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Abstract
Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environ-

ments, its biology, epidemiological potential and genetic characteristics are poorly under-

stood. Climate change and urbanization processes that result in environmental

modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly
increasing their abundance in urban areas. To gain a better understanding of whether

urbanization processes modulate the genetic structure of this species in the city of São

Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations
collected in nine urban parks in the city of São Paulo. Our results show that there is high

gene flow among the populations of this species, heterozygosity deficiency and low genetic

structure and that the species may have undergone a recent population expansion. There

are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have under-

gone a population expansion as a result of urbanization; and (ii) as urbanization of the city

of São Paulo occurred recently and was quite intense, the structuring of these populations

cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks,

where the first signs of structuring have appeared. We believe that the expansion found in

Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city

of São Paulo, which transformed green areas into urbanized areas, as well as the increas-

ing population density in the city.

Introduction
Urbanization is often a chaotic process that causes environmental stress, leading to the domi-
ciliation of insects that have adapted to man-made changes [1–3]. Culicids are an example of
such insects and can be found abundantly in metropolitan areas, where the environment can
favor a few species that have adapted to it. These species can be not only a source of nuisance
but also in some cases potential disease vectors (e.g., Aedes aegypti, Aedes albopictus, Culex
quinquefasciatus, Culex nigripalpus, Aedes scapularis and Aedes fluviatilis) [1,2,4–9].
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Ae. fluviatilis (Lutz, 1904) is a mosquito species native of Brazil found abundantly in urban
areas. It is distributed in the Neotropics and can be found fromMexico to Argentina. The spe-
cies is able to survive in wild, semi-wild, suburban and urban areas [10,11]. Indeed, it success-
fully inhabits urban environments and is found abundantly in the city of São Paulo, where it
represented around 10% of all mosquito specimens collected in recent studies, indicating that
it is well adapted and established in this urban environment [7,12]. Females of the species are
highly anthropophilic and have been reported to ingest human blood while their eggs are
developing [13]. However, as there are few studies on Ae. fluviatilis in the literature, it is con-
sidered a neglected species.

Ae. fluviatilis is considered a potential vector of yellow fever virus [14], Plasmodium gallina-
ceum and Dirofilaria immitis [15–17], and although it is naturally infected withWolbachia
(wFlu), this causes only incomplete cytoplasmic incompatibility and has no effect on its infec-
tion by P. gallinaceum [18,19].

The success of some species of mosquitoes in inhabiting urban environments and the conse-
quent increase in their abundance can be attributed to two factors: the availability of breeding
sites and the availability of blood-meal sources [20]. Along with climate changes, these factors
can modulate the size of mosquito populations in urban areas [21–23]. Therefore, a better
knowledge of the genetic structure of urban mosquitoes can lead to a better understanding of
how Ae. fluviatilis populations are modulated by selective pressures in the environment. Micro-
satellites can be used in genetic population studies as they are highly polymorphic and assumed
to be neutral markers. They flank conserved regions of the genome and amplify polymorphic
regions [24]. Hence, as they are believed not to be subjected to selective pressures, microsatel-
lites can be a valuable tool for population genetic studies of mosquitoes on a macrogeographic
[23,25,26] and microgeographic [27,28] scale.

Genetic structure studies of vector insect species conducted on a microgeographic scale
found structuring in sympatric Triatoma infestans populations in Argentina [28], and Olanrat-
manee et al. [27] found genetic structuring in Ae. aegypti populations in villages no more than
10 km apart in Thailand. In the latter case, the structuring may have been caused by genetic
drift due to adult mosquito oviposition patterns. These studies proved the effectiveness of
microsatellite markers in identifying fine-scale genetic differentiation.

In light of the above, this study used microsatellite markers to investigate how Ae. fluviatilis
populations are genetically structured in the city of São Paulo and whether urbanization pro-
cesses can modulate the genetic structure of this culicid.

Material and Methods

Specimen collection
Ae. fluviatilismosquitoes were collected from nine urban parks (Burle Marx, Ibirapuera,
Piqueri, Previdência, Santo Dias, Shangrilá, Alfredo Volpi, Chico Mendes and Carmo) in dif-
ferent areas of the city of São Paulo, Brazil (Fig 1). Mosquito collections were performed
monthly from March 2011 to February 2012 and from August 2012 to July 2013. Adult mos-
quitoes were collected with portable, battery-powered aspirators [29] and CDC CO2-baited
light traps [30] (Table 1). The study was approved by the Ethical Committee of the University
of São Paulo, and collection permits were provided by the Department of the Environment and
Green Areas.

