
New high-throughput experimental techniques, comple-
mented by recently developed computational methods, 
have facilitated the initial reconstructions of large-scale 
cellular networks. These reconstructions provide impor-
tant clues about the topological organization of these 
networks and elucidate relationships between the topo-
logical characteristics and biological properties of the 
corresponding molecules. In particular, studies of 
protein-interaction networks have revealed complex 
relation ships between vertex degree (number of neigh-
bors in the network), network modularity (organiza tion 
of the network into connected subnetworks), gene 
essentiality, gene pleiotropy, and so on. Importantly, 
despite considerable noise in the data, the utility of these 
networks goes beyond merely describing the rough 
landscape of biomolecular systems. They are being used 
increasingly to predict functionality of individual mole-
cules in the network, membership in protein complexes, 
association with signaling pathways, disease-associated 
subnetworks, and so on (see [1] and references therein).

Network dynamics
Experimentally and computationally derived networks, 
such as protein-protein interaction networks, regulatory 
networks or metabolic networks, provide static depic-
tions of the dynamically changing cellular environment. 
Therefore, their utility for modeling cellular dynamics 
might not be clear. However, it is now increasingly 
recognized that static network topology can be used as a 
scaffold for studies of network dynamics. In fact, some 

dynamical properties can be uncovered from network 
topology alone, or in combination with other types of 
data, such as gene expression. For example, an analysis of 
network connectivity in terms of possible ways in which 
information can be propagated has been used to predict 
the molecules perturbed as a result of gene knockouts 
[1,2]. A more recent study combined protein-protein inter-
actions, protein-DNA interactions, and phosphory lation 
networks with gene-expression profiles to provide a link 
between causative copy number variations (genetic pertur-
bation) and molecular pathways affected in cancer [3].

Although the above-mentioned approaches provide 
tools for predicting which molecules are likely to be 
affected by a perturbation, their power to predict the 
changes quantitatively is extremely limited. Such quanti-
tative predictions require knowledge of the parameters of 
a molecular system that goes beyond simple network 
connectivity. There are a number of well-established 
methods for quantitative modeling of dynamical systems 
(for a review see [4]). However, such approaches typically 
require knowledge of experimentally determined para-
meters describing the individual reactions. Consequently, 
these models have been developed and applied to small-
scale networks only, limiting such quantitative studies to 
the better understood subnetworks for which such 
measurements can be obtained. Because such detailed 
data are not available on a genome-wide scale, a 
dynamical analysis of large-scale networks must rely on 
less precise methods that can estimate the behavior of 
the systems without knowledge of reaction parameters. 
For example, flux balance analysis (a mathematical 
approach for analyzing the flow of metabolites through a 
metabolic network) is often used in analyzing metabolic 
networks; variants of Boolean logic (a way of combining 
activation/inhibition signals from individual parts of a 
network) are frequently applied to signaling networks; 
and a variety of different methods have been proposed 
for regulatory networks (for a review see [5]).

Modeling dynamics in large-scale heterogeneous 
networks
Until recently, the large-scale modeling of network 
dynamics has been focused on individual network types. 
However, within a cell, all network types are interrelated 
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and dynamics of any individual network has an impact on 
the behavior of other networks. Several recent studies 
have begun to address the challenge of coupling large-
scale dynamical models for different network types to 
obtain one consistent dynamical network. Such methods 
have been spearheaded by approaches to combine meta-
bolic and regulatory networks (see [6-8] and references 
therein). For example, to obtain a combined model of 
metabolic and regulatory networks, Covert et al. [6] used 
flux-balance analysis to model the metabolic network 
component while the transcriptional regulatory network 
was modeled as a Boolean network. The genes in the 
transcriptional network were assigned Boolean (binary) 
values indicating whether or not a given gene is being 
expressed. An interactive procedure was applied to 
ensure that the combined model satisfies both the 
metabolic and the regulatory constraints. A subsequent 
study used mixed integer linear programming (a general 
optimization framework for capturing problems with 
both discrete and continuous variables) to couple such 
metabolic and regulatory models [8].

In their recent paper in BMC Biology, Wang and Chen 
[9] propose a promising approach for integrating trans-
cription regulation and protein-protein interactions using 
dynamic gene-expression data. They start with candidate 
gene regulatory and signaling networks obtained from 
genome-scale data. These candidate networks are then 
pruned and combined, utilizing gene-expression data at 
multiple time points, to obtain an integrated and focused 
network under a specific condi tion of interest. The 
transcriptional network is modeled as a dynamical system 
in which the expression of a target gene (a gene subject to 
regulation by transcription factors included in the 
network) is computed as a function of regulatory impact of 
the corresponding transaction factors, its expression at a 
previous time point, and mRNA degradation rate. The 
modeling of a signaling/protein-interaction network takes 
into account, among other factors, the activities of its 
neighbors in the network. The interaction rate between 
two neighboring proteins is assumed to be proportional to 
the product of their concentrations. An overview of the 
method used by Wang and Chen [9] is depicted in Figure 1 
and further details are given in Figure 2.

