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Abstract

Background

Closed-loop insulin delivery systems, which integrate continuous glucose monitoring (CGM)

and algorithms that continuously guide insulin dosing, have been shown to improve glycae-

mic control. The ability to predict future glucose values can further optimize such devices. In

this study, we used machine learning to train models in predicting future glucose levels

based on prior CGM and accelerometry data.

Methods

We used data from The Maastricht Study, an observational population-based cohort that

comprises individuals with normal glucose metabolism, prediabetes, or type 2 diabetes. We

included individuals who underwent >48h of CGM (n = 851), most of whom (n = 540) simul-

taneously wore an accelerometer to assess physical activity. A random subset of individuals

was used to train models in predicting glucose levels at 15- and 60-minute intervals based

on either CGM data or both CGM and accelerometer data. In the remaining individuals,

model performance was evaluated with root-mean-square error (RMSE), Spearman’s corre-

lation coefficient (rho) and surveillance error grid. For a proof-of-concept translation, CGM-
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based prediction models were optimized and validated with the use of data from individuals

with type 1 diabetes (OhioT1DM Dataset, n = 6).

Results

Models trained with CGM data were able to accurately predict glucose values at 15 (RMSE:

0.19mmol/L; rho: 0.96) and 60 minutes (RMSE: 0.59mmol/L, rho: 0.72). Model performance

was comparable in individuals with type 2 diabetes. Incorporation of accelerometer data

only slightly improved prediction. The error grid results indicated that model predictions

were clinically safe (15 min: >99%, 60 min >98%). Our prediction models translated well

to individuals with type 1 diabetes, which is reflected by high accuracy (RMSEs for 15 and

60 minutes of 0.43 and 1.73 mmol/L, respectively) and clinical safety (15 min: >99%,

60 min: >91%).

Conclusions

Machine learning-based models are able to accurately and safely predict glucose values at

15- and 60-minute intervals based on CGM data only. Future research should further opti-

mize the models for implementation in closed-loop insulin delivery systems.

Introduction

The increasing prevalence of diabetes entails an increase in debilitating complications, such as

retinopathy, neuropathy, and cardiovascular disease [1–3]. Maintaining plasma glucose levels

within the reference range is essential for the prevention of diabetes-related complications,

which are generally attributable to chronic hyperglycaemia, although hypoglycaemia has been

suggested to contribute to cardiovascular disease risk as well [3–5]. One of the most promising

developments to minimize hyperglycaemia and hypoglycaemia–and, hence, to increase time

in range–in individuals with diabetes who require insulin treatment is a closed-loop insulin

delivery system (also known as the artificial pancreas). Such a system integrates continuous

glucose monitoring (CGM), insulin (with or without glucagon) infusion, and a control algo-

rithm to continuously regulate blood glucose levels [6, 7]. Multiple studies have shown the

merit of incorporating the artificial pancreas into clinical care of individuals with type 1 or

type 2 diabetes [8, 9].

Despite prior efforts, there are still numerous points that need to be addressed in order to

improve the individual components of closed-loop systems [6, 10]. With regard to CGM, this

includes overcoming sensor delay (i.e., the inherent ~10-minute discrepancy between intersti-

tially measured and actual plasma glucose values), and sensor malfunctions (i.e., periods dur-

ing which no glucose values are recorded) [6, 10, 11]. Continuous glucose prediction is a

potentially viable strategy to both handle sensor delay and bridge periods of sensor malfunc-

tion. The use of machine learning has yielded encouraging glucose prediction accuracy results

in relatively small study populations (mostly individuals with type 1 diabetes) or in silico stud-

ies, as extensively reviewed elsewhere [12]. Large, human-based study populations are now

needed to reliably assess to what extent and within what time interval (i.e., prediction horizon)

glucose values can be accurately predicted by use of machine learning. Additionally, incorpo-

ration of physical activity, which is considered an important factor for glucose control in daily

life, could further improve glucose prediction [6].
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In this study, we investigated to what extent glucose values can be accurately predicted at

intervals of 15 and 60 minutes by a machine learning model that has been trained with a slid-

ing time window of glucose values preceding the predicted values at a fixed interval. Addition-

ally, we studied whether glucose prediction can be further improved by incorporation of

accelerometer-measured physical activity, and to what extent the results differ in a subgroup

analysis of individuals with type 2 diabetes only. For this, we used a large population of indi-

viduals with either normal glucose metabolism (NGM), prediabetes, or type 2 diabetes who

simultaneously underwent CGM and continuous accelerometry during a one-week period.

Last, we used the publicly available OhioT1DM Dataset to explore whether CGM-based pre-

diction models would translate to individuals with type 1 diabetes, the primary target popula-

tion for closed-loop insulin delivery.

