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Egr-1 mediates leptin-induced PPARγ reduction 
and proliferation of pulmonary artery smooth 
muscle cells

ABSTRACT  Loss of peroxisome proliferator-activated receptor γ (PPARγ) has been found to 
contribute to pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary ar-
terial remodeling therefore the development of pulmonary hypertension (PH). Yet, the mole-
cular mechanisms underlying PPARγ reduction in PASMC remain poorly understood. Here, we 
demonstrated that leptin dose- and time-dependently inducued PPARγ down-regulation 
and proliferation of primary cultured rat PASMC, this was accompanied with the activation 
of extracellular regulated kinase1/2 (ERK1/2) signaling pathway and subsequent induction of 
early growth response-1 (Egr-1) expression. The presence of MEK inhibitors U0126 or 
PD98059, or prior silencing Egr-1 with small interfering RNA suppressed leptin-induced 
PPARγ reduction. In addition, activation of PPARγ by pioglitazone or targeting ERK1/2/Egr-1 
suppressed leptin-induced PASMC proliferation. Taken together, our study indicates that 
ERK1/2 signaling pathway-mediated leptin-induced PPARγ reduction and PASMC proliferation 
through up-regulation of Egr-1 and suggests that targeting leptin/ERK1/2/Egr-1 pathway 
might have potential value in ameliorating vascular remodeling and benefit PH.

INTRODUCTION
Pulmonary hypertension (PH) is a life-threatening disease character-
ized by increased pulmonary vascular resistance and pressure, which 
finally leads to right ventricular failure and death (Bazan and Fares, 
2015). Despite various treatments have been used during the past 
few decades, PH is still incurable (Humbert et al., 2010). Different 
types of PH share a common pathogenesis including vasocon-
striction, pulmonary vascular remodeling, and thrombosis in situ 

(Humbert et al., 2004). The essential pathological characteristics of 
PH are excessive proliferation of pulmonary arterial smooth muscle 
cells (PASMC), leading to medial hypertrophy and vascular remodel-
ing. However, the molecular mechanisms underlying this process 
are still not well understood.

Leptin is a 16-kDa, 146-amino-acid residue nonglycosylated pro-
tein encoded by obese (ob) gene and mainly synthesized and se-
creted by adipocytes (Zhang et  al., 1994) and exerts its actions 
through its specific receptors present in a variety of tissues 
(Fruhbeck, 2006). Leptin is primarily known for its role as a hypotha-
lamic modulator of food intake, body weight, and fat stores (Akther 
et al., 2009). In addition, leptin is also implicated in the modulation 
of other physiological processes, such as angiogenesis, wound 
healing, central and peripheral endocrine actions, and renal and 
pulmonary functions (Mantzoros et al., 2011). Recently, leptin sig-
naling has been found to play an important role in the development 
of PH by stimulating PASMC proliferation (Schroeter et al., 2013; 
Chai et al., 2015; Huertas et al., 2015, 2016). However, the exact 
mechanisms underlying leptin-induced PASMC proliferation are still 
largely unknown.
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demonstrates that leptin induced PASMC proliferation in a time-
dependent manner; 100 ng/ml leptin caused a significant increase in 
BrdU incorporation over control after 24 h, and BrdU incorporation 
was a 2.81-fold increase compared with control at 48 h (p < 0.01).

Leptin down-regulates PPARγ expression in PASMC
It has been shown that leptin down-regulates PPARγ expression in 
several types of nonPASMC (Zhou et al., 2009a; Jain et al., 2011; 
Wang et al., 2012). To clarify whether leptin also reduces PPARγ ex-
pression in PASMC, cells were treated with different concentrations 
of leptin over different time periods, and the expression of PPARγ 
was determined using quantitative real-time reverse transcription 
PCR (qRT-PCR) and immunoblotting. As shown in Figure 2, A and B, 
leptin down-regulated PPARγ expression in PASMC in a dose-de-
pendent manner at 24 h; 100 ng/ml leptin reduced PPARγ mRNA 
and protein levels to 0.46-and 0.37-fold compared with control, re-
spectively (both p < 0.05). Figure 2, C and D, shows that leptin 
down-regulated PPARγ expression in PASMC in a time-dependent 
manner after 6 h treatment, and 100 ng/ml leptin for 24 h incubation 
reduced PPARγ mRNA and protein levels to 0.45- and 0.42-fold 
compared with control, respectively (both p < 0.05). These results 
suggest that leptin also suppresses PPARγ expression in PASMC.

