following bTBI, albeit to a lesser extent than
in the corresponding brain sections of the 24H groups (data not
shown). In the cohort that was treated with the antioxidant
combination of NAC and HPN-07 one hour after blast-
exposure, the extent of 4-HNE labeling was markedly reduced
at each of these sites (Figure 1C).

Figure 1.  Examples of 4-HNE immunofluorescence images obtained from the dorsal hippocampal commissure of the
hippocampus from either NC (A), 24H-B (B) or 24H-B/T (C) groups.  No positive 4-HNE staining was observed in the NC group.
Many 4-HNE positive cells were observed in the 24H-B group (arrows in B), and a reduced number of 4-HNE positive cells were
observed in the 24H-B/T group (arrows in C). 4-HNE positive cells in the hippocampus were quantified and statistically analyzed
(D). Four to six sections from each rat brain (6 rats in each group) were used in this analysis. Significantly increased numbers of 4-
HNE-positive cells were found in the 24H-B group compared to the NC group (p < 0.001). Significant differences were also found
between the 24H-B and 24H-B/T groups (p < 0.001), suggesting that antioxidant treatment reduced 4-HNE production in the
hippocampus at this time point after blast exposure. *** indicate p < 0.001. Error bars represent standard error of the means. Scale
bar in C = 10 µm for A-C.
doi: 10.1371/journal.pone.0080138.g001

Antioxidant Treatment of Traumatic Brain Injury

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e80138



Fluorescence immunolabeling was conducted in
hippocampal sections of all animals in the 24H post-blast (B),
24H post-blast plus treatment (B/T), and NC groups, and the
resultant quantitative summaries of 4-HNE-positive cells were
used for density calculations and statistical comparisons
between cohorts. As summarized in Figure 1D, in comparison
to the NC group (4.36 ± 1.32 cells/mm2), blast exposure
resulted in a dramatic increase (41.79 ± 4.02) in 4-HNE
positive-cells in the hippocampus 24 hours after bTBI (24H-B, p
< 0.001). These quantitative analyses also underscore the
significant reduction in 4-HNE-positive cells in the
hippocampus in blast-exposed animals subsequently treated
with NAC and HPN-07 (24H-B/T, 12.79 ± 2.79, p < 0.001, F (2,
77) = 43.94, Figure 1D).

Antioxidant treatment reduced c-fos expression in
brain cortex

C-fos is an immediate-early gene that is widely used as a
marker for neuronal activity. Exposure to impulse noise has
been shown to induce prolonged c-fos expression in the
auditory cortex (AC) and the DCN [65], as well as in the
cerebral cortex, the thalamus, and the hippocampus [66]. To
determine whether our bTBI model resulted in induced c-fos
expression, brain sections from normal controls and blast-
exposed animals were immunostained with a c-fos antibody
and subjected to comparative histological analyses. Few c-fos-
positive cells were observed in the cortex (the RC and AC,
Figure 2A), the DCN, the IC, and the hippocampus of normal
control brains. In comparison, the degree of c-fos-positive
immunostaining was strikingly higher in the RC of the brain in
blast-exposed animals at three hours post-bTBI compared to
normal controls (Figure 2B, and 2D, p < 0.05 or 0.01). We
found that antioxidant treatment significantly attenuated c-fos
expression in the RC in blast-exposed animals over this same
time course (p < 0.001, F (8, 584) = 27.93, Figure 2C and 2D).
Second peaks of RC c-fos expression were observed 7 days
after blast exposure in both blast-exposed (p < 0.001) and
blast-exposed plus antioxidant treatment (p < 0.01) groups
when compared to the NC group (Figure 2D). However, no
treatment effect was observed at this time point (p > 0.05). In
contrast to the bTBI effects observed in the RC on c-fos
expression, the observed density of c-fos-positive cells in the
AC did not reflect significant induction of this immediate-early
biomarker in this region of the brain 3 hours following blast-
exposure (p > 0.05, Table S1).

