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Abstract
The purpose of the study was to develop and clinically deploy an automated, 
deep learning-based approach to treatment planning for whole-brain radiother-
apy (WBRT). We collected CT images and radiotherapy treatment plans to auto-
mate a beam aperture definition from 520 patients who received WBRT. These 
patients were split into training (n  =  312), cross-validation (n  =  104), and test 
(n = 104) sets which were used to train and evaluate a deep learning model. The 
DeepLabV3+ architecture was trained to automatically define the beam aper-
tures on lateral-opposed fields using digitally reconstructed radiographs (DRRs).

For the beam aperture evaluation, 1st quantitative analysis was completed 
using a test set before clinical deployment and 2nd quantitative analysis was 
conducted 90 days after clinical deployment. The mean surface distance and the 
Hausdorff distances were compared in the anterior-inferior edge between the 
clinically used and the predicted fields. Clinically used plans and deep-learning 
generated plans were evaluated by various dose–volume histogram metrics of 
brain, cribriform plate, and lens.

The 1st quantitative analysis showed that the average mean surface distance 
and Hausdorff distance were 7.1 mm (±3.8 mm) and 11.2 mm (±5.2 mm), re-
spectively, in the anterior–inferior edge of the field. The retrospective dosimetric 
comparison showed that brain dose coverage (D99%, D95%, D1%) of the au-
tomatically generated plans was 29.7, 30.3, and 32.5 Gy, respectively, and the 
average dose of both lenses was up to 19.0% lower when compared to the clini-
cally used plans. Following the clinical deployment, the 2nd quantitative anal-
ysis showed that the average mean surface distance and Hausdorff distance 
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1  |   INTRODUCTION

Automation has been increasingly utilized in radiation 
therapy to improve standardization and efficiency. With 
the recent breakthrough in deep learning (DL), automa-
tion in clinical deployment can be further accelerated. 
Automated treatment planning in radiation therapy, 
including delineating targets with normal tissues and 
plan optimization, can greatly improve workflow and 
the quality of the treatment planning.1-4

Conventional treatment planning is a time-consuming 
task, which requires inputs from physicians, physicists, 
and dosimetrists. The most critical and time-consuming 
task is to obtain the physician’s input for contours or 
field setup including MLC blocking.5,6 That is why even 
a simple radiotherapy technique like whole-brain radia-
tion therapy (WBRT) can take up to several days from 
CT simulation to the start of treatment. In our clinic, the 
physician draws the MLC block on the lateral DRRs, 
then later reviews the manually generated WBRT plan 
and either accepts the plan or requests a field-in-field 
(FIF) technique to reduce hot spots (>107%) in the brain. 

Furthermore, some physicians prefer to apply a skin 
sparing technique which is shaping MLC to conform a 
patient’s cranium, to spare a patient’s hair and poten-
tially decreases skin irritation in the posterior neck.7,8

Schreibmann et al previously proposed an auto-
mated planning solution for whole-brain radiotherapy.5 
Their approach employed normal tissue auto-contours 
that were matched to a database of WBRT patients al-
lowing for automated field aperture definition through 
prior knowledge. A limitation of this approach is that 
anatomical similarity may not lead to appropriate field 
definition as these are generally dictated by the exten-
sion of metastasis. For example, individual patient’s 
disease may suggest extending the caudal border of 
the treatment fields from the caudal edge of C1 verte-
brae to the caudal edge of C2 vertebrae.

To account for the patient-specific field aperture defi-
nition, we proposed an automated treatment planning 
solution for WBRT which employs deep learning-based 
field aperture definition providing a radiation oncologist 
with four field aperture options: (1) traditional WBRT 
with treatment extent to C1 vertebrae (Figure 1a), (2) 

between the predicted and clinically used fields were 2.6 mm (±3.2 mm) and 
4.5 mm (±5.6 mm), respectively.

In conclusion, the automated patient-specific treatment planning solution for 
WBRT was implemented in our clinic. The predicted fields appeared consistent 
with clinically used fields and the predicted plans were dosimetrically comparable.

K E Y W O R D S
automation, deep learning, whole brain

F I G U R E  1   Example of field aperture 
options: (a) traditional whole-brain 
radiotherapy (WBRT) with treatment 
extent to C1 vertebrae or (b) C2 
vertebrae, and (c) scalp sparing WBRT to 
C1 vertebrae or (d) C2 vertebrae

(a) (b)

(c) (d)
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traditional WBRT with treatment extent to C2 vertebrae 
(Figure 1b), (3) scalp sparing with treatment extent to 
C1 vertebrae (Figure 1c) and scalp sparing with treat-
ment extent to C2 vertebrae (Figure 1d). In this study, 
we described the development of this tool, pre-clinical 
evaluation, and post-clinical evaluation.

