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Abstract

Purpose: In studies of effects of time-varying drug exposures, adequate adjustment

for time-varying covariates is often necessary to properly control for confounding.

However, the granularity of the available covariate data may not be sufficiently fine,

for example when covariates are measured for participants only when their exposure

levels change.

Methods: To illustrate the impact of choices regarding the frequency of measuring

time-varying covariates, we simulated data for a large target trial and for large

observational studies, varying in covariate measurement design. Covariates were

measured never, on a fixed-interval basis, or each time the exposure level

switched. For the analysis, it was assumed that covariates remain constant in

periods of no measurement. Cumulative survival probabilities for continuous expo-

sure and non-exposure were estimated using inverse probability weighting to

adjust for time-varying confounding, with special emphasis on the difference

between 5-year event risks.

Results: With monthly covariate measurements, estimates based on observational

data coincided with trial-based estimates, with 5-year risk differences being zero.

Without measurement of baseline or post-baseline covariates, this risk difference

was estimated to be 49% based on the available observational data. With measure-

ments on a fixed-interval basis only, 5-year risk differences deviated from the null, to

29% for 6-monthly measurements, and with magnitude increasing up to 35% as the

interval length increased. Risk difference estimates diverged from the null to as low

as �18% when covariates were measured depending on exposure level switching.

Conclusion: Our simulations highlight the need for careful consideration of time-

varying covariates in designing studies on time-varying exposures. We caution

against implementing designs with long intervals between measurements. The maxi-

mum length required will depend on the rates at which treatments and covariates

change, with higher rates requiring shorter measurement intervals.
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Key Points

• Adequate information on both baseline and time-varying covariates is important for con-

founding control in observational studies on the effects of time-varying drug exposures.

• Using simulated data, it was illustrated that considerable bias might arise when time-varying

covariates are measured on a fixed-interval bases with long intervals between measurements

or when subjects' covariates are assumed to remain constant in periods where their exposure

levels remain constant.

• Whether or not data on time-varying covariates are collected with every exposure level

switch, measurement strategies with long intervals between measurements are discouraged.

1 | INTRODUCTION

In many pharmacoepidemiologic studies, the use of the drugs that are

investigated may change over time. In case of such time-varying expo-

sures, the exposure effect can be defined in different ways. For exam-

ple, one could contrast initiating drug treatment at a particular point

in time (irrespective of whether the use is continued) with not initiat-

ing, or continuous drug use with continuous non-use. While analyses

of point interventions (e.g., a single-dose vaccination) require adjust-

ment for confounding at baseline only, for analyses of a time-varying

exposure, information on time-varying covariates might be required to

mitigate bias due to time-varying confounding. However, the granu-

larity of the available information about the time-varying covariates

may not be sufficiently fine to adequately control for confounding.

One special case of where this issue may arise is where researchers

choose to measure covariates for study subjects only when their expo-

sure levels have changed since the last measurement. If exposure levels

do not change, covariate levels are (implicitly) assumed to remain con-

stant, which is an implementation of a method generally known as last-

observation-carried-forward (LOCF). The accurateness of the observed

covariate data may then depend on the observed exposure history. In

studies of antidepressant use and the risk of hip fracture, for example,

comorbidities and use of comedication were assessed only at baseline

and whenever patients switched exposure level or after every 6 months

in the absence of switching.1,2

In this paper, we investigate the impact of various covariate measure-

ment designs on the estimation of time-varying exposure effects in obser-

vational studies with time-varying confounding. We illustrate, by way of

simulation, the potential for bias of inverse-probability-weighting (IPW)

estimators under static designs of fixed-interval covariate measurement

and under dynamic designs with covariates being measured depending

on the observed exposure history. IPW estimators are considered as

these are increasingly used for estimating causal effects of time-varying

exposures, can accommodate exposure-covariate feedback,3 and readily

allow for ‘adjusted’ survival curves to be created.4

2 | METHODS

We first simulated data for a hypothetical study, the ‘target trial’,
which if implemented on the theoretical population of interest would

readily allow us to identify the exposure effect of interest.5 In prac-

tice, it is not always possible to implement a target trial, but we use it

here as a means to clarify the exposure effect of interest and we sim-

ulate from it to give a reference against which to compare results from

analyses that are based on simulated data for observational studies.

We considered multiple observational studies, each with the same data-

generating mechanism but with different covariate measurement

designs to evaluate their impact. Having simulated data, we then esti-

mated the survival curves for the period of 5 years, using a weighting

approach (described below) that was designed to keep treatment arms

comparable throughout follow-up in terms of measured covariates. For

each of the trial and observational studies, we first generated data on a

single sample of n = 150 000 individuals, which is sufficiently large to

allow us to ignore sampling variability and regard differences between

the survival curves as measures of the impact of the measurement

designs on the large sample bias of the IPW estimators. The results

corresponding to this single simulation run are described in detail below.