Activation of ERK1/2 signaling mediates leptin-induced 
PPARγ reduction in PASMC
To investigate the mechanisms of leptin-induced PPARγ reduction, 
cells were treated with leptin (100 ng/ml) for different times; phos-
phorylation of ERK1/2 was determined using immunoblotting. As 
shown in Figure 3A, ERK1/2 phosphorylation was time dependent 
on 100 ng/ml leptin stimulation. Peak phosphorylation occurred at 5 
min, which increased 3.54-fold over control (p < 0.01). To further 
examine whether ERK1/2 signaling mediated leptin-induced PPARγ 
down-regulation in PASMC, cells were pretreated with MEK inhibi-
tor U0126 (10 μM) or PD98059 (10 μM) for 30 min followed by leptin 
(100 ng/ml) stimulation for 5 min or 24 h. The phosphorylation of 
ERK1/2 was measured after leptin stimulation for 5 min, and mRNA 
and protein levels of PPARγ were determined at 24 h. Figure 3B in-
dicates that leptin induced a significant ERK1/2 phosphorylation, 
and this effect was suppressed by either MEK inhibitor U0126 or 
PD98059, which decreased from a 3.3-fold increase over control in 
leptin-treated cells to a 1.57- and a 2.25-fold increase over control, 
respectively (both p < 0.05 vs. leptin-treated cells). As shown in 
Figure 3C, the presence of U0126 or PD98059 dramatically blocked 
leptin-induced reduction of PPARγ mRNA level, which increased 
from 0.51-fold over control in leptin-treated cells to 0.88- and 0.73-
fold over control, respectively (both p < 0.05). Similarly, pretreat-
ment of cells with U0126 or PD98059 also suppressed leptin-
induced reduction of PPARγ protein level, which increased from 
0.40-fold over control in leptin stimulated cells to 0.91- and 0.83-
fold over control, respectively (both p < 0.05) (Figure 3D). These 
results suggest that ERK1/2 signal pathway particularly mediated 
leptin-induced PPARγ down-regulation in PASMC.

Up-regulation of Egr-1 by ERK1/2 signaling mediates 
leptin-induced PPARγ reduction
It has been shown that activation of ERK1/2 signaling up-regulates 
Egr-1 expression in several types of nonPASMC (Hartney et  al., 
2011; Lee et al., 2015; Huynh et al., 2016; Simo-Cheyou et al., 2016; 
Sysol et al., 2016; Wang et al., 2016). Previous studies have reported 
that the PPARγ proximal promoter contains an overlapping binding 
site for Egr-1, which is involved in the down-regulation of PPARγ 
(Zhou et al., 2009b; Nebbaki et al., 2012). It is therefore interesting 

Peroxisome proliferator-activated receptor γ (PPARγ) is ubiqui-
tously expressed in pulmonary vascular endothelial and smooth 
muscle cells and belongs to the nuclear hormone receptor super-
family with increasingly diverse functions as a transcriptional regula-
tor (Tian et al., 2009; Gong et al., 2011). Mounting evidence has 
shown that activation of PPARγ attenuates PASMC proliferation and 
suppresses the development of PH in several animal models 
(Crossno et al., 2007; Li et al., 2010; Zhang et al., 2014; Xie et al., 
2015), while PPARγ expression is reduced in the lungs and pulmo-
nary vascular tissue of patients with PH and in several experimental 
models of PH (Ameshima et al., 2003; Tian et al., 2009; Gong et al., 
2011; Lu et al., 2013). Several lines of evidence indicate that the in-
creased leptin level is associated with the down-regulation of PPARγ 
and promotes cell proliferation in various cell types of nonpulmo-
nary artery smooth muscle cell (Zhou et al., 2009a; Jain et al., 2011; 
Wang et al., 2012). However, it is still unclear whether leptin also 
causes the down-regulation of PPARγ and implicates in PASMC pro-
liferation. To clarify this, primary cultured PASMC were stimulated 
with leptin, the expression of PPARγ and phosphorylation of ERK1/2 
were determined, and the molecular mechanisms underlying these 
changes were further investigated.