2  |   MATERIALS AND METHODS

2.1  |  Deep learning-based (DL) 
treatment field definition

2.1.1  |  Model development

The planning CT scans and treatment plans of 
520 WBRT cases previously treated at our institution 
were used to develop and evaluate an automatic field 
aperture definition model. This dataset was curated 
such that all cases were treated to cover the caudal 
extent of C1 or C2 vertebrae using a traditional WBRT 
field definition approach (Figure  1a,b). These cases 
were split into training (n  =  312), cross-validation 
(n = 104), and test (n = 104) sets. The DeepLabV3+ 
architecture9 was trained to automatically define the 
field apertures on laterally opposed digitally recon-
structed radiographs (DRRs) from each patient’s CT 
scan using the physician-drawn field apertures. The 
workflows for DL-based field definition and analy-
sis are shown in Figure  2. Note that the train and 

cross-validation datasets are used during training; 
here, the model is trained on the training dataset and 
evaluated on the cross-validation set during the train-
ing process, thus providing a real-time measurement 
of the trained model’s performance on a separate 
(i.e., non-training) dataset which allows for the opti-
mization of the model’s hyper-parameters. The final 
test set is then used to evaluate the final (i.e., best) 
model’s performance without introducing any training 
bias in the final analysis. DRRs were generated using 
in-house software10 and the respective treatment 
plans (DICOM format) were used to generate image 
masks on the DRRs by extracting beam-specific 
MLCs and jaw position information (Figure 3a). Due 
to the large variability found in skin flash (i.e., extent 
of the field outside of the patient), a pre-processing 
step was used to train the deep learning model on 
the intersection of the body contour (projected on 
beams-eye view [BEV]) and clinically used field ap-
erture (Figure 3b). This pre-processing step removed 
any noise due to variable skin flashing in training data. 
A post-processing step was applied to add skin flash 
to the predicted masks (Figure 3c). This was accom-
plished by identifying the anterior/posterior/cranial 
extent of the predicted mask and applying a uniform 
flashing of 10 mm from the body contour to generate 
the final beam aperture prediction.

Anterior/inferior edges of field apertures for scalp 
sparing WBRT were generated using the predicted 
masks (Figure  4a) from the trained deep learning 

F I G U R E  2   Schematic illustration of workflows including DL-generated field definition and analysis
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model. Then, the brain and vertebral column are auto-
contoured on the CT scan using a deep learning model 
developed by Rhee et al.11 Prior to the projection of 
these contours to BEV, a uniform margin expansion 
of 5 mm is applied to the brain auto-contour. The pro-
jected expansion of the brain contour is then used to 
define the superior/posterior edge of the scalp sparing 
field (Figure  4b), whereas the anterior/inferior edges 
are defined by the original traditional field predicted 
mask.

To provide the caudal extension of the field from 
the caudal extent of C1 to the caudal edge of C2 
(Figure  4c,d), we used a deep learning algorithm to 
identify individual vertebral bodies12 within our verte-
bral column auto-contours. This algorithm labels the 
centroids of each vertebral body. These centroids were 
used to approximate the extent of each vertebral col-
umn by calculating the mid-point between centroids 
(i.e., mid-point between C1 and C2 defines the caudal 
extent of C1).

2.1.2  |  Evaluation of the predicted 
beam apertures

The WBRT fields (n = 104) in the test set were inspected 
by a radiation oncologist retrospectively. The focus of 
this evaluation was on verifying proper coverage in the 
anterior–inferior edges of the fields. Quantitative analy-
sis was then conducted on the field border by compar-
ing the predicted fields and clinically used fields using 
the mean surface distance (MSD) and the Hausdorff 
distance (HD).13 For the inferior field border (at the C1/
C2 spine vertebrae interface), the distance between 
the prediction and clinical field edge was measured. 
For points along the curved anterior-inferior field edge, 
the closest distance to the clinical field edge of each 
point was measured and the mean distance of all points 
was calculated. Only fields generated for the traditional 
field technique were evaluated. Historically, patients in 
our clinic were mostly treated using a traditional field 
definition technique; therefore, no available data to 

F I G U R E  3   Schematic illustration of traditional WBRT field definition. (a) Digitally reconstructed radiograph (DRR) with clinically used 
beam aperture (green) and two-dimensional projection of a patient's three-dimensional body contour (blue). (b) Illustration of the inputs 
(DRR and contour) for deep learning-based auto-segmentation where the contour (yellow) is the intersection of the beam aperture and body 
contour projection. (c) Post-processing step used to add skin flashing to the predicted mask (dashed yellow) to generate the final beam 
apertures (red). During testing, a value of 10 mm was chosen for skin flash for posterior, anterior, and cranial expansions (a value of 30 mm 
was used to highlight this step on this figure) based on clinical practice

F I G U R E  4   Schematic illustration 
of scalp sparing WBRT field definition. 
(a) Illustration of the inputs for deep 
learning-based auto-segmentation where 
the contour (yellow) is the intersection 
of the beam aperture and body contour 
projection (see Figure 3b). (b) Projection 
of contours of brain with 5 mm expansion 
and vertebras (VB) on DRR. (c) and (d) 
The caudal extension of the field to the 
caudal extent of C1 or the caudal edge of 
C2. The corresponding scalp sparing field 
apertures are shown by the solid red lines
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train a scalp-sparing deep learning model. During the 
pre-clinical evaluation of the automatic field aperture 
definition (using traditional technique only), some phy-
sicians expressed interest in having the “scalp sparing” 
technique available for clinical use; therefore, the deci-
sion was made to include the skin-sparing option.