Methods

Study population and design

We used data from The Maastricht Study, an observational, prospective, population-based

cohort study. The rationale and methodology have been described previously [13]. In brief,

The Maastricht Study focuses on the aetiology, pathophysiology, complications and comorbid-

ities of type 2 diabetes, and is characterized by an extensive phenotyping approach. All individ-

uals aged between 40 and 75 years and living in the southern part of the Netherlands were

eligible for participation. Participants were recruited through mass media campaigns and from

the municipal registries and the regional Diabetes Patient Registry via mailings. For reasons of

efficiency, recruitment was stratified according to known type 2 diabetes status, with an over-

sampling of individuals with type 2 diabetes. In general, the examinations of each participant

were performed within a time window of three months. From 19 September 2016 until 13 Sep-

tember 2018, participants were invited to also undergo CGM [14]. During this period, a

selected group of recently included participants were invited to return for CGM. In these par-

ticipants only, there was a median time interval of 2.1 years between CGM and all other mea-

surements. The present report includes cross-sectional data of the 851 participants who had at

least 48h of CGM data available and were classified with NGM, prediabetes, or type 2 diabetes.

The Maastricht Study has been approved by the institutional medical ethical committee (Med-

isch-ethische toetsingscommissie aZM/UM [METC]; NL31329.068.10) and the Minister of

Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All participants

gave written informed consent.

Continuous glucose monitoring

The rationale and methodology of CGM (iPro2 and Enlite Glucose Sensor; Medtronic, Tolo-

chenaz, Switzerland) have been described previously [14]. In brief, the CGM device was worn

abdominally and recorded subcutaneous interstitial glucose values (range: 2.2–22.2 mmol/L)

every five minutes for a seven-day period. For calibration purposes, participants were asked to

perform self-measurements of blood glucose four times daily (Contour Next; Ascensia Diabe-

tes Care, Mijdrecht, the Netherlands). Participants were blinded to the CGM recording, but

not to self-measured values. Diabetes medication use was allowed and no dietary instructions

were given. We only included individuals with at least 48h of CGM, but excluded the first 24h

of CGM from analysis because of insufficient calibration. For the glucose prediction analyses,

all remaining glucose data points were used. We additionally calculated mean sensor glucose,

standard deviation (SD), and coefficient of variation (CV) with the use of Glycemic Variability

Research Tool (GlyVaRT; Medtronic) software.
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Accelerometry

As described previously, daily physical activity was measured with use of the triaxial activPAL3

accelerometer (PAL technologies; Glasgow, United Kingdom) [13, 15]. The accelerometer

was, just as the CGM device, attached during the first research visit; participants wore the

accelerometer on the front of the right thigh for eight consecutive days. No physical activity

instructions were given. PAL Software Suite version 8 (PAL technologies) was used to convert

the event-based accelerometry data files into 15-second interval data files. We used the com-

posite of X, Y, and Z accelerations for each 15-second interval as the measure of physical

activity.

Assessment of participant characteristics

As described previously [13], we classified glucose metabolism status (GMS) as either NGM,

prediabetes, or type 2 diabetes based on both a standardized 2-hour 75 gram oral glucose toler-

ance test and use of glucose-lowering medication [16]. We assessed medication use as part of a

medication interview. Additionally, we determined smoking status and history of diabetes

based on questionnaires, measured weight and height–to calculate body mass index (BMI)–

and office blood pressure during a physical examination, and measured HbA1c as well as lipid

profile in fasting venous blood.

Dataset construction

An overview of data preprocessing, model development, and model evaluation is given in

Fig 1. In order to train our models in predicting future glucose values, we constructed two sep-

arate datasets (Fig 1, panel a). The first dataset consisted of only the participants’ six-day, five-

minute interval CGM data (n = 851). The second dataset consisted of both CGM and accelero-

metry data (n = 540). To synchronize CGM (determined at 5-minute intervals) and accelero-

metry data (determined at 15-second intervals) in the second dataset, we linearly interpolated

glucose values between two glucose data points with a frequency of 15 seconds. Consistent and

aligned frequency intervals across these parameters are a statistical precondition for this type

of model development [17]. The study populations were randomly split into a training (70%),

tuning (10%), and evaluation (20%) dataset such that data from a given individual were pres-

ent only in one set. The training set was used to train the proposed models. The tuning set was

used to iteratively improve the models by selecting the best model architectures and hyper-

parameters. Finally, the best models were evaluated on the independent evaluation set that was

retained during model development.