In comparison to the normal control group, c-fos expression
was significantly increased in the lateral region of the DCN
three hours after blast exposure (all p < 0.05) but not in the
middle and medial regions (all p > 0.05, Figure 2E). However,
we were unable to detect any significant changes in c-fos
expression in the DCN at later time points in the blast-exposed
cohort (from 24h to 21d, all p > 0.05). In contrast to
observations in the RC at three hours post-blast, antioxidant
treatment was not able to suppress the blast-induced
expression of c-fos in the lateral region of the DCN (p > 0.05,
Figure 2E). Moreover, we unexpectedly observed a greater
degree of c-fos expression in the medial region of the DCN in
the antioxidant-treated, blast-exposed group in comparison to

the untreated blast-exposed cohort (p < 0.05, F (8,343) = 6.77,
Figure 2E). No treatment effect was observed at other time
points after antioxidant treatment (all p > 0.05, Figure 2E).

While we observed a significant increase in c-fos expression
in the hippocampus after blast exposure compared to the NC
group (p < 0.001), no antioxidant treatment effect was observe
in this region of the brain at this time point (p > 0.05, Table S1).
We did not observe any significant changes in c-fos expression
in the IC in either the B or B/T cohorts 3 hours post-blast (p >
0.05, Table S1).

Antioxidant treatment reduced GFAP expression in the
cochlear nucleus

GFAP has been considered to be a marker of active
astrocytes and indicates a repair-regenerative process after
neuronal damage [23]. Active astrocyte gliosis appears to be a
prominent early stage feature of blast-induced brain damage.
As such, we examined GFAP expression in the brains of rats
subjected to our model of blast-induced trauma. While a
modest GFAP staining was observed in the DCN of normal
controls (arrows in Figure 3B), most of these positively-stained
cells were located in the superficial layers (molecular and
fusiform cell layers), with only a few positively stained cells
located within the deep layer (Figure 3B). Significantly
increased GFAP expression, with penetrance into the deep
layer, was observed in the lateral and middle regions of the
DCN 21 days after blast exposure as compared to the NC
group (all p < 0.05, Figures 3C and 4A). No significant change
in GFAP expression was observed at this time point in the
medial region after blast exposure (p > 0.05, Figure 4A).
Antioxidant treatment significantly attenuated the induced
GFAP expression in the middle and lateral regions of the DCN
21 days after blast exposure (all p < 0.05, F (2, 132) = 12.70,
Figures 3D and 4A). Significant increases in GFAP expression
in the DCN were also observed in the middle and lateral
regions examined at an earlier time point (7 days) after blast
exposure (all p < 0.05, F (2, 113) = 8.50). However, in contrast
to observations made at 21 days post-blast-exposure, no
treatment effect was observed in these regions of the DCN at
this earlier time point (all p > 0.05). Consistent with later time
points, there was no significant change in GFAP expression in
the medial region of the DCN 7 days after blast exposure (all p
> 0.05, Figure 4B). Taken together, these results suggest that
antioxidant treatment exhibits a delayed therapeutic effect on
blast-induced GFAP expression in the DCN after a 14 psi blast
exposure.