In Appendix S2, we summarise the results of 5000 independent simula-

tion runs for samples sizes 150 000, 10 000, 1000, 100. R code for this

simulation is provided as Appendix S1.

2.1 | Set-up

The target trial has the following key design elements: (1) study partici-

pants (subjects who satisfy the eligibility criteria) are randomised at a

well-defined baseline time point t0 to either being issued a drug pre-

scription (A0 = 1)—say, a prescription for a daily dose of some antide-

pressant drug for the next one-month period—or to not being issued

the prescription (A0 = 0) at t0; (2) participants are then followed over

time until the occurrence of an event (e.g., the first hip fracture or death

if the subject dies without having sustained a hip fracture during follow-

up) or the administrative study end, whichever comes first; (3) provided

event-free survival is long enough, study participants in the (A0 = 1)-

group are issued a further prescription after every month since t0 and

those in the (A0 = 0)-group do not receive a prescription during follow-

up. For a given subject, we define Ak to be the indicator variable that

takes the value of 1 if the subject is on a one-month prescription on

month k; Ak = 0 otherwise. We further define Y to be the amount of

follow-up time between baseline and the subject's (first) event and let

Yk be that part of Y that relates to month k. We stipulate that study
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participants are event-free at the start of the study and that subjects do

not get lost to follow-up before the administrative study end, which we

stipulated to be 5 years (or K = 60 months) post-baseline.

The observational studies differ from the target trial in the following

ways only: (1) the decision to allocate a subject to A0 = 1 versus A0 = 0

is not made by randomisation; (2) the decisions to renew prescriptions

for subjects in the (A0 = 1)-group or to never issue a prescription

throughout the follow-up period for those in the (A0 = 0)-group are not

determined by their baseline allocations A0. Rather, for month k = 0,1,

…, the decision to set exposure Ak to 0 or 1 is based only on past expo-

sure history (Aj: j < k) and certain binary covariates Lk. In this observa-

tional setting, subjects can switch at the start of each month between

exposure levels ‘being on prescription’ (or ‘exposed’) versus ‘not being
on prescription’ (or ‘not exposed’). In variations on this setting, covariate

data were measured according to one of the following measurement

designs: (1) covariates were not measured at all, thus precluding any

adjustment for confounding and effectively forcing us to implement a

‘crude’ estimator; (2) covariates were measured on a monthly basis,

which is sufficient for identification of our target quantity; (3) covariates

were measured on a 6-monthly basis starting at baseline; (4) covariates

were measured when the respective subject's exposure level switched;

(5) covariates were measured with an exposure level switch and at a

6-monthly basis in the absence of exposure level switching. We also

considered variations on designs (3) and (5) where, instead of 6 months,

the fixed measurement interval have a length of 2, 3, 9, 12,…, or

60 months. Where design (3) means that measurement times are known

before the start of follow-up, designs (4) and (5) are dynamic in the

sense that whether or not a subject's covariate level is measured

depends on the subject's time-varying variables.

2.2 | Data-generating mechanism

To simulate longitudinal data for a setting with time-varying con-

founding we used a variation on the approach described by Haver-

croft and Didelez6 and Young and Tchetgen Tchetgen.7 The data-

generating mechanisms for the target trial and observational studies

are described in the Appendix A and produce data that are consistent

with the directed acyclic graphs (DAGs) of Figure 1. In the trial setting

(left panel of Figure 1), the absence of arrows going into the exposure

variables reflects the absence of (time-varying) confounding. In the

target trial, post-baseline exposures are fully determined by the base-

line level of exposure, which takes the value of 1 for half of subjects

(i.e., exposure status does not change over time). In the observational

study, however, approximately 40% of subjects will have switched

exposure level by the end of follow-up in each of the arms that are

defined by baseline exposure level.

2.3 | Defining and estimating the exposure effect

We define the exposure effect of interest as a contrast between con-

tinuous exposure (Aj = 1 for j = 0,1,…) versus continuous non-

exposure (Aj = 0 for j = 0,1,…). In particular, we suppose that the

interest lies with a contrast between the 5-year event-free survival

probabilities that we would observe had everyone received continu-

ous exposure versus continuous non-exposure; that is, a contrast that

is identified in the target trial as

Pr Y ≥60jA0 ¼1ð Þ versusPr Y ≥60jA0 ¼0ð Þ:

As indicated by the absence of a directed path of arrows from the

exposure variables to the outcome variables in the DAG for the target

trial, the difference between these two survival probabilities is zero.