Wang and Chen applied their method to Saccharomyces 
cerevisiae (budding yeast) networks for three different 
stress responses - hyperosmotic stress, heat-shock stress 
and oxidative stress - and identified highly connected 
trans cription factors and genes. Further analysis of the 
crosstalk between these three networks revealed the 
significance of some transcription factors in serving as 
the decision-making devices and in playing a role in rapid 
adaptation in the stress-response mechanism.

The authors also showed that their method can be used 
to predict gene-expression levels under different 

conditions. To do so, they first constructed the integrated 
network under heat-shock stress for the wild-type strain 
of yeast and then used the trained data to predict the 
expression level of the gene HXT5 in the yap1 mutant 
strain, which had been originally determined by Gasch et 
al. [10]. Their results suggest that various types of 
network models can be combined successfully to yield a 
predictive dynamic model of the heterogeneous system.

Challenges and future directions
Studies of large-scale biological networks are gradually 
shifting from the analysis of their organizational 
principles and guilt-by-association predictions of the 
function of individual network components towards 
examining cell dynamics. In such studies, experimentally 
determined static networks are often used as scaffolds for 
modeling of dynamical changes in the system. 

Figure 1. Integrating transcriptional and signaling networks. 
The figure illustrates the integration method proposed by Wang and 
Chen [9]. First the candidate gene regulatory network and signaling 
regulatory pathways are retrieved. These candidate networks are 
then pruned and combined, utilizing gene-expression data with 
time profiles to obtain an integrated and focused network under 
a specific condition of interest. Transcription factors serve as the 
interface to link the two types of networks. GO, Gene Ontology; SGD, 
Saccharomyces Genome Database; TF, transcription factor.
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Infor mation about dynamics can be provided, for 
example, by measurements of gene expression at different 
time points or in different conditions. The methods used 
by Wang and Chen [9] to construct such dynamically 
coupled models provide important steps in this direction, 
but there is still much more to be done. First, the power 
and limitations of the new methods need to be 
investigated more extensively. Next, note that the 
combined model of protein-interaction networks and 
transactional network proposed by Wang and Chen [9] 
incorporated the impact of protein degradation, which 
was not included in the basic flux-balance model. In 
contrast, the work of Covert et al. [6] more accurately 
captured the functionality of the transcriptional network 
through an application of Boolean logic. Obviously, both 

approaches are important and should be considered in 
future models. Finally, an approach that combines all 
three networks is still lacking. Indeed, much has to be 
done before genome-scale models will be able to 
approximate cell dynamics with a precision close to what 
is expected from differential equation methods. But 
keeping in mind that a great deal was learned from the 
static models alone, we expect that even simple genome-
wide scale dynamical models will bring further 
interesting discoveries.
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Figure 2. Details of the integration method proposed by Wang 
and Chen [9].

ways - in equation (1), the protein activities 

cal model) and the S  tudent’s 

The transcription regulation part of the integrated network is considered as a system 

where transcription factors (TFs) regulate target genes and the dynamic model of gene 

x is described by a stochastic equation as follows:  
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where xg[t] is the mRNA expression level of gene g at time t. It is modeled as a 

function of the basal level Bg, the expression level at the prior time point xg[t-1], the 

regulation level zi[t-1] of TF i, and stochastic noise εg.  Rig represents the regulatory 

parameter of transcription factor i to target gene g , which indicates activation if 

positive and repression otherwise.  λg denotes the degradation effects. The regulation 

level zi is defined as the sigmoid function fi (yi[t]) of the protein activity yi, which is 

described below to model signaling regulatory pathway.  

 

For the protein-protein interactions, the dynamic model of the activity yn[t] for a target 

protein n is described by the following equation  
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where B’n is the basal activity level of protein n, λ’n indicates the degradation effect of 

the protein, and Inj denotes the interaction parameter of protein n and j  In addition, the 

protein activity level is also affected by the expression level of the corresponding 

gene xn[t-1] and Tn represents translation effect from mRNA to protein. ε'n denotes the 

stochastic noise. 

 

Note that the two networks interact in two 

of TFs regulate their target genes and in equation (2), genes affect the activities of 

their corresponding proteins through translation effect.  Regulatory parameters R and 

interaction parameters I are computed, based on gene expression data collected at 

multiple time points, by solving  the constrained least square parameter estimation 

problem. Given the regulatory parameters, significant interactions and regulations in 

the integrated network are identified via Akaike Information Criterion (AIC, measure 

of goodness of fit of a statisti t-test.   
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