Svetlov and coworkers previously documented induction of
regionally-specific GFAP expression in the hippocampus that
peaked at 7 days and persisted up to 30 days after a high (52
psi) blast exposure. However, no increased GFAP expression
was observed in the cortex (i.e. the AC) in their study [23]. In
the present study, we also observed significantly higher GFAP
expression levels in the hippocampus following blast exposure
(all p < 0.01, Table S2). However, no apparent antioxidant
treatment effect was observed on the increased hippocampal
GFAP levels in blast-exposed animals (p > 0.05, Table S2).
Similar to the observations made by Svetlov and colleagues,
we observed no significant difference in GFAP levels in the AC
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Figure 2.  Examples of c-Fos immunostaining images obtained from the granular RC of the NC (A), 3H-B, (B), and 3H-B/T
(C) groups by light microscopy.  Few c-fos-positive cells were observed in layer three in the cortex of the NC group (A).
Numerous c-fos-positive stained cells were seen in layer three in the cortex of the 3H-B group (B), and decreased numbers of c-fos-
positive cells were seen in the cortex of the 3H-B/T group relative to the 3H-B group (C). C-fos-positive cells in the RC were
quantified and statistically analyzed (D). Four to six sections (8-12 images) from each rat brain (6 rats in each group) were used in
this analysis. Significantly increased numbers of c-fos-positive cells were found in the 3H-B and 7D-B groups compared to the NC
group (all p < 0.001). Significant differences were also found between the 3H-B and 3H-B/T groups (p < 0.001), suggesting that
antioxidant treatment suppressed c-fos upregulation in the cortex at this time point after blast exposure. However, no significant
difference was found between the 7D-B and 7D-B/T groups (p > 0.05). C-fos-positive cells in the DCN were quantified and
statistically analyzed (E). Significantly increased numbers of c-fos-positive cells were found in the lateral region of the DCN in the
3H-B and 3H-B/T groups compared to the NC group (all p < 0.05), however no antioxidant treatment effect was observed in the
DCN at this time point (all p > 0.05). ### indicates p < 0.001 compared to normal controls. *** indicate p < 0.001 compared to the
blast only group. Error bars represent standard error of the means. Scale bar in C = 500 µm for A-C.
doi: 10.1371/journal.pone.0080138.g002
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between the experimental cohorts (p > 0.05, Table S2).
Similarly, we observed no significant differences in GFAP
levels in either the central nucleus of the IC or in the RC in rats
subjected to bTBI (all p > 0.05, Table S2). These results
indicate that GFAP expression was not significantly altered in
the AC, IC, or RC 21 days after blast exposure or after blast
exposure plus antioxidant treatment.

No neuron loss in the DCN after blast exposure
Increased GFAP expression in the DCN after blast exposure

may be indicative of neuronal injury [67,68]. To assess
potential loss of neurons in the DCN, relevant sections in each
experimental cohort were immunostained with an antibody
against the neuron specific nuclear protein, NeuN. From this
analysis, we were unable to discern any significant difference
in NeuN-positive neuronal densities between the experimental
groups within any region of the DCN (all p > 0.05, Table S3).
These results indicate that there was no apparent neuron loss
in the DCN 21 days after blast exposure or following blast
exposure plus antioxidant treatment, suggesting that there was

reactive astrocytosis without accompanying neuron loss in the
DCN after blast exposure.

Antioxidant treatment reduced axonal injury in the
brain

To probe for axonal injury following blast-exposure, we
immunostained brain tissue for NF-68 and APP. In normal rat
brains, weak NF-68 positive staining was observed in the MGN
and MoDG (arrows in Figure 5B and 5E). A significantly
increased number of NF-68-positive axons was observed in
both of these regions 21 days after blast exposure compared to
normal controls (all p < 0.001, Figure 5C, 5F, and 5H). Axons in
the MGN and MoDG of blast-exposed animals exhibited multi-
beaded degeneration (arrows in Figure 5C and F) [58].
Antioxidant treatment significantly reduced the number of
NF-68-positive axons in both the MGN (p < 0.001, F (2, 345) =
43.08) and MoDG (p < 0.05, F (2, 104) = 16.39) at 21 days
after blast exposure (Figure 5D, 5G, and 5H). There was no
significant increase in NF-68 expression in the MGN and
MoDG at earlier time points after blast exposure (3H, 24H, and

Figure 3.  A low magnification image of the DCN is shown in A.  The DCN is divided into three parts (dashed lines in A): medial,
middle, and lateral. The squares in A indicate where images were collected for cell counting. Examples of GFAP staining (arrows in
B-D) in the middle region of the DCN of the NC (B), 21D-B (C) and 21D-B/T (D) groups. ML, FCL, and DL in B demarcate the
molecular layer, fusiform cell layer, and deep layer, respectively. Scale bar in A = 500 µm, in D = 200 µm in for B-D.
doi: 10.1371/journal.pone.0080138.g003
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7D) nor were there any significant changes in NF-68
expression in the IC, DCN, or ventral cochlear nucleus at any
time point after blast exposure compared to normal controls
(data not shown).

