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Abstract: Acute venous thromboembolism (VTE) is a commonly diagnosed condition and requires
treatment with anticoagulation to reduce the risk of embolisation as well as recurrent venous
thrombotic events. In many cases, cessation of anticoagulation is associated with an unacceptably
high risk of recurrent VTE, precipitating the use of indefinite anticoagulation. In contrast, however,
continuing anticoagulation is associated with increased major bleeding events. As a consequence,
it is essential to accurately predict the subgroup of patients who have the highest probability of
experiencing recurrent VTE, so that treatment can be appropriately tailored to each individual. To this
end, the development of clinical prediction models has aided in calculating the risk of recurrent
thrombotic events; however, there are several limitations with regards to routine use for all patients
with acute VTE. More recently, focus has shifted towards the utility of novel biomarkers in the
understanding of disease pathogenesis as well as their application in predicting recurrent VTE. Below,
we review the current strategies used to predict the development of recurrent VTE, with emphasis on
the application of several promising novel biomarkers in this field.

Keywords: venous thromboembolism; pulmonary embolism; deep vein thrombosis; biomarker;
risk stratification

1. Introduction

Venous thromboembolism (VTE) is a term that encompasses the diagnoses of both deep vein
thrombosis (DVT) and pulmonary embolism (PE). VTE is associated with a significant global burden
of disease with an estimated incidence of 0.5–2 per 1000 individuals in the general population and
increases significantly to 2–7 per 1000 in those more than 70 years of age [1].

Acute VTE can be successfully prevented and treated with anticoagulant therapy; however,
this comes with the inherent risk of bleeding, which in many cases may offset the clinical benefit of
anticoagulation. With this in mind, new tools are required to accurately stratify patients who are at risk
of recurrent VTE and who stand to benefit from ongoing anticoagulant therapy. As such, it is important
to utilise our current understanding of the molecular underpinnings of venous thrombus formation
and assess if there are novel tools, or biomarkers, which may aid in the prediction of recurrent VTE.
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2. Treatment and Prediction of Recurrent Venous Thromboembolism

Treatment of VTE primarily involves therapeutic anticoagulation with a direct oral anticoagulant
or vitamin K antagonist. In general, guidelines recommended at least three months of therapeutic
anticoagulation for an acute VTE and extended duration anticoagulation largely depends on the
provoking risk factor and the subsequent risk of recurrent VTE [2–4]. In this regard, it has been
established that patients with VTE provoked by major surgery or trauma have a low risk of recurrence
(approximately 3% at five years). In contrast, an unprovoked VTE is associated with a higher
risk of recurrence (approximately 25–30% at five years), so that indefinite anticoagulation is often
recommended by clinicians [5,6]. In some cases, the risk of recurrence is offset by the risk of bleeding,
leading to clinical equipoise with regards to the most appropriate duration of treatment for many
patients, particularly those with unprovoked VTE. As such, the use of clinical prediction tools or
biomarkers is required to ensure that patients are appropriately risk-stratified and either continue
anticoagulation due to high risk of recurrent VTE or have therapy appropriately ceased. This review
will discuss the utility of some of the most pertinent prognostic aids and biomarkers used to assist
in predicting risk of recurrent venous thrombosis, in addition to providing an overview of emerging
technologies that may further enhance our ability to accurately risk-stratify patients.

3. Clinical Risk Prediction Models

The aim of utilising a clinical prediction model in VTE is to allow the risk stratification of patients
with VTE treated with anticoagulation into those who have a low risk of recurrent VTE and thus
can cease anticoagulation, and those patients who are at a high risk of recurrent VTE and should
be recommended for continuing therapy. Several prediction models have been developed which
aim to predict the likelihood of recurrent thrombotic events following an acute unprovoked VTE,
and these include the HERDOO2 score [7,8], Vienna prediction model [9,10], and the DASH score [11,12].
A comparison of each of these models is shown in Table 1. Recently, an additional prediction model,
the Leiden Thrombosis Recurrence Risk Prediction (L-TRRiP) model, has been evaluated and shows
some promising data in this area but still requires external validation [13].

Table 1. Comparison of clinical prediction models for recurrent venous thromboembolism.

Score Variables Inclusion Criteria Definition of
Unprovoked VTE

Findings—Risk of
Recurrent VTE

DASH [11]

Abnormal D-dimer
after AC
Age ≤ 50
Gender

Hormone therapy

First unprovoked
VTE

Absence of:
Surgery
Trauma

Active cancer
Immobility

Pregnancy and puerperium
Included:

Hormone therapy
Thrombophilic blood

abnormality (if no other
VTE risks)

Annualised
recurrence risk:
Score ≤ 1:3.1%
Score > 1:9.3%

HERDOO2 [8]

Gender
Signs of

post-thrombotic
syndrome

Abnormal D-dimer
during on AC

BMI ≥ 30
Age ≥ 65

First unprovoked
VTE after 5–12
months of AC

Absence of:
Major surgery within 3

months
Malignancy within 5 years

Immobilisation for ≥ 3 days
Leg fracture or plaster cast

Included:
Travel-related

Exogenous oestrogen
Minor immobilisation

Minor surgery

Annualised
recurrence risk:
Low-risk (0 or 1
factor) females:

1.6%
High-risk (≥ 2

factors) females:
14.1% per year

Males (no low-risk
group identified):

13.7%
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Table 1. Cont.

