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Cocoa bean fingerprinting via correlation networks
Santhust Kumar 1✉, Roy N. D’Souza1, Marcello Corno2, Matthias S. Ullrich1, Nikolai Kuhnert1 and Marc-Thorsten Hütt 1✉

Cocoa products have a remarkable chemical and sensory complexity. However, in contrast to other fermentation processes in the
food industry, cocoa bean fermentation is left essentially uncontrolled and is devoid of standardization. Questions of food
authenticity and food quality are hence particularly challenging for cocoa. Here we provide an illustration how network science can
support food fingerprinting and food authenticity research. Using a large dataset of 140 cocoa samples comprising three cocoa
fermentation/processing stages and eight countries, we obtain correlation networks between the cocoa samples by computing
measures of pairwise correlation from their liquid chromatography-mass spectrometry (LC-MS) profiles. We find that the topology
of correlation networks derived from untargeted LC-MS profiles is indicative of the fermentation and processing stage as well as the
origin country of cocoa samples. Progressively increasing the correlation threshold firstly reveals network clusters based on
processing stage and later country-based clusters. We present both, qualitative and quantitative evidence through network
visualization, network statistics and concepts from machine learning. In our view, this network-based approach for classifying mass
spectrometry data has broad applicability beyond cocoa.
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INTRODUCTION
Food fingerprinting has been discussed from a multitude of
technological perspectives1–3. However, the sophistication
of the analytical instruments is often in contrast to the lack of
innovation on the computational and data analysis side. Here we
illustrate – using a large data set of cocoa liquid chromatography
coupled to mass spectroscopy (LC-MS) data from eight countries
of origin and in three processing stages (unfermented, fermented,
liquor) – how a network-based analysis can reveal the underlying
patterns, embedded in interconnected biochemical and chemical
reaction grids.
Such a characterization of cocoa samples in terms of processing

stages and country of origin is a prerequisite for quality control
and fine flavor products4,5. Traditional approaches (e.g., PCA) can
successfully reveal groups of unfermented and fermented cocoa
samples6,7. However, especially when the number of countries in
the dataset is not small, grouping of samples on the basis of
countries of origin has remained elusive6,8,9.
In its most basic form, a network-based interpretation of high-

throughput or alternative complex data offers a dimensionality
reduction of the raw data, thus dramatically facilitating further
data analysis steps and increasing the statistical significance of
results10,11. This basic idea has revolutionized the way we analyze
diverse biological and medical data and serves as a foundation of
what is called today Systems Biology and Systems Medicine12–14.
In most applications, this dimensionality reduction is achieved
using a given biological network (e.g., a metabolic network or a
protein-protein-interaction network), which is in turn a con-
densed representation of a vast inventory of biological knowl-
edge15–17. As pointed out by Bartel et al.18, when no external
network is available or in order to reduce the uncertainty due the
unreliability or the incompleteness of the given biological
network, one can also resort to the intrinsic network contained
in the data itself, spanned by the correlations among the different
dynamical units. For a long time, this correlation network
approach to analyze high-throughput data has been a prominent

approach in metabolomics19–28. The approach has also found
applications, refinements and development in the field of finance
and economics29,30.
Efforts of a fundamentally new perspective on complex

systems are now often summarized under the term ‘network
science’31,32. Network science operates under the assumption
that mathematical graphs–objects consisting of nodes and
links–serve as suitable abstractions of real-life systems: retaining
enough detail to be informative but generalizing enough to allow
for the application of a standardized set of tools and for inter-
system comparisons.
The main purpose of our investigation is to bring this field of

network science to food research. Specifically, we quantify
classifiability of cocoa mass spectrometry data due to the
network-based dimensionality reduction.
Cocoa products have enormous flavor complexity stemming

from numerous factors, starting right from its genotype, weather
conditions, harvesting, fermentation, drying, to its intermediate
and final processing in a factory33. Various classes of chemical
compounds, e.g., alkaloids, carbohydrates, polyphenols, peptides
react with each other during processing to form a myriad of
sensory precursors and ultimately taste and aroma active
compounds such as aldehydes, ketones, pyrazines, diketopiper-
azines, etc., contributing to its unique flavor. Metabolomics
analysis through techniques like LC-MS offer a high throughput
quantitative access to this complexity.
Chemometrics, the broad discipline of applying mathematics