RESULTS
Leptin stimulates PASMC proliferation
To examine whether leptin induces PASMC proliferation, time course 
and dose–response of leptin on cells proliferation were investigated. 
Cell proliferation was determined using the BrdU incorporation assay. 
As shown in Figure 1A, leptin dose-dependently stimulated PASMC 
proliferation at 24 h, and the maximal BrdU incorporation was a 2.30-
fold increase over control at 100 ng/ml leptin (p < 0.01). Figure 1B 

FIGURE 1:  Leptin stimulates PASMC proliferation. (A) PASMC were 
stimulated with different concentration of leptin ranging from 
0–300 ng/ml for 24 h, and the rate of BrdU incorporation in cells was 
determined using the BrdU ELISA Kit (n = 5 each group). (B) Cells 
were exposed to 100 ng/ml for the indicated times, BrdU 
incorporation in cells was measured (n = 5 each group). *p < 0.05 vs. 
control; #p < 0.01 vs. control.
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and PPARγ activator pioglitazone (10 μM) for 
30 min and pretransfected with either 100 
nM nontargeting siRNA or Egr-1 siRNA for 
24 h and then stimulated with 100 ng/ml 
leptin for 24 h. As shown in Figure 5, prior 
treatment of cells with MEK inhibitor U0126 
or PD98059 significantly suppressed leptin-
induced PASMC proliferation, and BrdU in-
corporation rate decreased from a 1.98-fold 
increase over control in leptin-treated cells 
to a 1.19- and a 1.30-fold increase over con-
trol, respectively (both p < 0.05). In addition, 
prior depletion of Egr-1 reduced PASMC 
proliferation induced by leptin, and BrdU 
incorporation rate decreased from a 1.98-
fold increase over control in leptin-treated 
cells to a 1.35-fold increase over control (p < 
0.05). Furthermore, pretreatment of cells 
with PPARγ activator pioglitazone dramati-
cally suppressed leptin-induced PASMC 
proliferation, which reduced from a 1.98-
fold increase over control in leptin stimu-
lated cells to a 1.23-fold increase over con-
trol (p < 0.05). Collectively, these results 
suggest that up-regulation of Egr-1 by 
ERK1/2 signaling cascade and subsequent 
PPARγ down-regulation mediates the effect 
of leptin on PASMC proliferation, while acti-
vation of PPARγ inhibits leptin-induced pro-
liferation of PASCM.

DISCUSSION
In the present study, we have provided direct evidence that leptin 
causes PPARγ reduction in primary cultured PASMC; this effect is 
coupled to leptin-induced ERK1/2 activation and subsequent induc-
tion of Egr-1, which further down-regulates PPARγ expression and 
results in PASMC proliferation. Our study provides novel molecular 
mechanisms underlying the down-regulation of PPARγ in pulmonary 
vasculature in the development of PH.

Leptin has been shown to be involved in the regulation of many 
pathophysiological processes such as energy balance, hyperten-
sion, coronary atherosclerosis, myocardial hypertrophy, diabetes, 
reproduction, bone homeostasis, and immune function (Mantzoros 
et al., 2011). Leptin modulates various signaling pathways through 
the interaction with its receptors, such as janus-activated kinase/sig-
nal transducers and activators of transcription (JAK/STAT), mitogen-
activated protein kinases (MAPK)/ERK, suppressors of cytokine sig-
naling (SOCS), phosphatidylinositol-3-kinase and insulin receptor 
substrate proteins (PI3K/IRS) (Sweeney, 2002), and nitric oxide/cyclic 
GMP/protein kinase G (NO/cGMP/PKG) signal pathways (Rodriguez 
et al., 2010; Garcia-Juarez et al., 2012). Interestingly, leptin activates 
both pro-proliferative cascades (Shan et  al., 2008; Chavez et  al., 
2012; Trovati et al., 2014; Yu et al., 2017) and anti-proliferative path-
way (Rodriguez et al., 2007, 2010) in vascular smooth muscle cells 
(VSMC); these conflicting phenomena might be due to cell type 
specificity, concentration of leptin and cell conditions. Numerous 
studies have also shown that leptin plays an important role in the 
pathophysiology of PH (Schroeter et  al., 2013; Chai et  al., 2015; 
Huertas et al., 2015, 2016). The results of the present study demon-
strate that leptin induced PASMC proliferation and PPARγ down-
regulation accompanied with ERK1/2 MAPK phosphorylation. 
Inhibition of ERK1/2 MAPK markedly suppressed leptin-induced 