Previous studies have demonstrated a correlation between
bTBI and increased APP expression, consistent with blast-
induced axonal injury [20,32,69]. While we observed very low
levels of positive APP staining in normal brain tissues (Figure

6A), animals in the blast-exposed cohort exhibited marked
induction of hippocampal APP expression as early as 24 hour
post-trauma (Figure 6B and 6D, p < 0.001). Remarkably,
antioxidant treatment seemingly blocked the blast-induced
upregulation of APP production in the hippocampus over this
same time period (p < 0.001, F (4, 25) =18.19, Figure 6C and
6D). Moreover, combinatorial antioxidant treatment also
blocked increases in bTBI-related APP upregulation in the

Figure 4.  GFAP-positive cells in the DCN of the NC, 21D-B, and 21D-B/T (A) or 7D-B, and 7D-B/T (B) groups were quantified
and statistically analyzed.  Two to three DCN sections from each rat brainstem (6-7 rats in each group) were used in these
analyses. Significantly increased GFAP expression is observed in the lateral and middle regions of the 21D-B and 7D-B groups
compared to the NC group (all p < 0.05). Decreased numbers of GFAP-positive cells were observed in these two regions in the
21D-B/T group compared to the 21D-B group (A, all p < 0.05), suggesting a treatment effect in these regions at this time point after
blast exposure. However, no treatment effect was observed in GFAP expression in these regions 7 days after blast exposure (B, all
p > 0.05). No significant difference was observed in the medial region of the DCN of the 21D or 7D groups compared to the NC
group (all p > 0.05). Error bars represent standard error of the means. * indicate p < 0.05.
doi: 10.1371/journal.pone.0080138.g004
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Figure 5.  Examples of NF-68 expression (arrows in B-G) in the MGN (B-D) and MoDG of the hippocampus (E-G) from the
NC (B and E), 21D-B (C and F) and 21D-B/T (D and G) cohorts.  A low magnification image of the relevant brain region for NF-68
staining is shown in A. The squares in A indicate where images were collected from the MoDG and the MGN for NF-68-positive
axon counting and statistical analyses (H). Four to five images were taken from each MGN section and 3-4 MGN sections from each
rat brain were used. One image was taken from each MoDG section and six MoDG sections from each rat brain (6 rats in each
group) were used in these analyses. Significantly increased numbers of NF-68-positive axons were observed in the MGN and
MoDG of the 21D-B group compared to the NC group (all p < 0.001). Significantly decreased numbers of NF-68-positive axons were
observed in the MGN and MoDG in the 21D-B/T group relative to the 21D-B group (p < 0.001 or 0.05). Error bars represent
standard error of the means. Scale bar = 50 µm in G for B-G, = 500 µm in A.
doi: 10.1371/journal.pone.0080138.g005
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cortex, including the AC, that were observed during this post-
exposure interval (data not shown). It is worth noting that these
blast-induced changes in APP expression were seemingly
transient, as no significant increases in APP expression in
either of these tissues were evident at later time points (i.e. 7 -
21days after blast exposure, p > 0.05, Figure 6D).

Neurogenesis was not impaired by blast exposure
In order to assess whether bTBI impacted neurogenesis in

our model system, we examined the relative levels of the
neuronal migration biomarker, doublecortin, in blast-exposed
brain tissues. From this analysis, we found that doublecortin-
positive staining was primarily concentrated in the subgranular
zone of the hippocampus and within the deep layer and