and statistics to Chemistry, offers a range of tools for interpreting
such datasets, but so far the underlying rules, how key features of
cocoa harvest, fermentation and production shape these LC-MS
data, have remained elusive34,35. The limitations of common
statistical approaches, like PCA become apparent, when going
back to the formal definition of these methods36. Technically, PCA
searches for the linear combinations of components of the high-
dimensional data set, along which variance across samples is
maximal. Consequently, PCA leads to meaningful subcategories,
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if the (true) subcategories are the main drivers of variation among
samples. This is particularly striking, when we are setting out to
identifying multiple types of subcategories in the same set of
samples (e.g., countries of origin, fermentation status or stage of
industrial treatment in the case of the cocoa samples discussed
here;6 or variety and geographical origin in case of wines;37 or
farming practices and cultivation region in case of coffee;38

roasting and geographic origin in case of coffee39). Often
however, the patterns of variances among samples arise from
an overlay of contributions from multiple sources, by no means
limited to the parcellation of samples into the subcategories of
relevance to food industry. These limitations of PCA are, in part,
responsible for its lack of success in food fingerprinting (e.g., the
classification of cocoa samples into origin countries based on their
LC-MS profile6,8,9,40–42).
In a combination of chemometrics and network science we

derive a set of correlation networks, parameterized by the
correlation threshold defining a link, from 140 cocoa samples
belonging to three different stages in a typical cocoa processing
pipeline (unfermented, fermented and liquor) and 8 countries
through their LC-MS profiles in positive ion mode. A schematic
overview of the generation of correlation networks out of the LC-
MS data is provided in Fig. 1.
We find that, as we progressively increase the correlation

threshold from 0 towards 1, the clustering of cocoa samples is
first dominated by processing-stage sample types at low and
intermediate correlation thresholds, and then by countries of
origin at high correlation thresholds. We show this both
qualitatively and quantitatively via network visualizations,
network edge statistics and other indicators of classifiability.
This family of correlation networks, a common tool from early
metabolomics research19,26, is in this way here linked to the
notion of classification accuracy commonly applied in machine
learning.
Our work demonstrates the presence of processing-stage level

grouping on a coarser level and origin level grouping on a finer
level within the former. This nested grouping can be revealed by

successively keeping higher correlations. Varying the correlation
threshold, the functional hierarchy of structures in this family of
networks is thus revealed.

RESULTS
Processing stage modules: block-structures in correlation
matrix
The Spearman correlation matrix ~R obtained this way is
visualized through heatmap in Fig. 2c. (For the case of Pearson
correlation coefficient matrix, R, see Supplementary Fig. 1) By
definition, the correlation matrices ~R and R are symmetric. The
twin attributes of nodes, namely the processing-stage sample
type and country of origin, have been alternatively marked on
the sides. Three blocks corresponding to Unfermented, Fermen-
ted and Liquor samples are clearly distinguishable. It is also
visible that Fermented and Liquor samples are part of a larger
block, which is separated from Unfermented samples. This shows
that Liquor samples are closer in character to Fermented
samples. This is in consonance with general expectation that
liquor production follows the fermentation stage and that usually
only Fermented beans are subject to Liquor formation. Further-
more, more chemical changes occur in cocoa when moving from
unfermented stage to fermented stage than those occurring
from fermented to liquor stage suggesting a greater impact of
fermentation on generation of desirable cocoa features than
during liquor formation. In case of correlation heatmap obtained
using Pearson correlation (Supplementary Fig. 1) the block of
Unfermented samples is clearly distinguishable from Fermented
and Liquor samples, while the Fermented and Liquor samples are
mildly distinguishable. Further, it is important to note that no
block structure on the basis of country is discernable at this level
of detail about the correlations.
Next, we define correlation network using the Spearman (~r) and

Pearson correlations (r) obtained above.