to examine whether induction of Egr-1 by ERK1/2 activation medi-
ates leptin-induced PPARγ down-regulation in PASMC. Cells were 
incubated with MEK inhibitor U0126 (10 μM) or PD98059 (10 μM) for 
30 min followed by leptin (100 ng/ml) stimulation for 24 h. Figure 4A 
shows that PASMC treated with 100 ng/ml leptin for 24 h exhibited 
a 2.11-fold increase in Egr-1 protein level compared with control 
(p < 0.01), while pretreatment of cells with MEK inhibitor U0126 or 
PD98059 dramatically suppressed leptin-induced up-regulation of 
Egr-1, which reduced to a 1.14- and a 1.32-fold increase over con-
trol, respectively (p < 0.05).

To verify the involvement of Egr-1 in leptin-induced PPARγ reduc-
tion in PASCM, knockdown of Egr-1 was applied. Figure 4B indi-
cates that transfection of 100 nM Egr-1 specific small interfering 
RNA (siRNA) for 48 h reduced Egr-1 protein level to 21% of control 
(p < 0.01), while nontargeting siRNA did not affect Egr-1 protein 
expression. Figure 4C shows that PPARγ protein level decreased to 
0.40-fold over control in cells treated with 100 ng/ml leptin for 24 h 
(p < 0.01 vs. control), while presilencing Egr-1 increased PPARγ pro-
tein level to 0.93-fold over control in leptin-stimulated cells (p < 
0.05). In addition, PPARγ protein level was elevated in cells loss of 
Egr-1, which was a 1.70-fold increase over control (p < 0.05), sug-
gesting that Egr-1 also suppressed PPARγ expression in basal condi-
tion. The above results indicate that up-regulation of Egr-1 by 
ERK1/2 signaling pathway specifically mediated leptin-induced 
PPARγ reduction in primary cultured rat PASMC.

ERK1/2/Egr-1/PPARγ signaling pathway mediates 
leptin-stimulated PASMC proliferation
To clarify whether ERK1/2/Egr-1/PPARγ pathway was involved in 
leptin-induced PASMC proliferation, cells were previously treated 
with MEK inhibitor U0126 (10 μM) or PD98059 (10 μM) for 30 min 

FIGURE 2:  Leptin dose- and time-dependently reduces PPARγ expression in PASMC. Cells were 
treated with different concentrations of leptin ranging from 0 to 300 ng/ml for 24 h, and the 
levels of PPARγ mRNA (A) and protein (B) were determined using RT-PCR and immunoblotting 
(n = 5 each group). Cells were treated with 100 ng/ml leptin for the indicated times, and the 
levels of PPARγ mRNA (C) and protein (D) were determined using RT-PCR and immunoblotting 
(n = 4 each group). *p < 0.05 vs. control and #p < 0.01 vs. control.
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PH (van Albada et al., 2010; Dickinson et al., 
2011, 2014) and in patients with PH (van der 
Feen et al., 2016). Mounting evidence sug-
gests that stimuli such as growth factors (i.e., 
platelet-derived growth factor and brain-
derived neurotrophic factor) (Kwapiszewska 
et al., 2012; Sysol et al., 2016) and hypoxia 
(Nozik-Grayck et  al., 2008; Hartney et  al., 
2011) induce PASMC proliferation by in-
creasing Egr-1 expression. ERK1/2 signaling 
cascade has been shown to increase the ex-
pression and activity of Egr-1 in several cell 
types (Zhou et  al., 2009b; Hartney et  al., 
2011). It has been further reported that 
PPARγ proximal promoter contains a binding 
site of Egr-1, which is involved in the down-
regulation of PPARγ (Zhou et  al., 2009b; 
Nebbaki et  al., 2012). The present study 
confirmed that ERK1/2 signaling cascade 
mediated leptin-induced PPARγ reduction 
by up-regulation of Egr-1 in PASMC. We also 
found that pretreatment with PPARγ activa-
tor pioglitazone significantly inhibited leptin-
stimulated PASMC proliferation. Taken to-
gether, this study provided novel molecular 
mechanisms by which leptin induced PPARγ 
down-regulation and PASMC proliferation, 
suggesting that targeting leptin/ERK1/2/
Egr-1/PPARγ pathway might have potential 
value in ameliorating vascular remodeling 
and benefit PH.