DNA extraction and PCR reactions
DNAs were extracted using the DNEasy Blood and Tissue Kit (Qiagen, Hilden, Germany) fol-
lowing the manufacturer’s protocol. PCR reactions were carried out with eight microsatellite
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Fig 1. Aedes fluviatilis sampling locations in the city of São Paulo.

doi:10.1371/journal.pone.0162328.g001

Table 1. Aedes fluviatilis sampling information.

Population Coordinates Number of Ae. fluviatilis collected (%*) Females used Collection year

Burle Marx 23°37’54”S 46°43’16”W 1,264 (28.5%) 30 2012/2013

Ibirapuera 23°35’14”S 46°39’27”W 247 (9.5%) 30 2011/2012

Piqueri 23°31’40”S 46°34’14”W 1,104 (12%) 30 2012/2013

Previdência 23°34’49”S 46°43’33”W 157 (7%) 30 2012/2013

Santo Dias 23°39’50”S 46°46’23”W 231 (10%) 30 2011/2012

Shangrilá 23°45’41”S 46°40’06”W 1,006 (15%) 30 2011/2012

Alfredo Volpi 23°35’16”S 46°42’09”W 151 (12.5%) 30 2011/2012

Chico Mendes 23°30’24”S 46°25’44”W 151 (3%) 30 2011/2012

Carmo 23°35’04”S 46°27’47”W 76 (7%) 30 2011/2012

*Number of Aedes fluviatilis specimens as a percentage of the total number of mosquitoes collected (Medeiros-Sousa et al., unpublished data).

doi:10.1371/journal.pone.0162328.t001
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primers originally designed for Ae. aegypti, Ae. albopictus and Ae. caspius and successfully used
with Ae. fluviatilis by Multini et al. [31]. The primers were labeled with a fluorescent dye
(FAM, HEX or NED), and the PCR reactions were performed as in Porretta et al. [32], Cham-
bers et al. [33] and Beebe et al. [34] in an E6331000025 Eppendorf Thermocycler (Mastercycler
Nexus Gradient, Eppendorf, Hamburg, Germany). The amplified fragments were visualized on
a 1% agarose gel stained with GelRed™ (Biotium, Hayward, CA, USA) and examined under UV
light.

PCR products were diluted 1:7 by mixing 3 μL of each product labeled with a different dye
with 21 μL of Ultra-Pure Water (Applied Biosystems, Foster City, CA, USA) to a final volume
of 30 μL. A second dilution was performed with 2 μL of the previous dilution suspended in
8.925 μL of Hi-Di formamide (Applied Biosystems, Foster City, CA, USA) and 0.075 μL of
GeneScan 500 ROX size standard (Applied Biosystems, Foster City, CA, USA) to a final vol-
ume of 11 μL. The samples were then sent to the University of São Paulo Center for Human
Genome Studies and size-sorted in an ABI 3730 automatic sequencer (Applied Biosystems,
Foster City, CA, USA). Fragment analysis was performed with Gene Marker (v1.85 SoftGe-
netics, State College, PA, USA).

Genetic Analysis
Allele frequency, observed heterozygosity (HO), expected heterozygosity (HE), deviations from
Hardy-Weinberg equilibrium (P-values were adjusted using Bonferroni correction), inbreeding
coefficient (FIS), linkage disequilibrium and gene flow were calculated using Genepop (v4.2
http://genepop.curtin.edu.au/) and Arlequin (v3.5) [35,36]. Allelic richness and private allelic
richness were calculated using HP-Rare (v1.0) [37].

The probability of null alleles occurring was calculated for each locus for each population
using FreeNa [38]. The same software was also used to estimate genetic heterogeneity (FST)
and Cavalli-Sforza and Edwards chord distance taking into account the presence of null alleles.
To compute pairwise FST values and their significance for all the populations, Arlequin (v3.5)
[39] with 50,000 permutations was used

Linear correlation analyses between FST/(1-FST) and geographic distance (km) and between
FST/(1-FST) and environmental variables such as elevation, slope (variation in elevation vs.
area), perimeter-to-area ratio (Patton index) [39], green area per inhabitant (m2) in the vicinity
of the park, monthly accumulated rainfall, mean annual temperature and area of the park
(km2) [25,40] were performed using PAST (v3.11) [41]. A dendrogram displaying the Cavalli-
Sforza and Edwards chord distance was constructed using Statistica 7.0 [42].

