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Three-dimensional (3D) bioprinting uses additive manufacturing techniques to fabricate 3D structures
consisting of heterogenous selections of living cells, biomaterials, and active biomolecules [1,2]. To date,
3D bioprinting technologies have transformed the fields of tissue engineering and regenerative
medicine by enabling fabrication of highly complex biological constructs. Using the patient’s medical
imaging data, patient- and damage- specific implants can be printed with customized cellular
and physiomechanical functionalities [3–5]. The main bioprinting methods include extrusion-based,
droplet-based (inkjet), laser-based, and, more recently, vat photopolymerization-based bioprinting [6,7].
A variety of biomaterials (i.e., bioinks) have been used for tissue bioprinting, including ceramics, synthetic
and natural polymers, decellularized tissues, and more frequently, hybrid bioinks consisting of a
combination of these materials [8–11].

While significant and rapid progresses have been made in tissue bioprinting processes for
various in vitro applications, such as disease modeling [12] and drug screening [13], there are several
challenges to address before bioprinting becomes clinically relevant [14–16]. These constraints
include: 1) limited number of available bioink solutions and lack of thorough characterization of their
biological and physiomechanical properties [10,17]; 2) poor understanding of the correlation between
printed architecture and the ultimate tissue function [18,19]; 3) limitations on the quality of imaging
techniques [20,21] and available bioprinters [22]; 4) complex and rather expensive processes involved
pre, during, and post-bioprinting [22]; 5) suboptimal, non-specialized printing software and their often
incompatibilities [23].

There are eight articles published in this Special Issue composed of four research papers and four
review papers. The research articles focus on the influence of electron beam (E-beam) sterilization on
in vivo degradation of composite filaments [24], enhancing osteogenic differentiation of stem cells using
3D printed wavy scaffolds [25], the development of a scaffold-free bioprinter [26], and the fabrication of
multilayered vascular constructs with a curved structure and multi-branches [27]. Kang et al. investigated
the effect of E-beam sterilization on the degradation of β-tricalcium phosphate/polycaprolactone
(β-TCP/PCL) composite filaments in a rat subcutaneous model for 24 weeks [24]. Although they
reported that the E-beam sterilization accelerated the degradation rate of the composite filaments, due
to the decreased crystallinity and decreased molecular weight of PCL after the E-beam irradiation,
they concluded that the chemistry of samples plays a bigger role than the sterilization method in
biodegradation. Ji and Guvendiren investigated the effect of wavy scaffold architecture on human
mesenchymal stem cell (hMSC) osteogenesis by 3D printing as compared to orthogonal scaffold
design [25]. They found that when cultured on wavy scaffolds, hMSCs became elongated, formed
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mature focal adhesions, and showed significantly enhanced osteogenesis. LaBarge et al. developed a
custom device enabling the printing of an entire layer of spheroids at once to reduce printing time [26].
They demonstrated the feasibility of this device first using zirconia and alginate beads, which mimic
spheroids, and human-induced pluripotent stem cell-derived spheroids. This scaffold-free bioprinter
could potentially advance the growing field of scaffold-free 3D bioprinting. Liu et al. developed a
combined approached to fabricate multilayered biodegradable vascular constructs for cardiovascular
research [27]. In their approach, 3D printing was used to fabricate a mold system which was then used
to cast a hydrogel and a sacrificial material. They investigated the channel wall displacement during
blood flow using fluid-structure interaction simulations. They also demonstrated the feasibility of
their devices using human umbilical vein endothelial cells. Their approach shows a great potential for
constructing integrated vasculature for tissue engineering.

The four review articles focused on advanced polymers for 3D organ printing [28], chitosan for
tissue and organ bioprinting [29], applications of 3D printing for craniofacial tissue engineering [30],
and in vivo tracking of 3D printed tissue-engineered constructs [31]. Wang reviewed advanced
polymers exhibiting excellent biocompatibility, biodegradability, 3D printability and structural stability [28].
The author also summarized the challenges of polymers for 3D bioprinting of complex organs. Li et al.
reviewed the use of chitosan in tissue repair, including skin, bone, cartilage, and liver tissue, and 3D
bioprinting of organs [29]. Tao et al. focused on the applications of 3D printing for craniofacial tissue
engineering, including periodontal complex, dental pulp, alveolar bone, and cartilage [30]. Gil et al.
reviewed the currently utilized imaging techniques to track tissue engineering scaffolds in vivo, with
particular focus on the in vivo tracking of 3D bioprinted tissue constructs [31].

We would like to take this opportunity to express our gratitude to all authors who contributed to
this Special Issue. We also wish to thank all the reviewers for dedicating their time to provide thorough
and timely reviews to ensure the quality of this Special Issue.
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