To account for time-varying confounding in the observational

studies, we implemented IPW by applying a crude (Kaplan–Meier)

estimator to an artificial data set where, given a time during follow-up,

a subject received a weight of zero if the subject had experienced an

exposure level switch by that time and otherwise a weight equal to

the reciprocal of the product of the estimated probabilities of their

observed exposure levels until that time given the respective mea-

sured exposure and covariate histories. That is, for a = 0,1, a subject's

weight for month k was

Wk ¼
Yk

j¼0

1

Pr Aj ¼ ajY ≥ j,A0 ¼…¼Aj�1 ¼ a,L0,…,Lj
� �

if the subject received exposure level a in months 0 through k (i.e.,

A0 = … = Ak = a). Subjects were censored (i.e., received a weight of

zero) from the time at which they switched to another exposure level.

Apart from the covariate measurement design, the validity of the

approach also rests on the correct specification of the model for the

conditional treatment probabilities. To ensure correct specification for

the reference measurement design (1), we assumed that the exposure

Ak given survival and past exposure and covariate levels was Bernoulli

distributed with mean equal to

Pr Ak ¼1jY ≥1,A0,…,Ak�1,L0,…,Lkð Þ¼ exp α0þα1I k¼0ð Þþα2Ak�1þα3Lk½ �
1þexp α0þα1I k¼0ð Þþα2Ak�1þα3Lk½ �

for some α0,α1,α2,α3, which were estimated by a pooled logistic

regression under this model. Throughout, variables that were

unobserved by measurement design were handled with LOCF.

3 | RESULTS

Figure 2 shows the estimated survival curves for the ‘always treat’
and ‘never treat’ protocols. Consistent with the absence of a directed

path from the exposure variables to the outcome variables in the

DAGs of Figure 1, the trial-based estimates of the survival curves

overlap (Figure 2, panel A). Where we observed a 5-year event risk of

31% in both arms of the target trial, in the observational setting, we

observed a risk of 64% and 15% in those who do and those who do

not receive a treatment prescription at baseline, respectively, giving a

risk difference of 49% (panel B). With monthly covariate
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F IGURE 1 Directed acyclic graphs representing the data-generating mechanism for the first 2 months of the target trial (left) and
observational study (right). Here, U represents a unmeasured common cause of the measured covariates Lk�1,Lk and outcome variables Yk�1,Yk.
The absence of directed paths from exposure variables Ak�1,Ak to outcome variables Yk�1,Yk reflects the absence of a causal exposure-outcome
effect

F IGURE 2 Estimated event-
free survival curves for ‘always
treat’ and ‘never treat’ protocols
based on target trial (panel A) and
observational study (B through F)
with varying covariate
measurement designs: no
covariate measurement B,
continuous to monthly covariate
measurement C, 6-monthly
covariate measurement D,
covariate measurement only with
covariate level switching E, and
with exposure switching and
6-monthly in periods without
switching F
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measurement, IPW resulted in survival curves that virtually coincide

with those of the trial (panel C), for which we found a risk difference

of zero. Six-monthly measurements (panel D), however, brought the

curves closer to those of the no measurement setting (panel B), that

is, in the ‘direction of confounding’. The 5-year risks with 6-monthly

measurements were estimated to be to 50% and 21%, respectively,

giving a risk-difference of 29%. In Figure 3, panel A, it is shown that

the estimated risk differences at 2 and 5 years increase with the inter-

val measurement length, until they reach a plateau of approximately

20% and 35%, respectively. When the interval length was set equal to

the maximum follow-up duration (60 months), only baseline

covariates were measured, which resulted in an estimated 5-year risk

difference that was approximately 15% points closer to the target

than that of no covariate measurement at all (Figure 2, panel B). When

we implemented measurement design (4), the estimated 5-year risk

difference flipped to the other side of the null, �14% (panel E), with

5-year risks estimated to be 27% and 41% for the ‘always treat’ and
‘never treat’ protocols, respectively. For design (5), we observed a

5-year risk difference of �5%, somewhere between the results of

design (3) and (4) (panel F). With increasingly large measurement inter-

vals within periods of no switching, the estimated 2-year risk differ-

ence steadily decreased to approximately �15% (Figure 3, panel B).

The estimated 5-year risk was also �15% with 60 months between

measurements in periods of no switching, equal to the observed risk

of design (4), as expected. However, it was lowest, approximately

�18%, with an interval length of around 30 months.