The amplified alleles were subjected to Bayesian model-based clustering analysis using
Structure (v2.3.3) [43]. The estimated number of clusters k (ΔK), which identifies genetically
homogeneous groups of individuals, was calculated with Structure Harvester (Web v0.6.94)
[44]. To identify genetic drift, an analysis to determine whether the loci show heterozygosity
deficiency or excess was performed in Bottleneck (v1.2.2). This analysis compares two hetero-
zygosity scenarios: (i) the expected heterozygosity based on allele frequencies (He) and (ii) the
expected heterozygosity based on observed alleles (Heq). He>Heq therefore indicates a recent
Bottleneck event and He<Heq a recent population expansion [45].

Results

Marker assessment
Hardy-Weinberg equilibrium tests were conducted for all eight microsatellite loci for each
locus and population. HO was higher than HE in 37 of the 64 tests, and the average FIS was
0.142 (S1 Table). After 150 possible tests for linkage disequilibrium, none of the linkage results
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could be considered statistically significant since no two loci were linked more than once across
the tested populations [31]. Allelic richness ranged from 3.4 (Ibirapuera) to 4.72 (Carmo), and
private allelic richness was moderate, ranging from 0.13 (Ibirapuera) to 1.19 (Carmo) (S2
Table).

The tests to estimate the probability of null alleles showed that this was high for the Albtri3
locus in five populations (Burle Marx, Previdência, Alfredo Volpi, Chico Mendes and Carmo),
for the OchcB5 locus in four populations (Ibirapuera, Piqueri, Santo Dias and Alfredo Volpi),
for the OchcB9 locus in two (Burle Marx and Chico Mendes) and for the Albtri33 locus in one
(Ibirapuera). The probability of null alleles in the populations studied ranged from 0 to 0.19 for
the Albtri3 locus, 0 to 0.28 for OchcB5, 0 to 0.18 for OchcB9 and 0 to 0.16 for Albtri33. The
OchcD11, Albtri20, Albtri44 and AEDC loci had low (<0.07) or zero probabilities of null
alleles.

Genetic differentiation
FST values ranged from 0 to 0.02, indicating low genetic structure among the populations; 67%
of these values were statistically significant. The FST values calculated by FreeNA (which cor-
rects for the bias induced by the presence of null alleles) ranged from 0.0002 to 0.05, indicating
low to moderate genetic structure. There was therefore no statistically significant difference
between the corrected and uncorrected values of FST (Table 2). Gene flow among the popula-
tions after correction for sample size was 7.74 per generation per population, indicating a high
degree of allelic similarity among these populations.

Genetic distance
The dendrogram constructed using the Cavalli-Sforza and Edwards chord distance was not
consistent with the geographic distances between populations and showed two main clusters,
one (a) containing the populations from Ibirapuera and Piqueri, which segregated together and
are fairly different from the other populations, and another (b) with the remaining populations.
Cluster (b) segregated into two subclusters, one containing similar populations with no great
differences between them (Burle Marx, Chico Mendes, Previdência, Shangrilá, Carmo and
Santo Dias), and the other formed by the population from Alfredo Volpi (Fig 2).

Linear correlation analysis of geographic and genetic distance showed that there is no corre-
lation between these two variables in the populations tested (r = -0.2421; r2 = 0.058614;
P = 0.15485), and a similar analysis of genetic distance and environment variables indicated

Table 2. Pairwise FST* estimates for Aedes fluviatilis populations.

Population Burle Marx Ibirapuera Piqueri Previdência Santo Dias Shangrilá Alfredo Volpi Chico Mendes Carmo

Burle Marx - 0.050189 0.040068 0.019847 0.031485 0.026849 0.027445 0.008033 0.007975

Ibirapuera 0.02532 - 0.000709 0.028792 0.029321 0.035701 0.034906 0.045820 0.040354

Piqueri 0.01921 0 - 0.016828 0.023858 0.025561 0.020121 0.025722 0.024515

Previdência 0.00689 0.01076 0 - 0.006230 0.006344 0.016797 0.006850 0.001337

Santo Dias 0.02340 0.02643 0.01208 0.00016 - 0.009239 0.025782 0.014845 0.013426

Shangrilá 0.02427 0.02051 0.00764 0.00111 0.00375 - 0.024413 0.018144 0.015420

Alfredo Volpi 0.01683 0.01821 0.00416 0.00263 0.01906 0.01352 - 0.009282 0.011423

Chico Mendes 0.00295 0.02415 0.00687 0 0.00811 0.01704 0.00208 - 0.000215

Carmo 0 0.01780 0.00581 0 0.00528 0.00878 0.00075 0 -

*Below the diagonal: FST values without correction for null alleles. Significant values are in bold. Above the diagonal: FreeNA corrected FST values.

doi:10.1371/journal.pone.0162328.t002
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that the former does not correlate with any of the variables tested apart from slope (r = -0.6694;
r2 = 0.4481; P = 0.048595) (S3 Table).