Score Variables Inclusion Criteria Definition of
Unprovoked VTE

Findings—Risk of
Recurrent VTE

Vienna [9]

Gender
VTE location
D-dimer after

ceasing AC

First unprovoked
VTE after at least 3

months of AC

Absence of:
Major surgery
Major trauma

Pregnancy
Female hormone intake

Hereditary thrombophilia
Malignancy
Included:

Immobility

Continuous HR
based on

nomogram

BMI: body mass index; HR: hazard ratio; AC: anticoagulation; VTE: venous thromboembolism.

However, several limitations with the available clinical prediction models have been identified,
including the definition of unprovoked VTE, with both the DASH and HERDOO2 studies incorporating
hormone-associated VTE into the definition of an unprovoked index VTE. Additionally, there is a
significant proportion of patients who are misclassified as having a low risk of recurrent VTE, and thus
improved sensitivity across all models is required [14,15]. Furthermore, not all trials support the utility
of the available prediction models to accurately risk-stratify patients at low and high risk of recurrent
VTE, particularly if local laboratory measurement of D-dimer is included [16,17]. However, despite
these limitations, the models discussed have identified factors that have consistently proven valuable
in improving the prediction of recurrent VTE. Moving forward, it will be important to build on these
foundations and consider the incorporation of biomarkers or radiological findings in combination with
these traditional clinical characteristics to improve accuracy in predicting the risk of recurrent VTE.

4. The Utility of Imaging in Predicting Recurrent VTE

Following treatment for acute VTE, assessment of residual venous obstruction (RVO) post-DVT
or residual pulmonary obstruction (RPO) may be obtained. RVO is primarily assessed by compression
ultrasonography (CUS), whilst RPO can be evaluated using either lung scintigraphy (VQ scan) or
computed tomography pulmonary angiography (CTPA).

4.1. Residual Venous Obstruction Following Deep Vein Thrombosis

The potential importance of RVO post-DVT has been studied for many years, with the concept
of tailoring anticoagulation to RVO having been evaluated in several clinical trials [18,19]. To date,
published systematic reviews and meta-analyses demonstrate a modest increase in the risk of recurrent
VTE if RVO is present [20–23]. Importantly, this increased risk does not appear to translate to patients
with unprovoked DVT [20,23]; the group of patients where uncertainty regarding the duration of
anticoagulation exists and who would benefit most from a tool to predict recurrent thrombosis. Of note,
the one study population where RVO appears to be associated with recurrent VTE is in patients
with malignancy-associated VTE, and RVO assessment may be useful when considering optimal
duration of anticoagulation in this patient cohort, but the overall number of patients evaluated has
been small [21,23].

An emerging imaging modality for evaluating DVT is magnetic resonance direct thrombus
imaging (MRDTI), which appears to be particularly useful at diagnosing or excluding acute, recurrent
DVT in the setting of chronic DVT. MRDTI requires no intravenous contrast and the image is based on
the formation of methemoglobin in an acute thrombus, which is visible as a high signal on T1-weighted
sequence on magnetic resonance imaging (MRI) [24,25]. Evaluation of recurrent DVT in the setting of
a chronic thrombus may lead to an inconclusive result when imaged with CUS, and thus MRDTI is
an attractive option for evaluating suspected recurrent ipsilateral DVT, as this modality can improve
accuracy in delineating between acute and chronic thrombus [24]. These promising results lead to
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speculation that MRDTI may also be beneficial in risk prediction for recurrent VTE, but MRDTI is yet
to be evaluated for this purpose.

4.2. Residual Pulmonary Obstruction

The rate of RPO following an acute PE appears to depend on the size of the initial clot burden
and is reported to be as high as 60% [26,27]. Many studies have now evaluated the utility of RPO
in predicting recurrent PE in patients with an acute PE treated with at least three months of oral
anticoagulation. The findings of these studies are mixed, with several analyses concluding that there
is a strong link between RPO and recurrent PE [28–31] and many also inferring that there are no
associations [32–35]. When comparing these studies, it must be noted that imaging techniques are
not standardised and include both VQ scan and CTPA as well as a variety of time points when repeat
imaging was performed. Importantly, a significant proportion of patients in all studies continued on
long-term anticoagulation, which impacts the natural history of the disease and alters the primary
outcome of recurrent VTE.