MATERIALS AND METHODS
Cell preparation and culture
Primary PASMC from pulmonary arteries 
were prepared from 40 male Sprague-
Dawley rats (4-wk-old, 70–80 g) according 

to the method of our previous studies (Wu et al., 2014; Ke et al., 
2016). All animal care and experiments were performed in accor-
dance with the Guide for the Care and Use of Laboratory Animals 
of the Xi’an Jiaotong University Animal Experiment Center. All 
protocols used in this study were approved by the Laboratory 
Animal Care Committee of Xi’an Jiaotong University. Briefly, pul-
monary arteries were rapidly isolated from killed rats, washed in 
phosphate-buffered saline (PBS; 4°C), and dipped into DMEM 
(Life Technologies, Grand Isle, NY) containing 10% fetal bovine 
serum (FBS; Sijiqing, Hangzhou, China), 100 U/ml penicillin, and 
100 μg/ml streptomycin. A thin layer of the adventitia was gently 
stripped off with a forceps, and the endothelium was carefully re-
moved by scratching the intima surface with an elbow tweezers. 
The remaining smooth muscle was cut into 1-mm pieces and 
placed into a culture flask and then incubated in a 37°C, 5% CO2 
humidified incubator. PASMC were passaged using 0.25% trypsin 
(Invitrogen, Carlsbad, CA) until reaching 70–80% confluence. All 
experiments were performed using cells between passages 4 and 
6. The purity of PASMC was determined by immunostaining with 
α-actin as previously described (Wu et al., 2014). Leptin (Pepro
tech, Rocky Hill, NJ) was used to stimulate PASMC. U0126 (Sell-
eckchem, Houston, TX) or PD98059 (Calbiochem, La Jolla, CA) 
was applied to inhibit ERK1/2 signaling pathway. PPARγ activator 
pioglitazone was purchased from Takeda Pharmaceutical Co. 
(Tianjin, China).

PPARγ reduction and PASMC proliferation, suggesting that ERK1/2 
signal pathway particularly mediated leptin-induced PPARγ down-
regulation and PASMC proliferation. In addition, activation of the 
ERK1/2 signaling pathway has been shown to cause PPARγ nuclear 
export, resulting in its transcriptional activity reduction (Burgermeis-
ter et  al., 2007), and to promote proteasomal-dependent PPARγ 
degradation (Floyd and Stephens, 2002). Therefore, further studies 
are still needed to investigate the fully mechanisms responsible for 
ERK1/2 signaling pathway regulating PPARγ reduction/inactivation 
in the development of PH. We also detected PKG activity in leptin-
treated cells, and the result showed that activity of PKG was slightly 
but significantly increased compared with control cells (data not 
shown). We speculated that activation of the PKG pathway was con-
sidered a counteracting action to the PASMC proliferation induced 
by leptin, which was still not sufficient to suppress PASMC prolifera-
tion caused by leptin.

Egr-1 is a critical transcriptional factor regulating cell proliferation 
and differentiation, which is rapidly and transiently induced in re-
sponse to a heterogenic group of stimuli, such as growth factors (Cao 
et al., 1990), shear stress (Ni et al., 2010), oxygen deprivation (Chang 
et al., 2008), and oxidative stress (Zhang et al., 2015). Induction of 
Egr-1 has been observed in various malignant tumors (Jacob et al., 
2016; Park et al., 2016), inflammation (Ho et al., 2016), and cardio-
vascular diseases (Khachigian, 2006; Shin et  al., 2009). Recently, 
overexpression of Egr-1 has been found in several animal models of 