Fig. 1 Schematic illustration of working procedure. (a) Schematic of LC-MS data structure. Subset of real LC-MS dataset (compounds in rows,
samples in columns): the darker the color of a box, the higher the concentration of the compound in the sample. In this schematic illustration
a couple of samples from Ecuador and Brazil of unfermented and fermented categories are shown. (b) Schematic representation of correlation
matrix. Spearman correlation between different samples. (c) Schematic of network generation. Correlation networks as a function of
increasing correlation thresholds. An edge exists between two nodes only when the correlation between them is greater than or equal to
some specified threshold.
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Fig. 2 Initial network details. (a) Distribution of Cocoa samples used in this study—a total of eight countries and three cocoa processing
stages are represented. Ivory Coast contributes most samples and Ghana the least. (b) Correlation Network. Full correlation network made
using all correlations between the set of cocoa samples using Spearman correlation (i.e., at correlation threshold of zero). The nodes are color
coded according to their processing-stage sample type and shape coded by their country of origin. The network is visualized using
Cytoscape52 with ‘edge-weighted spring embedded layout’ which keeps nodes connected with higher correlations closer together. (c)
Correlation Heatmap. Darker regions represent high correlation, and lighter regions represent low correlation. Samples have been sorted on
twin axes, first on processing stage sample-type, and then second internally on country of origin. Two distinct square block regions are clearly
visible along the diagonal of the matrix, corresponding to Unfermented (smaller block) and Fermented (bigger block) samples.
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Networks at low and intermediate correlation thresholds
reveals processing-stage sample type modules
We analyze correlation networks at low and intermediate
correlation thresholds (~rth), varying it from ~rth= 0.1 to 0.5, in
steps of 0.1. The network at a given correlation threshold contains
all the edges with correlation greater than or equal to the set
threshold. Some of these networks are visualized in Fig. 3a and
show the networks at correlation thresholds of 0.1, 0.4, and 0.5,
respectively. First, the nodes belonging to Unfermented samples
are seen little separated from the nodes belonging to the
Fermented and Liquor samples. Next, the Unfermented samples
are clearly separated from the Fermented and Liquor samples.
Within the Fermented and Liquor samples little grouping starts to
form. Finally, all the three samples can be seen clearly separated
from one another. This separation of samples first into two groups:
(a) Unfermented, and (b) Fermented and Liquor samples, and then
slowly into three groups: Unfermented, Fermented and Liquor
samples, is in congruence with the earlier result seen in the
structure of the correlation matrix heatmap shown in Fig. 2b. Both
Fig. 2b and Fig. 3a show that the liquor sample are more similar to
the fermented samples than to the unfermented samples. This is
in accordance with the fact that major chemical and physical
changes in cocoa beans takes place during the processes of
fermentation. (For labeled nodes see Supplementary Fig. 2) A
movie of the network as a function of progressively increasing
threshold is attached as Supplementary Video 1 which shows the

evolving network at intermediate correlation thresholds and the
separation of samples belonging to different cocoa processing
stage. Similar behavior is noted for the case of correlation network
formed using the Pearson correlation coefficient (Supplementary
Fig. 3) however at different values of correlation threshold.

Country of origin-enriched modules at high correlation
thresholds
As the correlation threshold is further increased, the network
breaks into various smaller connected components. The resulting
individual connected components primarily have the processing-
stage sample type. However, there are more than one component
that belong to same color or sample type. This reveals the internal
structure of the clusters of samples that initially grouped on the
basis of their sample types. This additional sub-structure of the
network reveals grouping which now is primarily governed by
the samples belonging to same country of origin. This is shown in
the networks in Fig. 3b for correlation thresholds of 0.6, 0.7 and
0.8. In contrast to the legend used in previous figures, we now
color the nodes on the basis of countries for a quick comprehen-
sion of grouping on the basis of countries. (The figure with the
previous legend scheme is given as Supplementary Fig. 5) It can
be seen from Fig. 3b that same color nodes tend to be present
closer together. This feature is visible more in modules of smaller
size, but it is also discernible in larger sized modules. We see that
as the correlation threshold is further increased, most of the larger