The largest multicentre prospective study in this area, which reported on the outcomes of
647 patients with first episode of acute symptomatic PE, demonstrated an association between RPO,
evaluated with VQ scan, and recurrent VTE as well as an increased risk of chronic thromboembolic
pulmonary hypertension (CTEPH). Pesavento et al. showed that, in patients with RPO, 25/324 (7.7%)
developed recurrent VTE versus 15/323 (4.6%) in patients without RPO, and RPO was found to be an
independent predictor of both VTE recurrence and CTEPH (hazard ratio (HR) 2.26, 95% confidence
interval (CI) 1.23–4.16, p = 0.009) [29]. Furthermore, a recent meta-analysis evaluating RPO and
recurrent VTE determined that RPO was associated with an increased risk of recurrent VTE detected by
VQ scan (odds ratio (OR) 2.22, 95% CI 1.61–3.05) [26]. These findings demonstrate that RPO detection
following acute PE may increase the risk of recurrent VTE, but as the overall rate of recurrence in this
cohort remains relatively low, its utility in predicting the likelihood of recurrent events is minimal,
and it should not be used primarily for this purpose.

In summary, assessment of RVO post-DVT and RPO may confer a slight increase in recurrent
VTE, but their utility in predicting recurrent VTE remains low, and thus their use is not recommended
in routine clinical care.

5. Biomarkers in Venous Thromboembolism

Currently, there remains significant scope to broaden the standard of care that is used to predict
recurrent VTE. In theory, novel biomarkers offer an alternative solution, by leveraging our current
knowledge of the pathogenesis of VTE to predict the likelihood of recurrence. In an era that is moving
toward personalised medicine, using biomarkers that consider the individual biological response to a
disease process appears essential for improving patient outcomes. Below, we discuss some of the most
widely studied biomarkers and their value in predicting recurrent venous thrombosis.

5.1. D-Dimer

D-dimer is a fibrin degradation product that is released when cross-linked fibrin is cleaved by
plasmin. It has a high negative predictive value in the setting of acute VTE but can also be elevated in
many other conditions, including cardiovascular disease, malignancy, infection, and pregnancy [36,37].
D-dimer is most commonly used in conjunction with a clinical prediction tool such as the Wells score
or recently described YEARS score to help exclude VTE without the requirement for radiological
imaging [38–41]. Due to its utility in acute VTE, D-dimer assessment has also been evaluated in
predicting recurrent VTE. The PROLONG Study was the largest multicentre trial evaluating the use of
D-dimer. This study assessed patients with a first episode of symptomatic, unprovoked VTE, who had
completed three months of therapeutic anticoagulation with D-dimer testing performed 30 days after
cessation of treatment. The final analysis demonstrated that an abnormal D-dimer was associated with
a higher risk of recurrent VTE than in patients where the D-dimer was normal (15.0% versus 6.2%,
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respectively, p = 0.003) [42]. Similarly, the PROLONG II study prospectively evaluated the utility of
multiple D-dimer measurements in patients with a first unprovoked VTE and assessed for recurrent
VTE in this group. Again, the study demonstrated that the rate of recurrence is significantly higher
in patients with an abnormal D-dimer when compared with patients with a normal D-dimer [43].
However, plasma D-dimer testing following an unprovoked VTE as the sole test for predicting recurrent
VTE is not commonly performed as D-dimer alone cannot adequately distinguish which patient will
develop a recurrence. Importantly, when using the data from the PROLONG study, even if the D-dimer
is negative following treatment, one in 20 patients will still develop recurrent VTE. Accordingly,
the most recent American College of Chest Physicians (CHEST) guidelines noted that a female with
an unprovoked VTE and a negative posttreatment D-dimer might have a reduced risk of recurrence
(similar to that of a nonsurgical risk factor), but a negative posttreatment D-dimer does not change
risk profiles in males [3]. Despite these challenges, D-dimer is an easily accessible laboratory test and
can result in a high negative predictive value in females for excluding VTE recurrence, particularly if
incorporated in a clinical prediction rule.

5.2. Coagulation Factors

In the setting of VTE, the predictive value of coagulation factors has been of interest; however,
only factor (F) VIII has been shown to have predictive value for recurrent VTE. Multiple studies
have demonstrated that an elevated FVIII is associated with an increased risk of recurrent venous
thrombosis, but, to date, not all results support the predictive role of this factor [44–47]. Interestingly,
it has been established that, in the context of VTE, high levels of FVIII may persist over time and thus
are not simply attributable to an acute phase reaction [48,49]. Recently, elevated FVIII levels were
found to be associated with recurrent venous thrombosis following a first unprovoked VTE as well
as following a first provoked event. Additionally, combining the measurement of FVIII to a clinical
prediction tool, the DASH score, results in an improved predictive value of the score and supports
the notion that the measurement of FVIII levels may be useful in aiding to predict recurrent VTE [47].
However, elevated FVIII alone is not a sensitive tool for predicting recurrent VTE but could be useful
when combined with other clinical factors or novel biomarkers.