Figure 6.  Examples of APP immunolabeling in the hippocampus of the NC (A), 24H-B (B) and 24H-B/T (C) groups.  No
positive APP staining was observed in the hippocampus of normal controls (A). Strong positive APP labeling was observed in the
hippocampus of the 24H-B group (arrows in B). Decreased APP expression was observed in the hippocampus of the 24H-B/T group
relative to the 24H-B group (arrows in C). APP-positive labeling in the hippocampus was quantified and statistically analyzed (D).
Two to three hippocampal sections from each rat brain (6 rats in each group) were used in these analyses. Significantly increased
APP expression was observed in the hippocampus of the 24H-B group compared to the NC group (p < 0.001). An antioxidant
treatment effect was found at 24 hours after blast exposure (p < 0.001), however no significant difference was observed between
the treated and untreated groups 7 days after blast exposure (7D-B v.s. 7D-B/T, all p > 0.05). Error bars represent standard error of
the means. Scale bar = 10 µm in C for A-C. *** indicate p < 0.001.
doi: 10.1371/journal.pone.0080138.g006
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fusiform cellular components of the DCN in normal controls.
Comparative analyses with blast-exposed animals revealed
that there was no significant difference in doublecortin levels
between any of the three experimental cohorts (all p > 0.05,
Table S4), thus indicating that neurogenesis was not
significantly impaired in our model of bTBI.

No positive caspase 3 staining in the brain after blast
exposure

Evidence for blast-induced apoptotic neuronal death has
previously been reported for deep brain regions within a few
hours or days after 117, 153 or 515 kPa (≈ 16, 22.2 or 75 psi,
respectively) blast exposures [20,42]. Apoptotic neuronal death
has only been documented in the brain after high-overpressure
blast exposures (16, 22.2 or 1450 psi) [42,45]. Low level blast
exposure (7.1 or 11.3 psi) has been shown to result in non-
apoptotic (caspase 3-negative) DNA damage (TUNEL positive)
in oligodendrocytes and astrocytes in the brain [43]. In the
present study, no positive caspase 3 staining was observed in
either the brain or brainstem at any time point after blast
exposure or blast exposure plus treatment. This result
suggests that apoptotic cell death is not involved in the brain
damage induced by the blast overpressure produced in our
experimental system.

No spiral ganglion neuron loss 21 days after blast
exposure

Comparative analyses with blast-exposed animals revealed
that there was no significant difference in spiral ganglion cell
densities in basal and middle turns between any of the three
experimental cohorts (all p > 0.05, Table S5). Thus, while we
observed significant impairment to auditory function in our
model of bTBI, there was no apparent loss of spiral ganglia for
up to 21 days under these conditions. These results suggest
that changes in the sensorineural functionality of blast-exposed
cochleae are not directly attributable to loss of neurons within
the associated spiral ganglia.

Discussion

Blast brain damage examined by biomarkers
In this preliminary study, blast exposure induced

upregulation of several stress-related biomarkers in the brain
and brainstem of rats. These biomarkers included 4-HNE, c-
fos, GFAP, APP and NF-68. 4-HNE is a lipid peroxidation
marker. Our results and previous studies seem to indicate that
oxidative stress is rapidly elevated in the brain after blast
exposure (Figure 1 and [22,28,36,38]). Significant increases in
4-HNE levels in rat brains were previously documented 3-24
hours after 120 or 123 KPa (17.40 or 17.84 psi) blast
exposures [22,36]. Increased 4-HNE levels have also been
observed in the organ of Corti after acute acoustic trauma
[70,71]. These observed increases in oxidative stress may
cause mitochondrial injury, activation of cell death pathways
and mediators of inflammation, glutamate excitotoxicity, and
increased levels of lipid peroxidase [10,50,72-77]. Oxidative
stress can affect the injured brain by acting through the brain-

derived neurotrophic factor (BDNF) system to affect synaptic
plasticity and cognition [78]. Oxidative stress may also play a
key role in the breakdown of the blood-brain barrier induced by
blast exposure [22,36].