Fig. 3 Network transformation as a function of varying correlation threshold. (a) Processing-stage modules: modules of LC-MS samples
belonging to the same cocoa processing-stage in a typical cocoa processing pipeline. (~r � 0:1) Mild separation of unfermented, fermented
and liquor cluster; (~r � 0:4) modular structure improves; (~r � 0:5) groups of unfermented, fermented and liquor samples are clearly separated.
The figure follows same legend as of Fig. 2b. See Supplementary Fig. 2 for a detailed version of networks and for a movie of evolving network
as the correlation threshold is progressively increased. (b) Country modules: correlation thresholds of 0.6, 0.7 and 0.8. Several modules with
nodes belonging to the same country of origin are revealed. For a quick and better comprehension, and unlike the legend of earlier
correlation networks, in this figure, different countries are represented through a different color. (For corresponding node-labeled network see
Supplementary Fig. 4. The networks with same thresholds but with previous node color/shape scheme is given in Supplementary Fig. 5) (c)
Connected nodes’ similarity. The sample-type similarity (blue line) starts to increase linearly right from smaller correlation threshold values,
reaches close to 1 around a correlation threshold value of 0.5. The origin similarity remains constant for a long range of correlation threshold
(0, 0.50) and then increases rapidly. The dashed lines and error bars show corresponding similarities and standard deviation, respectively (see
Similarity of nodes connected by an edge), as expected from an ensemble of control networks. (d) Accuracy of links in thresholded correlation
networks, or closeness of a thresholded correlation network to expected ideal network. As the correlation threshold increases the threshold
networks become closer to their ideal counterparts. (For an explanation of ‘accuracy’ through a toy-example, see Supplementary Fig. 10) In
regions of lower correlation threshold, the thresholded networks describe the sample type character of the network more than the origin type
character. In regions of higher correlation threshold, opposite is true and the thresholded networks are closer in their character to the origin
attribute of LC-MS samples. This is coherent with the network pictures at various threshold seen in earlier figures.
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size modules break into smaller module, where nodes belonging
to the same origin country are increasingly often connected. It
should be noted that processing-stage and country of origin are
the only major governing factors, on which grouping of samples is
based. Other factors such as variety of cocoa hybrid, harvest
season, geographical location and landscape of farm in the
country can begin to play an important role with increasing
correlation threshold. Hence the clustering is not perfect. The
other governing factors can potentially lead to finer sub-modular
structures in the network. This situation is more likely to be
evident at still higher correlation thresholds.
As the correlation threshold is gradually increased, edges with

correlation less than the threshold value are lost from the network.
On one hand this leads to increased consideration of the edges
with higher correlation in the determination of the layout of the
network, while on the other hand this, naturally, leads to decrease
in the number of edges, and, as isolated nodes are dropped, can
also decrease the number of nodes in the resulting network,
resulting in network breakage. The variation of number of edges
and nodes connecting them is shown in the Supplementary Fig. 8.
A movie of the network as a function of progressively increasing
the threshold is attached as Supplementary Video 2 which clearly
shows the evolving network and separation of samples belonging
to different countries.

Similarity of nodes connected by an edge
As every node in our correlation networks has two attributes,
namely the processing-stage sample-type and origin, we define
two kinds of similarity for a pair of nodes connected by an edge:
sample-type similarity and origin similarity. We define sample-
type similarity as the fraction of edges in a network connecting
nodes having the same processing-stage sample-type attribute,
and origin similarity as the fraction of edges in a network
connecting nodes which have same origin attribute. For the sake
of enhancing clarity and avoiding potential confusion, we would
like to emphasize that edge-similarity is defined on edge basis
and not over clusters observed in network representation at
different thresholds.
The sample-type and origin similarities as a function of

correlation thresholds based on Spearman correlation networks
are shown in Fig. 3c (solid lines). They differ significantly from each
other in terms of both the correlation threshold around which
they start to rise and the manner in which they rise. The sample-
type similarity starts to increase right from the smaller values of
correlation thresholds itself and in a linear manner until it starts to
saturate around a correlation threshold value of 0.5 to a similarity
value close to 1. This is in agreement with the observed
enhancement of the processing-stage sample type character of
the network architecture right from the beginning of starting
values of correlation threshold, to the almost full appearance of
processing-stage sample type character at intermediate correla-
tion threshold in large and small connected components
(cf. panel A). The origin similarity remains almost constant and
close to that of null model networks (orange dashed line) for a
long range of correlation threshold (up to 0.5) suggesting a weak
or almost negligible role in the clustering of nodes belonging to
the same origin in the layout of network. Only when the
correlation threshold is around 0.5, origin similarity starts to
increase, suggesting this is the value of correlation threshold at
which the contribution of origin effects start to contribute to
clustering of nodes belonging to same origin. This clearly shows
that the processing-stage sample type effect precedes the country
effects, and the country effects are finer (require higher
correlations) than the sample-type effect. The origin similarity
increases rapidly and reaches a value close to 1 which implies that
at higher threshold almost all edges connect nodes having same
sample type and same country of origin.

The dashed lines along with error bars show similarity values
and standard deviation expected from an ensemble of null model
networks (control networks) obtained by randomizing edge
weights in the original network (see Null model network or
control network). The difference between the similarity values
from original network and that obtained from null model
networks point to the fact that the networks at higher correlation
thresholds are enriched in edges that have high sample-type and
origin similarity. The result corresponding to correlation network
generated using Pearson correlation coefficient is given in
Supplementary Fig. 9. Both show similar behavior, although at
slightly different correlation threshold value.