FIGURE 3:  ERK1/2 signaling pathway mediates leptin-induced PPARγ reduction in PASMC. 
(A) Cells were treated with 100 ng/ml leptin for indicated times. The levels of p-ERK1/2 and 
t-ERK1/2 were determined using immunoblotting. GAPDH was used as the loading control 
(n = 5 each group). (B) Cells were pretreated with MEK inhibitor U0126 (10 μM) or PD98059 
(10 μM) for 30 min followed stimulation with leptin (100 ng/ml) for 5 min, and the levels of 
p-ERK1/2 and t-ERK1/2 were determined using immunoblotting. GAPDH was used as the 
loading control (n = 4 each group). Cells were pretreated with MEK inhibitor U0126 (10 μM) or 
PD98059 (10 μM) for 30 min and then stimulated with leptin (100 ng/ml) for 24 h. The levels of 
PPARγ mRNA (C) and protein (D) were determined using RT-PCR and immunoblotting. GAPDH 
served as loading control (n = 5 each group). *p < 0.05 vs. control; **p < 0.01 vs. control; 
#p < 0.05 vs. leptin group.
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bated with anti-BrdU mAbs conjugated to 
peroxidase for 90 min at room temperature. 
After incubation, antibody conjugate was 
removed and substrate solution was added 
for reaction for 10 min. Finally, the reaction 
product was quantified by measuring the 
absorbance at 370 nm using a microplate 
reader (Bio-Rad, Richmond, CA). The blank 
corresponded to 100 μl of culture medium 
with or without BrdU.

Quantitative real-time reverse 
transcription PCR
Total RNA was extracted from PASMC us-
ing the RNeasy Micro plus Kit (Qiagen, 
Hilden, Germany) following the manufac-
turer’s instructions. Isolated RNAs were 
polyadenylated using the Thermo Scien-
tific RevertAid First Strand cDNA Synthesis 
Kit (Logan, UT). The cDNA synthesized was 
used to perform quantitative PCR on an 
IQ5 Real-Time PCR Detection System (Bio-
Rad) using the Bio-Rad SsoAdvanced Uni-
versal SYBR Green kit. Primers specific for 
PPARγ and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) were purchased 
from Sangon Biotech (Shanghai, China), 
and the following primer sets were used: 
rat PPARγ, 5′-CGGTTGATTTCTCCAGC
ATT-3′ and 5′-TCGCAC TTTGGTATTCT
TGG-3′; rat GAPDH, 5′-CCTGGAGAAACC
TGCCAAGTAT-3′ and 5′-CTCGGCCGCCT-
GCTT-3′. The fold increase relative to con-
trol samples was determined by the 2−∆∆Ct 
method (Livak and Schmittgen, 2001). 

siRNA transfection
To silence protein expression, PASMC were transfected with se-
quence-specific or nontargeting control siRNA (GenePharm, Shang-
hai, China) using Lipofectamine 2000 reagent (Invitrogen), the follow-
ing sequences were used: Egr-1 siRNA, sense 5′-CAGGACUUAAA
GGCUCUUATT-3′, anti-sense 5′-UAAGAGCCUUUAAGUCCUGTT-3′; 
NC-siRNA, sense 5′-UUCUCCGAACGUGUCACGUTT-3′, anti-sense 
5′-ACGUGACACGUUCGGAGAATT-3′. Briefly, cells were cultured 
until reaching 30–40% confluence; siRNA and Lipofectamine were 
diluted in serum-free DMEM, separately, and incubated for 5 min at 
room temperature. Diluted siRNA was mixed with diluted Lipo-
fectamine and incubated at room temperature for 20 min. Then the 
complex of siRNA and Lipofectamine was added into cells, and cells 
were cultured for 48 h at 37°C, 5% CO2 in a humidified incubator. 
The working concentration of siRNA in cell experiments was 100 nM. 
Effects of siRNA transfection were analyzed using immunoblotting.