Model development and design

Our proposed predictive model operates sequentially over CGM and accelerometry data (Fig

1, panel b). At each individual time point, 30 minutes of prior time series data were provided

to the statistical model (e.g., six CGM-based glucose values), based on which it predicted glu-

cose values at specified time intervals. For this study, we set these time intervals at 15 and 60

minutes. The nature of this prediction task can be solved by a variety of statistical and machine

learning models. In the current study, we assessed autoregressive integrated moving average,

support vector regression, gradient-boosting systems, shallow and deep multi-layer perceptron

neural networks, and several recurrent neural network (RNN) architectures, including classi-

cal RNN [18, 19], gated recurrent units [20], long-short term memory (LSTM) networks [21],

and all of its bi-directional variants [22, 23] (S1 File).
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Model selection and training

The classical RNN architecture had superior performance at the 15-minute prediction interval

(Table 1, RMSE: 0.485 [0.481–0.490]), whilst the LSTM network outperformed all other archi-

tectures at the 60-minute prediction interval (Table 1, RMSE: 0.941 [0.937–0.945]). Consider-

ing the performance of the LSTM network at a 15-minute prediction interval was nearly as

good as the classical RNN, we selected the multi-task LSTM network among several alterna-

tives as architecture of choice to continue our investigations(S1 File and Table 1). This archi-

tecture runs sequentially over time series data and is able to implicitly model the historical

context of an individual by modifying an internal state through time. Specifically, we designed

Fig 1. Overview of data preprocessing, model development and evaluation. Data was used from The Maastricht Study, an observational population-based cohort that

comprises individuals with normal glucose metabolism (NGM), prediabetes, or type 2 diabetes (panel A). We included 851 individuals who underwent continuous

glucose monitoring (CGM), most of whom simultaneously wore an accelerometer to assess physical activity (X, Y, and Z accelerations). Models developed with the

long-short term memory (LSTM) architecture were trained in predicting glucose levels at 15- and 60-minute intervals with either CGM data only (1) or both CGM and

accelerometer data (2) (panel B). Finally, model performance was evaluated by glucose profile analysis, performance metrics (root-mean-square error [RMSE];

Spearman’s correlation coefficient [rho]; proportions), and clinical error grids (panel C).

https://doi.org/10.1371/journal.pone.0253125.g001
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this architecture to predict both time intervals simultaneously, often referred to as “multi-task

learning”, which aims to share knowledge amongst prediction tasks.

Next, we evaluated a broad spectrum of hyperparameter combinations for this network (S1

Table). This resulted in a multi-task LSTM architecture, consisting of three layers, including a

dropout layer with a total of 56–104 neurons (S2 Table). During training, we used exponential

learning-rate decay via the Adam optimization scheme [24]. The best validation results were

achieved by use of an initial learning rate with a decay of 0.001 every 1,000 training steps, with

a batch size of 1024, and a back-propagation through a time window of 30 minutes. This

defines the amount of historic data the model uses, which in our case translates to six (first

dataset) or 120 (second dataset) glucose data points, for the model to provide a prediction. The

loss function during training was the mean average of the mean-squared error function of all

predictions. The maximum amount of epochs was 50.000 with an early stopping criterion

(based on 20% hold-out data) set to 250 epochs. We performed data preprocessing, model

development, selection, and training using Python programming language (version 3.7.1) with

the use of packages Numpy (version 1.17), Pandas (version 0.24), Keras (version 2.2.2), Scikit-

learn (version 0.22.0) and Tensorflow (version 2.0.1, beta).

Translation of the prediction models to the OhioT1DM Dataset

We used data from the OhioT1DM Dataset to explore whether our CGM-based prediction

models would translate to individuals with type 1 diabetes. The OhioT1DM Dataset is freely

available for scientific purposes and contains data of 6 individuals with type 1 diabetes who

were all using insulin pump therapy and CGM [25]. The participants provided interstitial glu-

cose values every five minutes for an eight-week period. First, in order to also include 30-min-

ute prediction, we retrained our main CGM-based models on the main study population with

identical hyperparameters and settings (S2 Table). Then, we evaluated the main CGM-based

model on the test portion of the OhioT1DM Dataset (20%). Next, we aimed to optimize our

main CGM-based model by training it on the train portion of the OhioT1DM Dataset.

Table 1. Baseline statistical and machine learning model comparison for predicting glucose values.

Prediction window and baseline model CGM-based glucose prediction Combined glucose prediction

Rho RMSE, mmol/L Rho RMSE, mmol/L

15 minutes ARIMA 0.842 [0.837–0.848] 0.504 [0.490–0.518] 0.834 [0.829–0.840] 0.498 [0.492–0.505]

SVR 0.791 [0.781–0.802] 0.558 [0.549–0.567] 0.703 [0.694–0.712] 0.612 [0.601–0.622]

LightGBM 0.783 [0.767–0.795] 0.589 [0.577–0.601] 0.783 [0.771–0.794] 0.497 [0.582–0.613]

Shallow MLP 0.810 [0.804–0.816] 0.517 [0.506–0.529] 0.763 [0.754–0.772] 0.592 [0.581–0.603]

Deep MLP 0.807 [0.797–0.818] 0.511 [0.504–0.518] 0.828 [0.819–0.837] 0.510 [0.503–0.517]

RNN 0.894 [0.887–0.902] 0.485 [0.481–0.490] 0.890 [0.882–0.898] 0.477 [0.472–0.482]