Closeness of threshold-determined networks to ideal
networks
In this section, we quantify as a function of correlation threshold
how accurately our networks represent the expected ideal
networks of cocoa samples given their processing-stage sample
types or country of origin. We consider two ideal networks, one
each for the processing-stage sample type and country of origin.
An ideal processing-stage sample type based network will have a
link between a pair of its nodes only when both the nodes belong
to the same processing-stage sample type, otherwise the link
would be absent. Similarly, an ideal origin-based network will have
a link between a pair of its nodes only when both the nodes
belong to the same country of origin. Thus, in an ideal network
based upon processing-stage sample type or country of origin a
link is present only between nodes belonging to same sample
type, or nodes belonging to same origin, otherwise there is no link
between dissimilar nodes. After defining these ideal or true
networks, we identify ‘true positive’ and ‘true negative’ links by
comparing the links in the original network at a given correlation
threshold (or threshold-determined network, for short) with the
links in the ideal networks. A link is counted to be ‘true positive’
when the link is present both in the original network at the given
threshold and the corresponding ideal network. A link is counted
as ‘true negative’ when the link is absent both in the network at
the given threshold and the corresponding ideal network.
Whereas a link is defined as ‘false positive’ when it is present in
the threshold-determined network but not in the corresponding
true network, and ‘false negative’ when it is absent in the
threshold-determined network but present the true network. An
illustration of this scheme through a toy network is provided in
Supplementary Fig. 10. Using these terms, we define accuracy α as
the fraction of ‘true positive’ and ‘true negative’ links in an original
threshold-determined network.
We find that with increasing correlation thresholds the network

becomes closer to the expected true network as demonstrated by
increasing values of accuracy for both processing-stage sample
type and country of origin Fig. 3d (Spearman correlation network;
Pearson correlation case in Supplementary Fig. 11). Further, in the
region of low correlation threshold the character of the network is
closer to that of the expected true network for the processing-
stage sample type attribute, and in the region of higher
correlation threshold the character of the network is closer to
that of the expected true network for country-of-origin attribute.
This result is in agreement with the previous results with
formation of processing-stage sample type clusters at lower and
intermediate correlation thresholds and of country-based clusters
at high correlation thresholds.
In a previous investigation we discussed the origin country

classification of cocoa bean samples based on linear discriminant
analysis (LDA) applied to LC-MS data43. We showed that the
classification strength can be substantially enhanced by applying
an additional filtering step, called Gaussian feature stability43. Our
network-based analysis now offers a mechanistic explanation for
this statistical observation: Violation of the Gaussian feature
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stability criterion essentially means that for a set of samples from
the same country, intensities of an LC-MS peak do not vary around
a reliably defined average (e.g., due to outliers). In the network-
based analysis presented here, such violations would be translated
into reductions in sample-to-sample correlations. In this way,
sample-based selection for very high correlations matches the
compound-based selection due to Gaussian feature stability.
It is noteworthy that, in contrast to the LDA from Kumar et al.43,

the network-based analysis presented here is not an example of
‘supervised learning’, but rather ‘unsupervised learning’, as its
underlying classification task does not require a-priori information
on the sample-to-country associations.

DISCUSSION
It is well known that the analysis of statistical associations in large-
scale datasets is a useful strategy in food fingerprinting and food
quality assessment. An example is the analysis of the statistical
association of cheese microbiomes with volatile compounds
presented in44, which furthermore shows the relevance of a
detailed characterization of these microbial communities. In a
recent overview45, Barabási et al. have outlined the tremendous
potential of network science for food research. Here we introduce
a network-based approach for quality control in cocoa research by
classifying cocoa bean samples based on their high-throughput
LC-MS profiles.
Classification of cocoa samples on the basis of their country of

origin has been found challenging with limited success obtained
in cases with the number of countries being few or the origin
being on continental scale. Differences in unfermented and

fermented samples can be easily seen by simply finding the
Spearman correlation between the cocoa samples using their
LC-MS profiles (cf. Figure 2c). The liquor samples are closer to the
fermented samples. However, differentiation on the level of
country of origin is only revealed upon further analysis. Evaluating
correlation networks as a function of the discretization threshold,
we find that differentiation of cocoa samples on the level of
country of origin is on a more subtle level than their differentiation
on the basis of processing-stage sample types.
How can the findings presented here be put to use for the