The bias estimates of the survival curves and 5-year risk differ-

ence that were derived by averaging across 5000 independent sam-

ples of sizes 150 000, 10 000 and 1000 are nearly identical to the

corresponding estimates described above (see Supplementary Table

and Figures). For sample size 100, however, we observed substantial

(small sample) bias for all measurement designs, even in the reference

observational setting with full/monthly covariate measurement.

4 | DISCUSSION

We used simulation to study and illustrate the potential for bias due

to measurement design choices in the estimation of the effects of

time-varying exposures. The potential for bias in settings with static

or fixed-interval covariate measurement designs has recently been

illustrated already.8 We additionally showed that bias might arise in

settings where decisions to measure are driven by observed values of

the time-varying exposure.

As expected, in our simulations, fixed-interval measurement

resulted in bias in the direction of confounding, bias that is attribut-

able to residual confounding. Interestingly, we found bias in the oppo-

site direction when we implemented measurement designs where

covariates were measured preferentially with exposure level switches.

Together with LOCF, these measurement designs introduced a form

of differential misclassification, which may result in bias even in the

absence of confounding.9 Researchers familiar with DAGs might be

alerted by the presence of colliders in the DAG that encodes part of

the misclassification mechanism. For example, on the DAG of the right

panel of Figure 1, the differential misclassification of L1 can be repre-

sented by adding a measured version of L1 with incoming arrows from

L0, L1, A0 and A1. The measured variable can then be seen to be a col-

lider on the path from A1 to Y1 via L1 and U. By conditioning on the

collider (and not the unmeasured variable L1 or U), the path is opened,

potentially leading to collider-stratification bias.3 In addition to ade-

quate measurement of the time-varying covariates, the validity of

IPW rests on the correct specification of the model for the distribu-

tion of the treatment variables given survival and past covariate and

exposure levels. It is possible that the biases that we observed are

partly due to model misspecification.

We considered a specific and relatively simple setting with a sin-

gle, binary covariate, no censoring before the administrative study

end and an interest in static rather than dynamic treatment strategies.

These features are not required for valid inference with IPW.3 How-

ever, the magnitude and direction of bias in other settings may differ

from those observed in the current study. We stress that the bias that

was observed in our simulation does not depend critically on the

choice of IPW as a means to control for time-varying confounding.

The choices regarding the frequency of covariate measurements will

likely also affect other methods, including the commonly applied Cox’
regression analysis with time-varying covariates. The extent to which

such choices impact a particular study are obviously context-specific.

For example, it will likely depend on the rate at which subjects cross

F IGURE 3 Estimated 2- and
5-year event risk differences
comparing ‘always treat’ versus
‘never treat’ protocols. Estimates
derive from observational studies
with varying covariate
measurement designs. Panel A
gives the estimates for fixed-
interval measurement; panel B

gives the estimates for covariate
measurement with exposure
switching and with fixed-length
intervals in periods without
switching
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over between treatment arms as well as on the extent to which

covariates are subject to change over time.

In conclusion, our simulations highlight the need for adequate

measurement of time-varying covariates in observational studies on

the effects of time-varying exposures. Researches should consider dif-

ferential covariate misclassification as a possible source of bias when

designing covariate measurement strategies. Whether or not

covariates are measured with every exposure level switch, we caution

against implementing measurement designs with long intervals

between measurements, particularly when the impact of the design

choices are poorly understood. The maximum interval length that is

sufficient to yield negligible bias will depend on the rates at which

treatments and covariates can change,8 with higher rates requiring

shorter measurement intervals.
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APPENDIX A.

Data-generating mechanism

For convenience of notation, define Lk = Ak = 0 if k < 0. Also, let I and

expit denote the indicator and inverse logit function, respectively, so

that expit[x] = exp[x]/(1 + exp[x]). For all 150 000 study participants,

we generated data using independent runs of the following algorithm:

(1) generate U from a uniform distribution over the interval [0,1],

initialise Y = 0 and set k = 0; (2) if Y ≥ k, draw Lk from the Bernoulli

distribution with parameter expit[�4.25 + 0.25I(k = 0)

+6 U + 0.5Ak�1 + Lk�1] and draw Ak from the Bernoulli distribution

with parameter pk; (3) draw T from the exponential distribution with

rate exp[�9.5 + 7 U] and increment Y with Yk: = min{T,1}; (4) if k < K,

increment k with 1 and return to (2); stop otherwise. For the observa-

tional study, we defined pk = expit[�7 + 4I(k = 0) + 10Ak�1 + 4Lk],

whereas for the trial we defined pk = 0.5I(k = 0) + Ak�1I(k > 0).
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