Bayesian cluster analysis
The results of the Bayesian analysis and application of Evanno’s method were used to identify
the k value that represents the number of groups that best explains the results [44], which was
2 (S1 Fig), indicating that the populations can be divided into two genetic groups, albeit with-
out any visible differences between them (Fig 3A). Subsequently, other k values were tested;
k = 4 indicated that the Ibirapuera and Piqueri populations are structured in a distinct genetic
group, reflected in the higher prevalence of the color green; the Santo Dias and Shangrilá popu-
lations are also structured, but with a higher prevalence of the color blue (Fig 3B). Finally, k = 9
was tested and the results indicated that all the populations have a homogenous genetic pattern
apart from those in Ibirapuera and Piqueri, which are structured as a distinct genetic group
from the remaining populations and have a higher prevalence of the color yellow (Fig 3C).

Population Dynamics
While the heterozygosity tests conducted in Bottleneck under the SMM (Stepwise Mutation
Model) showed more loci with heterozygosity deficiency in eight of the nine populations, P-
values were only significant (<0.05) for the Piqueri and Carmo populations and were border-
line for the Burle Marx and Alfredo Volpi populations (Table 3). These results suggest that the
Ae. fluviatilis populations have probably suffered a population expansion (He< Heq).

In a subsequent analysis in which all 270 specimens were considered one population, the
results showed six loci with heterozygosity deficiency (He < Heq) and a significant P-value
(P = 0.01367), lending support to our finding that the populations in this study have probably
suffered a recent population expansion.

Discussion
Mosquito species that can survive in urban environments have a significant advantage over syl-
vatic species because there tends to be less larval competition and species richness in these

Fig 2. Genetic-distance dendrogram for Aedes fluviatilis.

doi:10.1371/journal.pone.0162328.g002
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environments as well as fewer natural predators and greater availability of breeding sites and
hosts for blood feeding, leading to an increase in the population of these species and the terri-
tory they occupy [46].

Developing countries frequently experience rapid, unplanned urbanization, which is charac-
terized by a lack of basic sanitation, unsanitary houses, polluted rivers and untreated sewage.

Fig 3. Bayesian analysis of structure for all Aedes fluviatilis populations showing the subdivision of individuals
k = 2 (A), k = 4 (B) and k = 9 (C). Each of the 270 individuals from nine populations is represented by a vertical line divided
into different colored segments. The length of each segment represents the probability of the individual belonging to the
genetic cluster represented by that color.

doi:10.1371/journal.pone.0162328.g003

Table 3. Aedes fluviatilis heterozygosity tests.

Burle Marx Ibirapuera Piqueri Previdência Santo Dias Shangrilá Alfredo Volpi Chico Mendes Carmo

SMM He < Heq 4 4 7 4 4 2 5 4 5

He > Heq 2 3 1 3 4 5 2 3 2

P (He < Heq) 0.07813 0.28906 0.00977 0.28906 0.23047 0.59375 0.05469 0.23438 0.03906

Number of loci exhibiting heterozygosity excess (He) and expected heterozygosity based on the number of observed alleles (Heq) under the SMMmodel.

Significant P-values for heterozygosity deficiency are in bold.

doi:10.1371/journal.pone.0162328.t003
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These factors favor an increase in the abundance of mosquito species that have adapted to
urban environments and become an obstacle to effective vector control strategies [1,2]. Fur-
thermore, urbanization processes tend to alter the micro-climate, which, together with global
warming, may increase the abundance of mosquitoes in large cities [2]. Models using African
malaria vectors and weather data suggest that a 0.5% increase in average temperature may
result in a 30–100% increase in mosquito abundance [47].