purpose of cocoa bean fingerprinting? Let us assume we have a
new sample, where the fermentation status and the origin country
are not known, but where the LC-MS profile is known. By running
the same analysis again, but including this sample, we can
evaluate the new sample’s position in the correlation networks at
different thresholds. A majority vote among the new sample’s
neighbors in a network obtained at an intermediate threshold
will reveal the new sample’s fermentation status, while a
corresponding majority vote at high threshold will reveal its
origin country. Should only a smaller database of already classified
samples be available than the one analyzed here, the majority
vote can be extended to next-to-nearest neighbors, in order to
enhance statistics. The result of a majority vote model to infer a
node’s sample-type or origin at various correlation threshold is
shown in Fig. 4. Per expectations, sample-type predictions are
often correctly made at mid and higher correlation thresholds,
while origin predictions are often correctly made at higher
correlation thresholds.
Our study takes into consideration two factors on which cocoa

samples may primarily differ: processing-stage and country of

Fig. 4 Simple majority vote model to infer sample-type or origin of a node/sample. (a) Sample-type. Prediction result for inference of
sample-type of all nodes (vertical axis) at continuously increasing correlation thresholds (horizontal axis): green indicates correct prediction,
yellow indicates false prediction. (b) Origin. Prediction result for inference of country of origin of all nodes. Note: (1) Only few sample names
(not all) are shown on the vertical axis to avoid clutter, however all samples are represented in the heatmaps. (2) At high correlation thresholds
corresponding networks become sparse thus loosing edges/nodes, hence, sample-type/origin inference for some nodes may not be possible.
These are shown by white portion in the heatmaps. (c) Mean prediction score of sample-type and country of origin as a function of increasing
correlation thresholds. It is evident that, on average, sample-type can be predicted correctly at mid and higher correlation thresholds, while
origin is correctly predicted at higher correlation threshold regions.
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origin. However, it is worth noting these are not the only
governing factors that affects similarity of cocoa samples. Many
other factors such as variety of cocoa hybrid, soil, climate, terrain,
harvesting season, farming practices etc. also have significant
effects4,46–49. It would be interesting to consider some of these
factors and see, in what range of correlation threshold these
effects start to matter and contribute to a modular organization of
the corresponding correlation networks.
Furthermore, we intend to study the role of specific classes of

compounds in clustering of samples at different correlation
thresholds. Which compounds serve as fermentation separators,
which as country-of-origin separators? Does the clustering depend
on the nature of the compounds (e.g., polyphenols, carbohydrates,
peptides, primary or secondary metabolites)? Can the tools of
network science answer these question, or what augmentations
must be brought into network science framework to achieve
success at such questions?
But to begin with, this work sets out a network-based

framework that besides providing a new perspective on
chemical similarity of cocoa bean samples, can be a complement
to the traditional chemoinformatics approaches in food research
in general.

METHODS
Country of origin details
The LC-MS data set we use here has a total of 140 samples (positive ion
mode). The samples have been gathered and their LC-MS profiling done
over a range of about four years. These samples can be grouped into three
sample types (Unfermented, Fermented and Liquors) and eight origins
(Brazil, Cameroon, Ecuador, Ghana, Indonesia, Ivory Coast, Malaysia, and
Tanzania) (Fig. 2a).

Data pre-processing and cleaning
The data generation, cleaning, standardization and organization has
been discussed in an earlier work43. Briefly, LC-MS data of all the samples
was processed using MZMine50 giving peak area list and corresponding
m/z ratio and retention times. The detected compounds are assigned
names/chemical formula on the basis of four ionization states ([M+ H],
[M+ 2H], [M+ 3H], [2 M+ H]) when possible, else the compound
was named as ‘Unknown_’ suffixed with the m/z value, e.g.,
Unknown_865.1927. The sum of peak area values belonging to each
sample was normalized to 100, so the peak area in the sample represents
relative percentage amount of compound in the LC-MS profile.
Henceforth, we refer to the percentage normalized peak area as the
peak areas or concentration of compounds. The samples were then put
in an excel file, where each row represents a sample, and the column
contain information about the sample-type, origin and peak areas of
various compounds (≈7000) sorted in descending order by their mean
peak are across all the samples (140). This excel table is provided in
supporting_data.xlsx under sheet named lcms_data. We additionally
clarify that our results remain qualitatively the same for a good range
(top/first 1000 to 7000) of compounds and does not alter the conclusions
drawn out in this manuscript. Therefore, additional data cleaning, e.g.,
keeping only compounds present in at least a certain percentage of
samples, is not required for purposes of this manuscript. Nevertheless,
for tasks that require more computation/time (e.g., obtaining statistics
for a series of correlation thresholds) we recommend using first 1000
compounds without sacrificing on the generality of inferences. We
ourselves follow the same strategy.