C-fos is an immediate early gene and biomarker for neural
activity. Noise-induced c-fos expression in the central auditory
system has been shown previously to be noise intensity-
dependent and demonstrates tonotopic organization in some
nuclei (i.e. the DCN, the ventral cochlear nucleus, and the
medial nucleus of the trapezoid body) [79-82]. Exposure to
impulse noise has been shown to lead to prolonged c-fos
expression in the cerebral cortex, the thalamus, the
hippocampus, and the DCN [63,64]. In the present study, broad
upregulation of c-fos was observed in the brain after blast
exposure (Figure 2). Increased numbers of c-fos-positive cells
were observed in the RC, the hippocampus, the cochlear
nucleus, and IC immediately after blast exposure. In the RC, a
second peak of apparent c-fos upregulation was observed at 7
days after blast exposure (Figure 2D). We have previously
observed a similar secondary peak of delayed c-fos expression
in the ventral cochlear nucleus 24 hours after intense noise
exposure (our unpublished data). These observations may
reflect long-term changes in neural processing pathways, such
as changes in inhibitory interneurons [83,84]. The RC is
involved in spatial learning and navigation. Disrupted spatial
navigation has previously been documented in rats 2-3 days
following blast exposure [85,86] and can persist for months to
years after blast exposure in humans [87].

Elevated GFAP levels have been documented in the
hippocampus and cerebral cortex (i.e. the prefrontal and
primary motor cortex) of brains, as well as in serum, after blast
exposure [16,23,41,42,88]. The GFAP level in serum may be a
good biomarker to predict outcome after brain injury [23].
Significantly increased numbers of GFAP-positive astroglial
cells could be detected adjacent to a cortical contusion from 1
day up to 4 weeks after human brain injury [89], and thus, the
quantity of astrocytes, indentified by GFAP immnuostaining,
might be closely related to the level of blast exposure [42] and
the severity of posttraumatic brain injury [90]. In the present
study, increased expression of GFAP was observed in the
hippocampus (CA2 region), the AC, the DCN, and the IC after
blast exposure (Figures 3 and 4 and data not shown).
Increased GFAP expression in the DCN following blast
exposure could be indicative of neuronal injury [67,68].
However, upon quantifying neurons in the DCN of blast-
exposed animals, using a NeuN antibody, we observed no
neuron loss at 21 days after blast exposure, at a time point
when GFAP expression in the DCN significantly increased
(Figures 3C and 4A). This result may indicate astrocytosis in
the DCN without corresponding neuron loss after blast
exposure. However, while anti-NeuN antibody stains a majority
of neurons in the CNS [91]; the present results cannot formally
rule out some subtype of neuron loss in the DCN after blast
injury.

Positive or increased expression of axonal injury biomarkers
(APP and NF-68) were also observed in the hippocampus, the
AC, and the MGN (Figures 5 and 6). The hippocampus belongs
to the limbic system and plays important roles in the
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consolidation of information from short-term memory to long-
term memory and spatial navigation. The MGN is part of the
auditory thalamus and represents the thalamic relay between
the IC and the AC. It is thought that the MGN also influences
the direction and maintenance of attention. Axonal and neural
injury in these regions may be involved in memory loss and
disorientation observed after blast exposure [14,85-87,92].
These results indicate that the central auditory pathway is also
vulnerable to blast exposure. Therefore, injuries in the central
auditory pathway may also be involved in sensorineural
hearing loss detected after blast exposure [54].

Results of the biomarker study presented herein indicate a
regional specificity in neuronal and axonal injury in the brain
after blast exposure. This regionally-specific biomarker
expression pattern has been reported in previous studies
[25,88,93]. Regional brain hypometabolism has been
documented in Iraq War veterans with repeated episodes of
mild TBI from explosive blasts, which may explain the chronic
post-concussive symptoms documented in many of these
soldiers [94]. Results of GFAP expression in the DCN suggest
that the lateral and middle regions of the DCN may be more
sensitive to blast exposure than the medial region (Figure 4).
Our laboratory previously documented a similar regional
specificity with respect to synaptic degeneration in the DCN
after noise exposure [62]. Therefore, biomarker studies may
provide useful information for understanding the mechanisms
of bTBI and developing treatment methodologies.