Cell proliferation assay
To determine PASMC proliferation, the rate of BrdU incorporation 
was examined using a BrdU ELISA Kit (Maibio, Shanghai, China) fol-
lowing the established protocol. PASMC were seeded on 96-well 
plates at 5 × 103 cells per well, allowed to adhere for at least 24 h, 
and then serum starved overnight (1% FBS in DMEM) before the 
start of experiments. After different treatments, BrdU labeling re-
agent was added to the wells and incubated for 2 h at 37°C. Cells 
were then denatured with FixDenat solution for 30 min and incu-

FIGURE 4:  Up-regulation of Egr-1 by ERK1/2 signaling mediates leptin-induced PPARγ 
reduction. (A) Cells were pretreated with MEK inhibitor U0126 (10 μM) or PD98059 (10 μM) for 
30 min and then stimulated with leptin (100 ng/ml) for 24 h. The protein level of Egr-1 was 
determined using immunoblotting, and GAPDH served as loading control (n = 5 each group). 
(B) Protein level of Egr-1 was examined by immunoblotting in cells transfected with indicated 
siRNA for 48 h (n = 5 each group). (C) PASMC were transfected with negative control siRNA or 
Egr-1-siRNA for 24 h followed by leptin stimulation for 24 h; PPARγ protein expression was 
analyzed using immunoblotting (n = 5 each group). *p < 0.05 vs. control; **p < 0.01 vs. control; 
#p < 0.05 vs. leptin or NC-siRNA + leptin.

FIGURE 5:  Inhibition of ERK1/2/Egr-1 signaling or activation of PPARγ 
inhibits leptin-induced PASMC proliferation. PASMC were treated 
with MEK inhibitor U0126 (10 μM) or PD98059 (10 μM) for 30 min, 
PPARγ activator pioglitazone (10 μM) for 30 min, or transfected with 
100 nM nontargeting siRNA or Egr-1 siRNA for 24 h followed by 
100 ng/ml leptin stimulation for 24 h, cell proliferation was measured 
using BrdU incorporation assay (n = 5 each group). **p < 0.01 vs. 
control, #p < 0.01 vs. Leptin, ‡p < 0.05 vs. NC-siRNA + Leptin.
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GAPDH was used as internal control for PPARγ. Amplification was 
performed at 95°C for 1 min, followed by 40 cycles of 95°C for 5 s, 
60°C for 20 s, and 72°C for 30 s.

Immunoblotting
The cultured cells were washed twice with ice-cold PBS and then 
lysed in radioimmunoprecipitation assay (RIPA) lysis buffer contain-
ing 50 mM Tris-HCl (pH 7.4), 1% NP-40, 0.1% SDS, 150 mM NaCl, 
0.5% sodium deoxycholate, 1 mM EDTA, 1 mM phenylmethanesul-
fonyl fluoride (PMSF), 1 mM Na3VO4, 1 mM NaF, and proteinase 
inhibitors. Lysates were centrifuged at 13,000 rpm at 4°C for 15 min, 
and the supernatant was collected as total protein. Protein concen-
tration was determined with a BCA protein assay kit (Pierce). Pro-
tein was separated on an SDS–PAGE gel and transferred to a nitro-
cellulose (NC; Bio-Rad) membrane via semidry transfer. The 
membrane was then blocked with 5% (wt/vol) nonfat dry milk in 
PBS containing 0.1% (vol/vol) Tween-20. Polyclonal or monoclonal 
antibodies were used against phosphor-ERK1/2 (p-ERK1/2; Cell 
Signaling Technology), total-ERK1/2 (t-ERK1/2; Cell Signaling Tech-
nology), early growth response-1 (Egr-1; Cell Signaling Technol-
ogy), PPARγ (Proteintech Group, Chicago, IL), and glyceraldehyde-
3-phosphate dehydrogenase (Chemicon International, Billerica, 
MA) (1:1000 dilution) according to the manufacturer’s protocols. 
Horseradish peroxidase (HRP)-conjugated goat anti-mouse or anti-
rabbit immunoglobulin G was used as the secondary antibodies 
(Sigma, St. Louis, MO) (1:5000 dilution). Reactions were developed 
with the SuperSignal West Pico Chemiluminescent Substrate 
(Pierce Biotechnology, Rockford, IL) and then exposed to the auto-
radiographic film. Signaling was quantified from scanned films 
using Quality One software (Bio-Rad).

Statistical analysis
All values are presented as mean ± SD. Data were analyzed using 
one-way analysis of variance with Tukey post hoc test by SPSS13.0 
software. Probability values of p < 0.05 were considered to repre-
sent a statistically significant between groups.
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