Correlation measures: Spearman and pearson correlation
A typical LC-MS profile contains information about thousands of
compounds present in a given sample defined by their retention time
and associated m/z values51. The preprocessed and cleaned LC-MS data
can be represented as a matrix L with entries lαi . The upper index α
represents the sample and lower index i represents the compound. Thus,
the scalar quantity lαi represents the concentration of ith compound in the
αth LC-MS sample. Correspondingly, lα is a vector which represents the
LC-MS profile of sample α. The Pearson correlation between two LC-MS

samples, say α and β with corresponding profiles lα and lβ, can be denoted
as rαβ. It is calculated as

rαβ ¼ cov lα; lβð Þ
σlα σlβ

(1)

where cov(lα, lβ) represents the covariance between the LC-MS profiles of
samples α and β, while σlα and σlβ represent the standard deviation in the
LC-MS profiles lα and lβ, respectively. The Spearman correlation can be
defined as the Pearson correlation between the ranks of the original
variables (i.e., lα and lβ). The ranked variables ~lα and ~lβ , are obtained from
the original variables lα and lβ by sorting them from lowest to highest and
substituting the values by the position in the sorted list (i.e., the rank of the
values). Formally, the Spearman correlation coefficient is thus calculated as

~rαβ ¼ cov ~lα;~lβð Þ
σ~lα σ~lβ

(2)

The Spearman and Pearson correlations across all pairs of LC-MS
samples can be written in the form of matrices, ~R and R, whose entries
denoted by ~rαβ and rαβ , respectively.

Network production and visualization
A network is defined through two sets of entities: nodes (N) and edges (E).
The nodes denote the objects which are related to each other in some
way, and the edge represent the relation between the nodes. In a
correlation network, an edge represents the correlation between two
nodes. In our correlation network, the nodes represent the different LC-MS
samples of cocoa or its products sourced from different origins, and the
edge between the nodes represent the correlation between the LC-MS
samples. Spearman and Pearson correlation analysis, and network
generation/transformation were done using the Python programming
language. Network visualization has been done in Cytoscape52. For layout
of the network either of the following two variants of spring layout, which
were available in Cytoscape itself, were used: (a) Edge-weighted Spring
Embedded Layout53, (b) Compound Spring Embedder (CoSE)54. These
layouts consider the weight of the edge (in our case the Spearman or
Pearson correlation coefficient) between nodes, so that the nodes with
higher weight of edges (correlations) between them are placed closer
together. Figure 2b shows the correlation network obtained by using all
correlations (0 to 1) between all LC-MS samples and visualized with edge-
weighted spring layout. Metadata about the LC-MS samples, such as
country, and processing-stage sample type (unfermented, fermented, or
liquor) has been represented through color and shape of nodes,
respectively. The network shown in Fig. 2b is the correlation network
made using Spearman correlation and has 140 nodes and 6833 edges, i.e.,
140 cocoa LC-MS samples and 6833 correlations (~r > 0) between the
nodes. The network made using Pearson correlation is shown in the
Supplementary Fig. 1. The label of the node represents the internal LC-MS
id. The strength of correlation is represented by the color of the edge
between the nodes, yellow representing low correlation and violet
representing high correlation. The spatial placement of nodes in Fig. 2b,
and all of the following networks, is done through variants of spring
layout algorithms in Cytoscape52 which places the nodes with higher
correlation closer together.

Null model network or control network
A null model network is created by randomizing the weights (correlations)
of edges in the original correlation network. It is important to note that the
null model network so obtained has the same correlation distribution as
that of the original correlation network because the set of correlations in
the network remains unchanged, only the correlations between nodes is
randomized. An ensemble of 100 such null model networks were
generated. The reported statistics about a studied property on the null
model networks is obtained by making calculations over this ensemble
and then reporting the mean and standard deviation of the studied
property. Higher the difference in the studied property between the
original network and null network ensemble, higher the significance of the
observed property in the original network.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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