5.3. P-Selectin

P-selectin (CD62P, GMP-140) is a member of the selectin family of adhesion molecules and
plays a central role in promoting leucocyte adhesion and recruitment at the site of vascular injury
and during inflammation [50,51]. P-selectin is stored in the alpha granules of platelets and in
Weibel-Palade bodies of endothelial cells, where upon activation, P-selectin is released such that
it can bind with its cognate ligand, P-selectin glycoprotein ligand 1 (PSGL-1) found on leucocytes,
including monocytes and neutrophils [50]. As P-selectin appears to be crucial for platelet-leucocyte
and endothelial-leucocyte interactions, it has been evaluated for its role in the pathogenesis of VTE.
Indeed, animal models have confirmed that P-selectin is required for leucocyte accumulation and
fibrin deposition in VTE formation [52]. Accordingly, P-selectin-deficient mice are demonstrated to be
protected from DVT development [53], confirming the importance of this molecule in the early stages
of venous thrombosis formation.

In addition to the membrane form of P-selectin, a soluble form of the molecule has been detected
in the plasma of mice and humans, and is aptly referred to as soluble P-selectin (sP-selectin). It is
postulated that sP-selectin originates as either an alternatively spliced protein lacking a transmembrane
domain, or cleavage of the membrane form of the molecule [54,55]. Soluble P-selectin can be readily
detected in human plasma by way of enzyme-linked immunosorbent assay, which has made it a
convenient surrogate marker of P-selectin expression, and its application has been evaluated in a range
of disease states with a focus on arterial and venous thrombotic disorders [56–58].

The use of sP-selectin as a biomarker for VTE has been extensively evaluated at different time
points during the disease state. There is general agreement that sP-selectin is increased in the setting of
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acute DVT or PE and it has been evaluated alone and in combination with other biomarkers to predict
risk of acute VTE. Ramacciotti et al. demonstrated that sP-selectin in combination with a Wells score
≥ 2 was an effective tool for confirming DVT, but this approach has not been widely adopted and
in the majority of patients would not negate the requirement for ultrasonography for diagnosis [59].
Additionally, sP-selectin has been shown to be associated with risk of recurrent VTE, with Kyrle et
al. finding that the cumulative probability of VTE was significantly higher with P-selectin values
above the 75th centile as compared with patients with lower levels (four-year cumulative recurrence
20.6% versus 10.8%, respectively). However, these studies demonstrate that a substantial proportion of
patients develop recurrent VTE without a parallel rise in sP-selectin and, as such, it can be concluded
that sP-selectin lacks sensitivity for recurrent VTE and thus cannot be used as a sole biomarker to
predict recurrence.

5.4. Endothelial Progenitor Cells

Endothelial cell function is crucial to maintaining vascular integrity and homeostasis. More recently,
the important role of the endothelium in inducing venous thrombosis formation is becoming increasingly
recognised. In this regard, endothelial cells respond to injury or insult by downregulating anticoagulant
proteins, increasing von Willebrand factor (vWF) expression, upregulating adhesive proteins such as
P-selectin and E-selectin, and inducing inflammatory cytokine signaling; all of which aids in subsequent
leucocyte and platelet recruitment [60]. Additionally, it is thought that signaling mechanisms in the
setting of inflammation can mobilise endothelial progenitor cells (EPCs) to the site of vessel injury
to aid in vascular regeneration [61]. Therefore, it has been postulated that the measurement of EPCs
could be an effective marker of vascular regeneration after endothelial injury or damage, with several
studies indicating that cardiovascular risk factors, such as diabetes, may adversely affect EPC number.
Accordingly, a change in EPC number, or function, appears to be associated with poor cardiovascular
outcomes [62,63]. Intriguingly, there is growing evidence from murine venous thrombosis models that
EPCs may be important in thrombus resolution [64,65]. Recently, a post hoc analysis of the ExACT
study, a multicentre randomised control trial comparing extended anticoagulation with discontinuation
of anticoagulation following a first unprovoked VTE, demonstrated that patients with recurrent VTE
had significantly lower levels of circulating EPCs [66]. Thus, further research of the role of EPCs in
VTE pathogenesis in addition to larger datasets regarding their utility in predicting recurrent VTE will
be welcomed.

5.5. Microvesicles

Microvesicles (MVs) are small membrane vesicles ranging between 100 and 1000 nm in diameter
that are released from virtually all eukaryotic cells in the setting of cell activation or apoptosis [67,68].
Platelet-derived MVs are the predominant form of MVs found in human plasma and were first
described in 1967 by Wolf as ‘platelet dust’ [69]. Since then, a key role for MVs in cell signalling and
communication has been proposed, which is underscored by experimental evidence pointing to the role
of MVs in the pathogenesis of many disease states, including thrombosis, malignancy, cardiovascular
disease, and infection [70–74].