LSTM 0.872 [0.865–0.879] 0.482 [0.477–0.487] 0.884 [0.878–0.890] 0.501 [0.496–0.506]

60 minutes ARIMA 0.307 [0.284–0.329] 1.543 [1.489–1.623] 0.303 [0.283–0.322] 1.502 [1.455–1.568]

SVR 0.388 [0.376–0.398] 1.386 [1.322–1.452] 0.394 [0.382–0.405] 1.412 [1.350–1.475]

LightGBM 0.500 [0.491–0.508] 1.118 [1.098–1.136] 0.498 [0.485–0.511] 1.128 [1.107–1.148]

Shallow MLP 0.503 [0.495–0.511] 1.081 [1.074–1.088] 0.483 [0.470–0.495] 1.081 [1.070–1.092]

Deep MLP 0.496 [0.484–0.509] 1.108 [1.100–1.115] 0.515 [0.502–0.528] 1.108 [1.099–1.017]

RNN 0.591 [0.581–0.600] 0.989 [0.983–0.995] 0.596 [0.589–0.603] 0.992 [0.984–0.998]

LSTM 0.605 [0.593–0.616] 0.941 [0.937–0.945] 0.602 [0.595–0.609] 0.922 [0.919–0.926]

Performance was assessed by Spearman’s rank correlation coefficient (rho) and root-mean-square error (RMSE). Data are reported as median [95% confidence

intervals], calculated using 1,000 bootstraps.

https://doi.org/10.1371/journal.pone.0253125.t001
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Specifically, we trained the model using an Adam optimizer with a learning rate of 10−4, a

batch size of 1024, a maximum of 10.000 epochs and an early stopping criterion (based on 20%

of the training data) set to 100 epochs. Last, we evaluated this optimized model on the test por-

tion using performance metrics and safety error grids, as described previously.

Model evaluation and statistical analysis

Model evaluation was performed in the independent evaluation sets of individuals that were

not used during model development (Fig 1, panel c). We employed several metrics to assess

the performance of our models: root-mean-square error (RMSE), proportion of predicted val-

ues within 5% or 10% of actual glucose values, and Spearman’s rank correlation coefficient

(rho) (S2 File). Bootstrapping was performed to obtain 95% confidence intervals for each of

these metrics [26]. In addition, we used error grids that are classically used for assessment of

blood glucose monitor safety (i.e., surveillance error grid, Parkes error grid) to evaluate the

safety of our glucose prediction models [27, 28]. Last, we performed several sensitivity analysis

in our main study population by stratifying model performance for: (1) GMS (i.e., separate

results for NGM and prediabetes); (2) day (06.00 to 24.00h) and night (24.00 to 06.00h); and

(3) low or high glucose variability, defined as the 97.5th percentile of CGM-assessed SD in

individuals with NGM (SD > 1.37 mmol/L) [14].

Normally distributed data are presented as mean ± SD, non-normally distributed data as

median and interquartile range, and categorical data as n (%). Statistical analyses were per-

formed using the Statistical Package for Social Sciences (version 25.0; IBM, Chicago, Illinois,

USA) and the Python programming language (version 3.7.1).

Results

Main study population characteristics

In total, 896 individuals underwent CGM as part of The Maastricht Study’s extensive pheno-

typing approach. We included participants with at least 48h of CGM data and either NGM,

prediabetes, or type 2 diabetes. This resulted in the final study population of 851 individuals.

Of this population, 540 participants (63.5%) simultaneously underwent CGM and

accelerometry.

Table 2 shows the overall and type 2 diabetes-stratified characteristics of the two study pop-

ulations (CGM-based as well as CGM- and accelerometry-based glucose prediction). The

overall participant characteristics of both populations were generally comparable with regard

to age, sex, BMI, glycaemic indices, blood pressure, and lipid profile, although the latter con-

tained fewer participants with prediabetes or type 2 diabetes. Additionally, the participants

with type 2 diabetes in the CGM- and accelerometry-based glucose prediction population

were more often newly diagnosed with type 2 diabetes. Accordingly, these participants less

often used glucose-lowering medication. Participant characteristics of the NGM and prediabe-

tes subgroups are described in S3 Table.

Overall performance of machine learning-based glucose prediction

We trained two machine learning models (i.e., CGM-based; CGM- and accelerometry-based)

in predicting glucose levels at 15- and 60-minute intervals. Visually, both models appeared

capable of accurately predicting the real glucose profiles, as illustrated by the representative

examples in S1 and S2 Figs. Next, we assessed the performance of our models in our evaluation

datasets with a variety of metrics, including an average error term (RMSE), the proportion of

predictions within 5% or 10% deviation of the actual value, and correlation (rho). The
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evaluation datasets comprise 20% of the original or stratified study populations and thus vary

in sample size (n = 13–170).