Our results suggest that neurogenesis in the hippocampus
and in the DCN was not impaired by the blast exposure model
(14 psi) used in the present study at the time point examined
(21 days after blast exposure). A previous study provided
evidence that neurogenesis genes are downregulated in the
hippocampus 24 hours after a 130 - 260 KPa (18.85 - 37.70
psi) blast exposure [47]. However, increased levels of
doublecortin have been detected in the hippocampus as late as
two months post-blast injury [59]. Spiral ganglion cell loss has
also been reported at a sampling interval five weeks after blast
exposure (172 dB, [95]). The intensity of blast exposure used in
the present study was 14 psi (196 dB), and neurogenesis and
spiral ganglion neurons were examined 21 days after blast
exposure. Thus, a longer term study may be needed to discern
whether our model of blast exposure and antioxidant treatment
induce delayed response patterns on neurogenesis in the
hippocampus and spiral neuron loss in the spiral ganglion.

Effects of antioxidants on brain biomarker expression
after blast exposure

Some preventive or treatment measures against blast-
induced brain damage have been reported. Aminoguanidine,
an inducible nitric oxide synthase inhibitor and neuroprotective
agent, facilitated the recovery of neuro-behavioral changes
(coordination and grip strength) induced by blast exposure in
rats and reduced the number of degenerated cortical neurons
[12]. The nonselective caspase inhibitor N-benzyloxycarbonyl-
Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) has been shown
to prevent apoptotic neuron death induced by high-
overpressure shock waves (>10 MPa) in the rat brain [45].
Minocycline (an anti-inflammatory drug) treatment has shown

efficacy in normalizing serum and tissue levels of many
biomarkers, including GFAP, and may prevent the
development of neuro-behavioral abnormalities [16].
Additionally, low-pressure hyperbaric oxygen therapy
significantly improves atypical neural symptoms, abnormal
physical exam findings, cognitive testing, and quality-of-life
measurements for blast-induced post-concussion syndrome
and post-traumatic stress disorder [96].

We chose a combination of two antioxidants, NAC and
HPN-07, for this study. NAC functions to increase the
intracellular pool of the antioxidant glutathione [75]. HPN-07 is
a free radical spin-trapping agent that has exhibited efficacy as
a neuroprotectant and inhibits upregulation of inducible nitric
oxide synthase, decreases glutamate excitotoxicity, and may
decrease cell death [97]. Results of the present study indicate
that antioxidant treatment significantly reduced oxidative stress
in the brain, as evidenced by marked decreases in blast-
induced lipid peroxidation (i.e. 4-HNE levels, Figure 1). This
treatment effect on 4-HNE production was also observed
previously in the organ of Corti following noise exposure
[70,71]. By reducing oxidative stress, antioxidant treatment
may, therefore, reduce mitochondrial injury, activation of cell
death pathways, and mediators of inflammation and glutamate
excitotoxicity to provide protection to the brain and inner ear.

In the present study, regionally-specific treatment effects
were observed in the CNS. Treatment effects were observed in
the RC, the AC, the hippocampus, the MGN and the DCN. The
antioxidants reduced the expression levels of the immediate
early gene, c-fos, in the RC; blast-induced GFAP levels in the
DCN; and axonal injury in the hippocampus, the AC, and the
MGN. The results reported herein suggest that this antioxidant
treatment regimen may not only provide protection to the inner
ear [54] but also to the CNS. The hippocampus and RC are
involved in spatial learning and navigation. Blast-injured
animals have been shown to exhibit persistent spatial memory
impairment [44,59]. Therefore, antioxidants may have the
potential to treat brain injury, and thus neuropsychiatric
sequelae, induced by blast exposure, such as memory loss
and disorientation. However, we observed no treatment effect
on c-fos expression in the RC at 7 days after blast exposure,
suggesting that a longer time-course of antioxidant treatment
may be needed.