The pathogenic role of MVs in VTE has been suggested to occur via several mechanisms. The first
is increased exposure of membrane phospholipids, such as the negatively charged phosphatidylserine
(PS), which provides the requisite negatively charged surface for the assembly of the tenase and
prothrombinase complexes required for efficient thrombin generation [67,71,75]. Secondly, MVs
from some cell types express tissue factor (TF), which is a potent activator of coagulation [67].
These TF-positive MVs are thought to be predominantly derived from activated monocytes [73],
with monocyte MVs believed to promote thrombin generation and trigger fibrin formation via the
TF-dependent pathway [76]. Additionally, TF-positive MVs can also fuse with activated platelets and
propagate the coagulation cascade [77].
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Given that evidence points towards the importance of MVs in thrombus formation at a molecular
level, their utility as a biomarker in VTE has been evaluated. Several studies have evaluated MVs
in acute VTE and have found an association between elevated plasma MVs and acute VTE [78–80];
however, it is noteworthy that one study found that this association was no longer significant when
adjusted for cardiovascular risk factors [78]. Interestingly, patients with inherited thrombophilia,
such as antithrombin deficiency and Protein C deficiency, also exhibit elevated numbers of MVs [81].
Additionally, Ye et al. described an increase in TF-positive MVs in acute recurrent VTE but no association
with a primary VTE [82]. In contrast, there was no association between MVs and VTE among patients
with a prior history of VTE with MVs evaluated more than three months from the acute event [83].
However, it is important to recognise that these studies evaluate different types of MVs, including
endothelial cell MVs, platelet MVs, and TF-positive MVs, and the isolation protocols as well as the
markers used to identify MVs also varied between studies. Due to the lack of standardisation, any direct
comparison between studies is challenging, and this should be considered when interpreting results.

Despite some promising data in this research area, there are several issues to be addressed within
this field of research. Firstly, a lack of standardisation between laboratories when enumerating MV has
been an ongoing concern. For example, the type of anticoagulant used for blood collection, isolation
protocol, storage, and repertoire of antigens used to define the cellular origin are all variables which can
lead to variation in the characterisation of MVs between laboratories [84]. In addition, the analysis of
MVs continues to advance with the incorporation of flow cytometry, nanoparticle tracking analysis, and
single-cell technology. It is also important to note that other extracellular vesicles, such as exosomes and
apoptotic bodies, may overlap in size with MVs, something that has not previously been investigated
in the field of VTE. In an attempt to try and harmonise methodology, nomenclature, and analysis of
MVs, the International Society for Thrombosis and Haemostasis has published guidelines to enhance
the reproducibility of MV research [85,86].

Therefore, to date, the role of MVs as a biomarker in VTE remains preliminary, and studies
evaluating their utility in predicting recurrence VTE are lacking. However, with the standardisation and
rapid technological advancements allowing characterisation of the biological and physical properties
of MVs, this exciting field of research is hoped to yield insights in VTE pathogenesis, and in turn may
define further novel biomarkers that can be used to help predict VTE risk.

5.6. C-Reactive Protein

The enhanced understanding of the molecular foundations of both arterial and venous thrombosis
has highlighted that thrombus formation is an inflammatory condition. This has led to interest in
the evaluation of laboratory markers of inflammation as a means to help predict VTE recurrence.
One marker that has received significant interest is C-Reactive Protein (CRP), which is commonly used
in clinical practice as a marker of inflammation. Interestingly, there is a growing body of evidence
that, in addition to being a marker of inflammation, CRP plays an important role in mediating
inflammatory and thrombotic reactions [87]. In this regard, it is now well established that CRP is
predominantly synthesized in the liver as a pentamer and is upregulated in response to inflammatory
cytokines, including interleukin (IL)-6 [88]. Additionally, CRP can undergo a structural change to
expose neoepitopes [89], and under certain conditions such as increased urea or high temperature,
it can irreversibly dissociate to its monomeric form (mCRP) [90,91]. It is speculated that, once
the structural changes in CRP occur, it is able to exert its pro-inflammatory effects [87]. In this
setting, mCRP has been shown to activate complement [92], endothelial cells [93,94], monocytes [95],
neutrophils [96], and platelets [97,98], all of which have been identified as central in thrombus
formation [53]. This understanding of the thromboinflammatory effects of mCRP has led to substantial
interest in the evaluation of mCRP in cardiovascular disease. Indeed, mCRP has been shown to be
deposited in infarcted myocardium and atherosclerotic plaques, whilst the therapeutic inhibition of
CRP has been demonstrated to afford protection from myocardial ischaemia reperfusion injury [99].
Furthermore, mCRP has been localised on circulating microvesicles, combining two potential risk
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factors of VTE [100]. Overall, given its role in promoting thromboinflammation, it is tempting to
speculate that mCRP may play an active role in promoting VTE, and therefore serve as a useful
surrogate of VTE risk. However, to date, this remains to be investigated.