Our findings suggest that Ae. fluviatilis populations in the city of São Paulo have undergone
a population expansion. This conclusion is supported by the low genetic structure, high gene
flow and heterozygosity deficiency found in this study. The results also suggest that this popu-
lation expansion may be occurring in parallel with the growth of the city. Expansion of mos-
quito populations has previously been reported for several species of mosquitoes (e.g., An.
gambiae, An. arabiensis, An. darlingi and An. funestus). In the case of these mosquitoes, the
same phenomena were observed, namely, recent population expansion, high gene flow and an
absence of isolation by distance (IBD) [48–50], suggesting that population expansion is a com-
mon trend among mosquito populations that can cope with man-made alterations and human
expansion.

There are two main hypotheses to explain the low genetic structure in the Ae. fluviatilis pop-
ulations studied here: (i) Ae. fluviatilis population expansion happened because this species is
well adapted to the urban environment and is able to complete its entire life cycle within the
city. Therefore, urbanization may have been beneficial to this species and a major factor con-
tributing to population expansion, a hypothesis supported by the finding of high gene flow in
these populations, which indicates a homogenizing genetic effect [51]. This phenomenon has
previously been observed in Ae. taeniorhynchusmosquito populations from Colombia [52,53].

Bayesian analysis revealed low genetic structure among the populations studied, although
the Ibirapuera and Piqueri populations, which are quite similar to each other, are different
from the other populations. This segregation can also be observed in the dendrogram. These
parks, which are located in densely populated areas, have undergone major environmental
changes as a result of human activities and urbanization. More than 1 million people visit Ibira-
puera park every month, and Piqueri park is located next to a major highway, where more than
400 thousand vehicles circulate every day [7,12].

These results indicate that genetic structuring may be occurring in the Ibirapuera and
Piqueri populations, which leads to the second hypothesis: (ii) the city of São Paulo’s recent
history of intense, haphazard urbanization starting in the 1960s [54] suggests that the Ae. flu-
viatilis population was actually a large population that became fragmented as the city grew. As
this urbanization occurred recently and was very intense, structuring in these populations can-
not be observed yet apart from in the Ibirapuera and Piqueri populations, where the first signs
of population structuring are apparent.

The absence of IBD indicates that urbanization has a greater influence on population struc-
ture than distance does. Similar results were also found for populations of other Aedes species
(e.g., Ae. aegypti and Ae. japonicus), in which the authors did not observe IBD on either a
microgeographic or macrogeographic scale [27,55,56], suggesting that the species of this genus
tend to exhibit genetic similarities. Despite the absence of environmental correlation in the
present study, it is known that mosquitoes are ectothermic organisms and that their growth,
survival and behavior are strongly related to environmental conditions [57,58]. Other variables
may therefore be influencing population expansion in Ae. fluviatilis, including environmental
changes caused by humans in urban areas [58].

The Hardy-Weinberg equilibrium tests for each locus and each population indicating het-
erozygosity excess in the present study may be due to binomial sampling error [59], as when
the same test was conducted by Multini et al. [31], who considered all individuals to be one
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population, heterozygosity deficiency was observed. This latter finding would be expected in
the present study, as the Ae. fluviatilis populations studied here show low genetic structure, a
common trait in Aedes species [27,60].

The allelic richness found in Ae. fluviatilis in this study was similar to that of other Aedes
species [60,61], indicating that the results represent the genuine allelic richness and are not the
result of limitations of the loci. The private allelic richness found in the populations was mod-
erate, suggesting some degree of isolation among the populations, although this may be related
to the fact that the microsatellite primers used were originally designed for other species of
Aedes, which could also explain the presence of null alleles [31,62,63].

Secondary mosquito vectors are commonly neglected in genetic population studies. How-
ever, although Ae. fluviatilis is not directly implicated in the transmission of pathogens to
humans, it can be found in large numbers in urban areas. Its epidemiological role has yet to be
elucidated, and infectivity studies on this mosquito are dated; the yellow fever virus infectivity
test was carried out in 1931 [14] and, to our knowledge, there are no studies on the infectivity
of Ae. fluviatilis by the dengue, chikungunya and Zika viruses. In addition, there is an inherent
risk of new pathogens being introduced, especially in large, populous cities [64,65]. This sce-
nario was observed with the mosquito Cx. tarsalis in the United States and the arrival of West
Nile virus [66] and also with Ae. ochraceus, which acted as an important vector in the epidemic
caused by Rift Valley fever virus in Kenya in 2007 [67].

The Ae. fluviatilis population structure patterns found in this study revealed a significant
population expansion that we believe to be associated not only with the transformation of
green areas into urbanized areas, but also with the increasing human population density in
large cities, representing a scenario in which there is an ever-greater risk of disease transmis-
sion and epidemics.
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