Overall, our models demonstrated high prediction accuracy, supported by low RMSE val-

ues and high proportions of predicted glucose values within 5% and 10% deviation (Table 3).

Table 2. Participant characteristics of the CGM-based and CGM- and accelerometry-based glucose prediction study populations.

CGM-based glucose prediction CGM- and accelerometry-based glucose prediction

Characteristic Total (n = 851) T2D (n = 197) Total (n = 540) T2D (n = 68)

Age, years 59.9 ± 8.7 62.4 ± 7.8 59.1 ± 8.7 62.0 ± 6.9

Women, n (%) 418 (49.1) 69 (35.0) 276 (51.1) 22 (32.4)

BMI, kg/m2 27.2 ± 4.4 29.7 ± 4.7 26.5 ± 4.0 28.6 ± 4.1

Newly diagnosed T2D, n (%) 70 (8.2) 70 (35.5) 35 (6.5) 35 (51.5)

Glucose metabolism status

NGM/PreD/T2D, n 470/184/197 - 372/99/68 -

NGM/PreD/T2D, % 55.2/21.6/23.1 - 69.1/18.3/12.6 -

Fasting plasma glucose, mmol/L 5.4 [5.0–6.2] 7.3 [6.5–8.4] 5.3 [4.9–5.8] 7.2 [6.3–8.4]

2-h post-load glucose, mmol/L 6.7 13.6 6.2 12.5

[5.2–9.1] [11.7–16.2] [5.0–7.7] [11.3–16.6]

HbA1c, % 5.7 ± 0.8 6.7 ± 1.0 5.6 ± 0.6 6.4 ± 0.9

HbA1c, mmol/mol 39.1 ± 8.3 49.2 ± 10.8 37.3 ± 6.2 46.9 ± 10.2

Sensor glucose

Mean, mmol/L 6.1 [5.7–6.7] 7.5 [6.8–8.7] 5.9 [5.6–6.4] 7.3 [6.5–8.2]

SD, mmol/L 0.84 1.51 0.79 1.46

[0.68–1.18] [1.14–1.95] [0.66–1.01] [0.94–1.99]

SD > 1.37 mmol/L, n (%) 142 (16.7) 115 (58.4) 50 (9.3) 36 (52.9)

CV, % 14.0 19.3 13.3 19.2

[11.6–17.6] [15.9–24.0] [11.2–16.8] [14.5–24.1]

Diabetes medication use, n (%) 109 (12.8) 109 (55.6) 27 (4.8) 27 (39.7)

Insulin 19 (2.2) 19 (9.6) 4 (0.7) 4 (5.9)

Metformin 104 (12.2) 104 (53.1) 27 (5.0) 27 (39.7)

Sulfonylureas 21 (2.5) 21 (10.7) 6 (1.1) 6 (8.8)

Thiazolidinediones 0 (0) 0 (0) 0 (0) 0 (0)

GLP-1 analogues 3 (0.4) 3 (1.5) 1 (0.2) 1 (1.5)

DDP-4 inhibitors 1 (0.1) 1 (0.5) 0 (0) 0 (0)

SGLT-2 inhibitors 1 (0.1) 1 (0.5) 0 (0) 0 (0)

Office SBP, mmHg 133.3 ± 18.0 139.4 ± 15.6 132.2 ± 17.9 137.7 ± 15.3

Office DBP, mmHg 75.2 ± 10.2 77.7 ± 10.5 74.7 ± 10.1 77.7 ± 9.6

Antihypertensive medication use, n (%) 305 (35.9) 126 (64.3) 162 (30.0) 41 (60.3)

Total-to-HDL cholesterol ratio 3.5 [2.8–4.3] 3.6 [2.9–4.3] 3.4 [2.8–4.3] 3.7 [2.8–4.6]

Triglycerides, mmol/L 1.3 [0.9–1.8] 1.5 [1.0–2.1] 1.2 [0.9–1.7] 1.6 [1.0–2.3]

Lipid-modifying medication use, n (%) 212 (24.9) 115 (58.4) 100 (18.5) 39 (57.4)

Smoking status

Never/former/current, n 327/415/106 67/104/26 214/253/70 19/36/13

Never/former/current, % 38.6/48.9/12.5 34.0/52.8/13.2 39.9/47.1/13.0 27.9/52.9/19.1

Data are reported as mean ± SD, median [interquartile range], or number (percentage [%]) as appropriate. CGM, continuous glucose monitoring; BMI, body mass

index; T2D, type 2 diabetes; NGM, normal glucose metabolism; PreD, prediabetes; HbA1c, glycated haemoglobin A1c; SD, standard deviation; CV, coefficient of

variation; GLP-1, glucagon-like peptide-1; DPP-4, dipeptidase-4; SGLT-2, sodium-glucose cotransporter 2; SBP, systolic blood pressure; DBP, diastolic blood pressure;

HDL, high-density lipoprotein.