NAC is not only an antioxidant but also has anti-inflammatory
and anti-apoptotic effects and restores mitochondrial functions
induced by TBI [40,98-102]. Neuroprotection by NAC has been
observed in animal models [103,104] and in humans [15]. A
double blind, placebo-controlled clinical study has
demonstrated that NAC exhibits beneficial effects on the
severity and resolution of sequelae of mild bTBI [15]. NAC also
attenuates ischemia/reperfusion brain injury and improves
cerebral oxygen delivery and perfusion in animal models
[105-108]. However, several studies have indicated that
therapeutic strategies in which NAC is combined with other
complementary treatments yield more robust results. For
instance, co-administration of NAC with minocycline
synergistically improved spatial learning, lowered interleukin-1
levels, and preserved white matter following TBI in rats [109].
NAC with nutritional supplements (i.e. sodium selenite) offered
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significant protection against mercury-induced oxidative stress
in rats [110]. A combinatorial treatment regimen of hypothermia
plus NAC has been shown to attenuate hypoxic ischemic brain
injury [111]. Co-administration of NAC with 4-hydroxy phenyl N-
tert-butyl nitrone (4-OHPBN, a structural ortholog of HPN-07)
attenuated oxidative stress in the cochlea [70] and synaptic
degeneration in the DCN associated with acute acoustic
trauma [62]. Our unpublished data also suggest that a
combination of NAC with HPN-07 provides synergistic
protection to the peripheral auditory system.

A neuroprotective role for HPN-07 has also been observed in
other animal models. HPN-07 was found to reduce loss of
injured brain tissue and improved cognitive function when
administered to rats after percussion-induced traumatic brain
injury through inhibition of reactive oxygen species [73].
HPN-07 treatment reduced infarct volume in rat models of
stroke [112-114] and lessened functional disability in a primate
model of stroke [115]. HPN-07 has also been shown to reduce
ischemic brain damage through suppressing apoptotic cell
death pathway [112].

A question raised here is why the treatment effects identified
by biomarker expression were only observed in some, but not
all, brain regions. Multiple factors, including blast wave physics,
primary and secondary brain injuries, as well as systemic
pathophysiological responses to blast waves, are involved in
the mechanisms of bTBI [3,25,116]. Furthermore, as a
consequence of the initial mechanical impact to the brain,
cerebral metabolism, blood flow, and ion homeostasis are
altered. High levels of glutamate, calcium and lactate are thus
released, and many cytokines are generated as a result
[11,117-119]. Blast waves can cause more injury to the surface
of the brain than to the deeper regions, although the
hippocampus is affected as well [33]. Consistent with our
results with NF-68 and APP immunostaining, silver staining,
indicative of neuronal and axonal degeneration, has been
shown to be prominent in some deep regions of the brain but
not in the cerebral cortex under similar conditions [23].
Therefore, different mechanisms may be involved in the
specific types of injuries that occur in different brain regions
[21]. Different stimuli can induce c-fos expression in the brain,
and the same stimuli can induce different c-fos expression
patterns in different brain regions [120,121]. In the present
study, the antioxidant treatment effect on c-fos expression was
only observed in the RC, while the treatment effect on GFAP
expression was only seen in the DCN. These results suggest
different mechanisms may be involved in the expression of
these biomarkers in different brain regions. The combination of
NAC and HPN-07 primarily targets oxidative stress, which is
one of the underlying mechanisms of bTBI. Thus, combinations
of drugs that simultaneously target multiple stress pathways
may elicit an even greater therapeutic response.

Conclusion

Antioxidant treatment can provide both functional and
phenoptypic protection to the peripheral auditory end organ,

the cochlea [54]. Our preliminary study described herein
suggests that the same antioxidant treatment may also provide
a degree of protection to the central auditory pathway (the DCN
and the MGN) and non-central auditory regions (the
hippocampus and RC). Thus, antioxidants have the potential to
treat brain injury and, thus, neuropsychiatric sequelae induced
by blast exposure, such as memory loss and disorientation,
under therapeutic conditions that also prevent pervasive
sensorineural damage to the auditory system. Complementary
performance evaluations, such as memory tests and spatial
navigation, should be conducted in the future to determine
whether this treatment strategy can provide functional
protection to brain injuries induced by blast exposure.
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