Nevertheless, the measurement of native CRP has been the subject of several prospective trials
and appears to be an independent risk factor for arterial thrombosis and cardiovascular disease [101].
To this end, the Justification for the Use of Statin in Prevention: An Intervention Trial Evaluating
Rosuvastatin (JUPITER) trial demonstrated that the treatment of healthy individuals with rosuvastatin
based solely on elevated CRP led to a reduced incidence of both arterial and venous reinforcing the
important association between CRP and thrombosis [102,103]. Additionally, CRP has been evaluated
as a biomarker of acute VTE, and several studies have found an association between elevated CRP
and the risk of venous thrombosis, although this finding was not universal [104–111]. Importantly,
an elevated CRP appears to be important in predicting subsequent VTE with some promising results
in both the general population as well as patients with malignancy-associated VTE [112,113].

6. The ‘Omics’ and VTE

In recent years, the improved understanding of many disease states at a molecular level has
rapidly increased due to the availability of technology platforms analysing the ‘omics.’ The term ‘omics’
refers to technologies such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics
and in many fields is leading to personalised medical care [114]. In particular, genomics has already
led to significant advances in the understanding of disease pathogenesis. Other platforms, such as
metabolomics, are still relatively new and are likely to continue to enhance our understanding of
disease in the future. Below, we address how these additional tools may assist in the current field
of VTE.

6.1. Genetic Landscape of VTE

For well over a half a century, it has been well recognised that genetics plays a substantial role in
the development of venous thrombosis, leading to the commonly available testing of several hereditary
thrombophilias. In more recent years, genome-wide association studies have sought to improve
the understanding of the heritability of VTE; however, to date, the findings have ultimately not
altered routine clinical care [115–120]. The hereditary thrombophilias that are known to be associated
with the risk of VTE include deficiencies in the natural anticoagulants, including antithrombin [121],
protein C [122], and protein S [123], as well as genetic mutations in the factor V Leiden [124] and the
prothrombin genes [125]. However, despite the established association between thrombophilia and
risk of VTE, there is no substantial evidence that the intensity or duration of anticoagulation for VTE
should be influenced by the discovery of one of the recognised thrombophilias [126]. Consequently,
the clinical utility of routine laboratory testing for hereditary thrombophilias is questionable. Indeed,
recent guidelines suggest that testing should only be considered in specific clinical circumstances and
not used in a shotgun approach for all patients with VTE [126,127]. More recently, the improved access
to high-throughput sequencing technologies, such as next-generation sequencing (NGS), has generated
interest in establishing if other novel genetic markers may prove more useful in predicting the risk of
recurrent VTE.

In this regard, Simeoni et al. evaluated the use of NGS using the ThromboGenomics platform
for diagnosing thrombotic, bleeding, and platelet disorders. Covering 63 genes linked to these
heritable conditions, they were able to show that the platform was effective at obtaining molecular
diagnoses in patients with suspected thrombotic and bleeding disorders [128]. More recently, a 55-gene
thrombophilia panel using whole-exome sequencing (WES) was performed on patients with acute VTE
assessing genes associated with coagulation factors, natural anticoagulants, platelet function, vWF.
The panel identified probable disease-causing variants or variants of unknown significance (VUS) in
60.9% of patients and was superior to current laboratory-based testing in identification. Furthermore,
several studies have evaluated single-nucleotide polymorphisms (SNPs) in conjunction with clinical
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risk factors and assessed the utility of predicting acute VTE and have shown that the addition of SNPs
to clinical factors may improve risk prediction [129,130].

To date, it seems we have yet to fully elucidate the role that NGS may play in the diagnosis of
acute or recurrent venous thrombosis, and its utility as a tool in predicting recurrent VTE is yet to
be determined. Additionally, the increasing use of genomics is accompanied by its own challenges,
including adequate genetic counselling and the finding of VUS, where the clinical significance may not
be fully understood. These issues should always be considered before proceeding with genetic testing
in combination with ensuring appropriate pretest and posttest genetic counselling.