https://doi.org/10.1371/journal.pone.0253125.t002
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Model performance in the type 2 diabetes subgroup was generally lower compared to the over-

all group, except for correlation coefficients, which were often higher in individuals with type

2 diabetes. This phenomenon can be largely attributed to the lower correlation coefficients of

individuals with NGM and prediabetes (S4 Table), which is caused by range restriction (i.e.,

smaller glucose ranges attenuate the correlation coefficients) [29]. Consequently, the correla-

tion coefficients are valid for the comparison of CGM-based glucose prediction to CGM- and

accelerometry-based glucose prediction, but not for comparison of the overall study popula-

tion to the type 2 diabetes subgroup. In addition, we observed short-to-moderate time lags for

the 15- and 60-minute predictions (S5 Table).

In general, incorporation of accelerometry data in the models only slightly improved per-

formance metrics at both prediction intervals (Table 3). S4 Table shows the model perfor-

mance in NGM and prediabetes subgroups. Glucose prediction was most precise in

individuals with NGM. Of note, the ML-based models substantially outperformed a naive

approach that used t0 as predicted glucose value (S6 Table, S3 and S4 Figs).

Safety evaluation with clinical error grids

We assessed the safety of our machine learning-based glucose prediction using two clinical

error grids (i.e., surveillance and Parkes error grids). Fig 2 depicts the safety results for individ-

uals with type 2 diabetes according to the surveillance error grid. At the 15-minute interval,

almost all predictions (>99.9%) were clinically safe (i.e., a risk score between 0 and 1.0) (Fig 2,

panels A and B). At the extended prediction window of 60 minutes, clinical safety was slightly

lower (98.4–99.2%) (Fig 2, panels C and D). Parkes error grid assessment yielded similar

results (S5 Fig). Of note, less accurate predictions were more often in the vertical B-D zones

than in the horizontal B-E zones (e.g., S4 Fig, panel C: 11.80% versus 4.24%), which suggests a

model tendency to underestimate rather than overestimate actual glucose values, the latter of

which being more dangerous.

Additional analyses

To further obtain insights into our model predictions, we assessed performance metrics strati-

fied by day and night (S7 Table). Fifteen-minute predictions did not materially differ between

day and night. By contrast, accuracy of 60-minute predictions was lower during the day than

Table 3. Overall performance in the main study population of CGM-based and CGM- and accelerometry-based machine learning models trained in predicting glu-

cose values at time intervals of 15 and 60 minutes.

CGM-based glucose prediction CGM- and accelerometry-based glucose prediction

Total (n = 170) T2D (n = 43) Total (n = 109) T2D (n = 13)

15 minutes RMSE, mmol/L 0.188 [0.186–0.191] 0.288 [0.281–0.306] 0.184 [0.177–0.189] 0.271 [0.260–0.282]

< 5%, % 92.98 [92.87–93.05] 92.02 [91.83–92.25] 93.06 [93.03–93.09] 92.04 [91.99–92.11]

< 10%, % 99.17 [99.13–99.23] 98.88 [98.82–98.94] 99.25 [99.21–99.28] 98.90 [98.83–98.97]

Rho 0.961 [0.959–0.962] 0.987 [0.985–0.989] 0.968 [0.964–0.970] 0.990 [0.988–0.993]

60 minutes RMSE, mmol/L 0.589 [0.582–0.592] 0.701 [0.692–0.711] 0.582 [0.579–0.586] 0.700 [0.693–0.708]

< 5%, % 70.22 [70.09–70.41] 66.23 [66.13–66.33] 70.11 [70.05–70.17] 66.17 [66.09–66.22]

< 10%, % 87.39 [87.24–87.53] 85.82 [85.70–85.93] 87.44 [87.38–87.50] 86.11 [86.01–86.20]

Rho 0.721 [0.719–0.722] 0.781 [0.779–0.782] 0.725 [0.721–0.729] 0.790 [0.782–0.799]

Data are reported as mean [95% confidence interval]. CGM, continuous glucose monitoring; T2D, type 2 diabetes; RMSE, root-mean-square error; < 5%, percentage of

predicted values within 5% of actual glucose values; < 10%, percentage of predicted values within 10% of actual glucose values; rho, Spearman’s rank correlation

coefficient.

https://doi.org/10.1371/journal.pone.0253125.t003
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at night. In addition, we stratified the results by high or low glucose variability (i.e., SD cut-off

of 1.37 mmol/L) (S8 Table). Model performance was slightly lower at higher glucose variabil-

ity, at both time intervals of 15 and 60 minutes.

Translation of the prediction models to the OhioT1DM Dataset

The prediction accuracy of the CGM-based model that was developed with our main study

population was moderate in individuals with type 1 diabetes (RMSEs at 15, 30, and 60 min:

0.689 [0.685–0.693], 1.189 [1.183–1.195], and 1.918 [1.910–1.926] mmol/L), but substantially

improved after being trained on data from each individual with type 1 diabetes (RMSEs at 15,

30, and 60 min: 0.426 [0.422–0.430], 1.046 [1.039–1.052], and 1.733 [1.725–1.741] mmol/L; S9

Table). Accordingly, clinical safety was substantial as shown by the high percentages of clini-

cally safe predictions (15-minute: >99%, 30-minute: >97%, and 60-minute: >91%; Fig 3).

Fig 2. Surveillance error grid evaluation of glucose prediction safety at time intervals of 15 and 60 minutes in the main study population. Assessment of CGM-

based glucose prediction safety in individuals with type 2 diabetes (n = 43) at 15 minutes (panel A) and 60 minutes (panel C). Assessment of CGM- and accelerometry-

based glucose prediction safety in individuals with type 2 diabetes (n = 13) at 15 minutes (panel B) and 60 minutes (panel D). The risk score values translate to the

following degrees of risk: 0–0.5, none; 0.5–1.0, slight (lower); 1.0–1.5, slight (higher); 1.5–2.0, moderate (lower); 2.0–2.5, moderate (higher); 2.5–3.0, great (lower); 3.0–

3.5, great (higher);> 3.5 extreme [27].

https://doi.org/10.1371/journal.pone.0253125.g002
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Discussion

In this study with 851 individuals and almost 1.4 million glucose measurements, we investi-

gated whether glucose values can be accurately predicted by using machine learning-based

models that utilise recently measured CGM and physical activity data with the prospect of

improving closed-loop insulin delivery systems. Our study has several important findings and

unique characteristics. First, the machine learning-based models are capable of accurately pre-

dicting the actual glucose profiles at 15 minutes, as reflected by several objective performance

metrics (e.g., RMSE, rho; Table 2) and visual illustrations (S1 and S2 Figs). Despite prediction

accuracy being moderately lower at 60 minutes, more than 98% of the predicted values

remained sufficiently accurate to be deemed clinically safe based on surveillance error grids

(Fig 2). Second, glucose prediction only improved slightly when accelerometer-assessed physi-

cal activity data was incorporated in the models. Third, translation of our CGM-based glucose

prediction models to individuals with type 1 diabetes yielded encouraging results (i.e., ample

prediction accuracy and clinical safety).

Although most research has thus far focused on type 1 diabetes [12], several efforts have

been made to use machine learning for glucose prediction in individuals with type 2 diabetes

[30–34]. Most of these studies assessed technical aspects of glucose prediction in relatively small

(n = 1 to 50) or even virtual, in silico populations. Such studies provide valuable comparisons of

models, but show suboptimal and highly variable performance in predicting glucose values. To

our knowledge, this is the first study to report this level of performance in a large, population-

based sample of individuals with NGM, prediabetes, or type 2 diabetes. Our CGM-based models

were able to accurately predict glucose values at 15 (RMSEs, overall/type 2 diabetes: 0.19/0.29

mmol/L) and 60 minutes (RMSEs, overall/type 2 diabetes: 0.59/0.70 mmol/L). These results sur-

pass previously reported RMSE values for a sample of 50 individuals with type 2 diabetes, which

were 0.65 and 1.50 mmol/L for 15- and 60-minute CGM-based glucose prediction, respectively

[34]. We expect this difference to, in part, stem from our much larger sample size. To our

knowledge, our exploratory translation to individuals with type 1 diabetes (S9 Table) showed

that our models perform equally well as recent publications in the field [12, 35–38]. For exam-

ple, the best performing model of the Blood Glucose Level Prediction Challenge 2018, which

was also based on a LSTM architecture as well as was trained on and evaluated in the

OhioT1DM Dataset, reported 30-minute and 60-minute RMSEs of 1.05 and 1.74 mmol/L [35].

Additionally, Kriventsov et al. recently described large-scale application of glucose prediction in

a smartphone app (Diabits) and reported a comparable RMSE at 30 minutes (1.04 mmol/L)

[36]. We anticipate that further technical development of our prediction models, while using a

larger sample of individuals with type 1 diabetes, will advance performance even more.

We integrated physical activity, which we assessed via accelerometry, into our glucose pre-

diction model, because of its short- and long-term effects on daily glucose patterns. Whereas

an acute bout of physical activity can either decrease or increase serum glucose levels, pro-

longed exercise improves insulin sensitivity, and thus insulin-stimulated glucose uptake [39].