6.2. Proteomics

Proteomics refers to the study of protein quantification, structure, and localisation, coupled
with characterisation of the interactions within a biological system, e.g., signalling pathways [131].
The study of the blood compartment proteome, including plasma, platelets, and leucocytes, has
become an attractive tool in the field of VTE and has provided additional insight into the pathogenesis
and molecular interactions taking place within the disease process. Several studies have evaluated
proteomics to diagnose acute VTE as well as its utility in predicting recurrent disease. In the setting
of acute VTE, plasma proteomic profiling has identified protein patterns that can be used to predict
the diagnosis of acute VTE with relatively high specificity and have shown differences in proteins
such as haptoglobin and alpha-1B glycoprotein, when compared with healthy controls [132,133]. Also,
proteome analyses in urine of patients with acute VTE identified specific peptide patterns, which
were further validated in both human and mouse tissue [134]. Additionally, prospective studies
performing large-scale plasma proteomic profiling have identified predictive protein candidates, such
as transthyretin, the vitamin K-dependent protein Z, and platelet-derived growth factor-beta (PDGFB),
to have strong associations with the development of VTE. These novel biomarkers will require further
validation but may be useful in predicting future, incident VTE [135,136].

Similarly, the proteome of other compartments, including MVs and platelets, has been
evaluated in humans with VTE. Within MVs, two key proteins were enriched in patients with
acute VTE—galactin-3 binding protein (Gal3BP) and alpha-2 macroglobulin. Interestingly, Gal3BP is
involved in several pathways, including platelet activation and aggregation, upregulation of P-selectin,
and promoting further MV shedding, and thus may be critical in propagating the early stages of venous
thrombosis [137,138].

Additionally, studies of the platelet proteome have advanced the understanding of intracellular
functional pathways, and the role that platelets play in thrombosis. Recently, the platelet proteome of
patients with a positive lupus-anticoagulant (LA) has demonstrated several alterations when compared
to healthy volunteers. One prominent finding is that protein disulphide isomerases are elevated in
platelets of LA-positive patients, which are known to be involved with thrombus formation in vivo,
further highlighting the importance of platelets in this disease process [139].

In summary, proteomics is a rapidly evolving field and continues to yield valuable information
regarding the molecular pathways that are altered in venous thrombosis. At this stage, research
that convincingly shows the potential of proteomics to predict recurrent VTE is limited; however,
this field of research has the potential to unlock important biomarkers in the prediction of recurrent
venous thrombosis.

6.3. Metabolomics and Lipidomics in VTE

The emerging fields of metabolomics and lipidomics have resulted in an increasing body of
evidence suggesting that lipid species are vital to both procoagulant and anticoagulant effects within
the plasma. Whilst our understanding of lipids in coagulation has traditionally centred on the role of PS
as a source of phospholipid required for efficient thrombin generation [140], more recently, lipidomic
approaches have identified several minor lipid species as important modulators of coagulation reactions.
Notably, these studies have furthered the understanding that lipids have both procoagulant and
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anticoagulant effects in the plasma and have demonstrated a relationship between venous thrombosis
and a change in lipid species [141–144].

Lipidomic analysis using mass spectrometry can evaluate hundreds of lipids in a single sample,
which is a dramatic increase from conventional lipid analysis that focused primarily on cholesterol and
triglyceride levels. This new technology has already unveiled plasma lipidome signatures that are
predictive of cardiovascular disease risk and can be used in combination with traditional risk factors
to enhance overall strategies to predict cardiovascular events and death [145,146]. More recently,
the platelet lipidome has been established as a distinct compartment of lipid metabolism, with changes
in the platelet lipidome found in patients with coronary artery disease [147,148].

Uncovering these alterations in the plasma and platelet lipidome in arterial thrombosis has further
highlighted the importance of lipids in thrombosis, and it is hoped that novel approaches may also
show promise in the prediction of venous thrombosis. In this regard, recent studies suggest that several
lipid and metabolites pathways are altered in acute VTE [149–151]. Deguchi et al. have demonstrated
an association between low plasma acylcarnitine levels and venous thrombosis and determined that
acylcarnitines have anticoagulant activity by way of their ability to bind to, and inhibit, factor Xa,
establishing a potential factor in the pathogenesis of venous thrombosis [144]. These novel findings
add weight to the importance of lipid pathways in the formation of venous thrombosis, and our group
are interested to see if these factors may be utilised in predicting recurrent disease.

7. Predicting VTE in Malignancy

The diagnosis of VTE is frequent in patients with malignancy, with an estimated incidence of up
to 20% [152]. Moreover, treatment with chemotherapy has been shown to further increase the risk of
developing venous thrombosis [153]. Importantly, patients diagnosed with malignancy-associated
VTE are shown to have a worse prognosis compared to those without VTE, and both arterial and
venous thrombosis are known to be among the leading causes of death in cancer patients [154,155].
The optimal management of malignancy-associated VTE presents a challenging scenario for clinicians
as these patients have higher rates of bleeding when treated with anticoagulant therapy but also have
an increased risk of recurrent thrombosis. These difficulties in treating malignancy-associated VTE
have led to significant interest in identifying an ideal marker to prognosticate the risk of both initial
and recurrent VTE in this population.