While it should be noted that CGM- and accelerometry-based glucose prediction yielded

larger improvements relative to CGM-based glucose prediction for the 60-minute interval,

most notably during the day (S7 Table) and in individuals with higher glucose variability (S9

Table), incorporation of physical activity generally only marginally improved glucose

Fig 3. Surveillance error grid evaluation of glucose prediction safety at time intervals of 15, 30, and 60 minutes in

individuals with type 1 diabetes. Assessment of CGM-based glucose prediction safety in individuals with type 1

diabetes (n = 6) at 15 (panel A), 30 (panel B), and 60 minutes (panel C). The risk score values translate to the following

degrees of risk: 0–0.5, none; 0.5–1.0, slight (lower); 1.0–1.5, slight (higher); 1.5–2.0, moderate (lower); 2.0–2.5,

moderate (higher); 2.5–3.0, great (lower); 3.0–3.5, great (higher); > 3.5 extreme [27].

https://doi.org/10.1371/journal.pone.0253125.g003

PLOS ONE Machine learning-based glucose prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0253125 June 24, 2021 12 / 17

https://doi.org/10.1371/journal.pone.0253125.g003
https://doi.org/10.1371/journal.pone.0253125


prediction. This can be explained by the observation that the models based on CGM data only

already performed very well, which limits the ability to achieve additional improvements [40].

Also, the effect of physical activity on serum glucose levels is relatively small in people with beta-

cell function that is either normal or only mildly deficient. Given the absence of pancreatic glucor-

egulation in individuals with type 1 diabetes, it is conceivable that incorporation of accelerometry

data leads to more substantially improved model performance in this patient group [40], which,

at present, we were not able to further explore. In addition, a time interval of 15 or 60 minutes

could be too short to incorporate long-term physical activity effects into the prediction model.

The closed-loop insulin delivery system has been shown to improve glycaemic control in

individuals with type 1 or type 2 diabetes [8, 9, 41]. Nevertheless, several aspects of the artificial

pancreas require further enhancement [6, 10]. Our results demonstrate that machine learning-

based glucose prediction has the promise of being a valid and safe strategy to both overcome

~10-minute sensor delay and bridge prolonged periods of sensor malfunction. Not only are

more than 99% of the predicted glucose values in clinically safe zones (i.e., Parkes error grid

zone A and B), the model also tended to slightly underestimate rather than overestimate the

actual glucose values. In case the prediction model were to be implemented, this would further

reduce the risk of iatrogenic hypoglycaemia. Nevertheless, future research is needed to assess

whether incorporation of these prediction models in a closed-loop insulin delivery system

safely improves glycaemic control.

This proof-of-principle study has several strengths and limitations. Strengths are 1) the largest

well-characterized, population-based study sample thus far, which ensured sufficient statistical

power; 2) the unique large-scale combination of CGM and continuous accelerometry, which

enabled us to study to what extent incorporation of data on physical activity would improve pre-

diction in this population; 3) the gold-standard assessment of GMS, which allowed for the compar-

ison of performance in NGM, prediabetes and type 2 diabetes; 4) the broad and solid evaluation of

various statistical and machine learning architectures for this prediction task; and 5) result robust-

ness, as reflected by the consistency of several statistical and clinical performance metrics.

Our research had certain limitations. First, the main study population comprised individu-

als with NGM, prediabetes, or type 2 diabetes, who are generally not the target population for

closed-loop insulin delivery systems. We, therefore, exploratively investigated whether our

prediction models would translate to individuals with type 1 diabetes using the OhioT1DM

Dataset, which yielded encouraging results. Nevertheless, we underscore the importance of

extensive evaluation of the models in a larger sample of individuals with type 1 diabetes, insu-

lin-treated type 2 diabetes, or both. Second, we were unable to factor in other important ele-

ments pertaining to glycaemic control (e.g., diet or medication use) [6]. In automated, self-

regulatory closed-loop systems, utilization of these kinds of data requires manual input, which

is less convenient and reliable than CGM. In addition, since glucose prediction was only

slightly improved by incorporating physical activity, we expect relatively little gain from

including such factors into our models, at least in individuals with type 2 diabetes. However,

given the results of several small studies that have incorporated diet and medication use [12],

we acknowledge that this may not hold true for individuals with type 1 diabetes. In this regard,

large-scale studies are required to reach more definitive conclusions. If diet, medication use, or

other factors were to be incorporated, it is necessary to evaluate whether LSTM remains the

best-performing machine learning architecture.

Conclusion

In this study, we show that our machine learning-based models are able to accurately and

safely predict glucose values for up to 60 minutes in individuals with, NGM, prediabetes, or
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type 2 diabetes. In addition, translation of our prediction models to individuals with type 1 dia-

betes showed encouraging results. We observed particularly high precision at a 15-minute pre-

diction window, which is a clinically relevant timespan to align interstitially measured glucose

values by continuous glucose measurement systems with actual plasma glucose values. As

such, the prediction model can be used to improve closed-loop insulin delivery systems by

overcoming sensor delay. In addition, longer prediction intervals may be used to safely bridge

periods of sensor malfunction. Last, our current findings question the use of accelerometry to

substantially improve prediction. Future research should validate our findings by replicating

the results in a larger sample of individuals with type 1 diabetes and studying the effects of

implementing the prediction model in a closed-loop insulin delivery system.
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