Due to the increased risk of VTE associated with malignancy, several risk prediction models have
been evaluated in this setting, including the Khorana score [156], the Vienna Cancer and Thormbosis
Study (CATS) score [157], and the PROTECHT score [158]. The most widely used prediction model is
the Khorana score and it forms the basis for the other prediction models mentioned. The Khorana
score uses the five variables (site of cancer, platelet count, haemoglobin, leucocyte count, and body
mass index) to risk-stratify ambulatory outpatient patients for consideration of thromboprophylaxis.
A recent systematic review and meta-analysis of studies using the Khorana score to risk-stratify patients
with malignancy demonstrated that the score is certainly helpful in identifying patients at high risk of
developing VTE.

More recently, Pabinger et al. have developed a novel prediction model which utilises the
variables of tumour-site category and D-dimer to differentiate between low and high risk of VTE in
ambulatory cancer patients to give a predicted six-month risk of developing VTE [159]. This model
will require further external validation in prospective studies but appears to improve upon previously
available tools for predicting index VTE in this patient cohort. However, clinical prediction rules
such as the Khorana score identify risk of index VTE during malignancy, rather than assessing risk of
recurrence. Furthermore, the most commonly used clinical prediction rules actively exclude patients
with malignancy due to the known prothrombotic phenotype associated with many types of malignancy
and the higher risk of recurrent VTE. As such, many biomarkers have been studied for their role in
predicting recurrence of malignancy-associated VTE, including D-dimer, sP-selectin, TF-positive MP,
and CRP, and have been reviewed in depth elsewhere [160,161]. To date, no optimal marker has been
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found in predicting recurrent malignancy-associated VTE, and this is an area where further research is
required to ensure that these patients with both challenging thrombotic and bleeding complications
can receive the most appropriate treatment.

8. Limitations With the Use of Biomarkers in Predicting Recurrent VTE

Despite many recent advances in the field of VTE, the optimal biomarker to aid in predicting
recurrent venous thrombosis is yet to be established and several limitations are recognised. With the
exception of D-dimer, many of the biomarkers discussed above are not routinely measured in hospital
laboratories and may only be available for assessment in a research setting. This may be costly for
the patient and produce a result that is not validated for clinical decision-making. Additionally,
several biomarkers, particularly MVs and EPCs, lack a standard definition, thus resulting in significant
variation in classification between laboratories. Furthermore, despite rigorous quality control (QC)
measures for laboratory accreditation, there remains variability between some commercial assays.
An example of this is the use of D-dimer in the HERDOO2 rule, where it has been demonstrated that
there is poor concordance between different commercial D-dimer assays leading to misclassification
of risk prediction [17]. As such, differences in local practices, protocols, or assay use may result in
substantial heterogeneity between biomarker results, and external validation procedures, coupled with
thorough local laboratory QC measures, are of critical importance in this setting [162].

9. Future Perspectives and Conclusions

A considerable number of biomarkers have been evaluated for their potential utility in predicting
episodes of recurrent venous thrombosis. To date, no single biomarker has been demonstrated to
be superior to current clinical prediction models. However, recent studies have elucidated the key
spatiotemporal events underpinning VTE pathogenesis and uncovered a remarkable array of novel
factors that contribute to the development of venous thrombosis [53]. Importantly, these studies have
highlighted that inflammation is central in the development of VTE and delineated novel molecular
players in VTE pathogenesis. In this regard, neutrophil extracellular traps (NETs), which were first
identified as a neutrophil response to bacterial stimulation, have been demonstrated to be present in
human arterial and venous thrombi and appear to be critical activators of the intrinsic pathway in
addition to serving as a scaffold for platelet adhesion and activation [163–165]. Similarly, platelets
are increasingly recognised for their role in venous thrombosis. Platelets release a procoagulant
inorganic polyphosphate, which activates FXII and appears to contribute to venous thrombosis in
mice [166–168]. Additionally, platelets release the danger-associated molecular pattern (DAMP)
protein, high mobility group box 1 (HMGB1), which serves to enhance monocyte recruitment and NET
formation, both of which have been shown to be central to VTE formation in murine models [169–171].
Moreover, several proinflammatory cytokines and chemokines, including interferon-gamma, IL-6, and
IL-17A, have been identified as being highly prothrombotic, whilst also playing an important role
in leucocyte recruitment and activation; cementing the importance of the inflammatory response in
venous thrombosis formation [172].

These novel molecular players remain to be investigated regarding their ability to aid in predicting
recurrent VTE. However, our growing understanding of VTE pathogenesis, coupled with the rapid
technical advances seen within the areas of genomics and lipidomics, raises the possibility that further
functional novel biomarkers for recurrent VTE will soon be detected. Ultimately, we anticipate
that the incorporation of both clinical factors and novel biomarkers will allow for more accurate
prediction of VTE risk recurrence, thus ensuring that optimal treatment can be tailored to the individual,
and subsequently improve patient outcomes in the field of venous thrombosis.
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