2.2  |  Automated plan generation

2.2.1  |  Treatment planning system (TPS) 
integration

A graphical user interface (GUI) was created within 
RayStation (Figure  5, v9.0 RaySearch, Stockholm, 
Sweden) to automatically generate a WBRT plan using 
the TPS’s scripting. Within the GUI, the user is asked to 
input information about CT scan, treatment machine, en-
ergy, and to select the treatment isocenter. Furthermore, 
the user is asked to enter dose prescription/fractionation 
and patient-specific treatment field technique (traditional 
vs. scalp sparing and C1 vs. C2) selected by the radia-
tion oncologist. Once the selections are made, the au-
tomatic planning process begins as shown in Figure 6. 
First, external body contours and dose grid are auto-
matically defined within the treatment planning system. 
Concurrently, a task is sent to a GPU-enabled server to 
automatically generate normal tissue contours and au-
tomatically define field apertures using in-house built 
deep learning algorithms (see Section 1.1). Normal tis-
sue auto-contours include brain, brainstem, eyes, lens, 
and spinal cord. Once these tasks are completed, the 
results are imported into the TPS and laterally opposed 
beams of equal weights (set at gantry angles of 270° and 
90°) are created using the automatically defined field 
aperture. After the beams are generated, the dose is 

automatically calculated and normalized to the treatment 
isocenter (usually marked isocenter). This automatic 
planning process takes, on average, less than 5 min.

2.2.2  |  Retrospective dosimetric 
comparison of clinical and deep learning-
generated plans

Next, 40 cases previously treated in our clinic were ran-
domly selected for dosimetric comparison between clini-
cal plans and deep learning-generated plans (DL plan). 
Traditionally our physician does not specify a planning 
goal for WBRT in the planning directive other than a 
total dose and a number of fractions and rather visually 
review whether the brain dose coverage (D99%) would 
be 30 Gy to approve the plan. Plan quality indices were 
included for plan comparison - Brain (D99% - a dose 
covered by 99% of brain volume/D1%/D95%), cribriform 
plate (D99%), and lens average dose. The prescription 
dose was 30 Gy in 10 fractions and all plans were nor-
malized 100% to the marked isocenter. Clinical plans 
were initially generated without a cribriform plate con-
tour14 and later added for dosimetric comparison by two 
radiation oncologists. Two-tailed paired-samples t-tests 
were conducted to evaluate the statistical significance 
of the differences between clinical plans and DL plans 
for the plan quality indices. The null hypothesis was no 
difference between the plans (p > 0.05).

2.2.3  |  Clinical deployment

After 90 days of post-clinical release, the evaluation of 
the DL plans was focused on the automatic definition 
of the beam apertures. The mean surface distance and 

F I G U R E  5   Whole-brain plan interface. This window appears when the user launches the automated planning tool and is used to pre-
configure the automatically generated plans



      |  99HAN et al.

Hausdorff distance were used to quantify the differ-
ences between the predicted and clinically used field 
edges focusing on the difference in the anterior–inferior 
edge of the fields.

3  |   RESULTS

3.1  |  Evaluation of WBRT automation 
tool

3.1.1  |  1st evaluation of the predicted beam 
apertures before clinical deployment

All test cases (n = 104) were considered “clinically ac-
ceptable” by the radiation oncologist upon qualitative 
review of the predicted treatment fields. For the inferior 
field border, the average difference between DL predic-
tions and clinical fields was 3.8 ± 3.0 mm. All predicted 
field apertures were correctly set to the junction of C1 
and C2. Along the anterior–inferior field edge, the aver-
age (±standard deviation) mean surface distance and 
Hausdorff distance values were 7.1 mm (±3.8 mm) and 
11.2 mm (±5.2 mm), respectively.

3.1.2  |  Retrospective dosimetric 
comparison of clinical and deep learning-
generated plans

Table  1 shows the dosimetric comparison of clinical 
vs predicted dose (DL) metrics in averaged total dose 
±standard deviation in cGy. As shown, brain dose 
coverage (D99%, D95%, D1%) of DL plans (n  = 40) 
was 29.7  Gy  ±  0.48  Gy, 30.3  Gy  ±  0.34  Gy, and 
32.5 Gy ± 0.52 Gy, respectively. Both methods met the 
implicit clinical goal of D99% of brain dose. The dif-
ference in D99% of brain (p = 0.003) was statistically 

significant but the difference in absolute dose was 
small (0.4 Gy). The difference in D95% (p = 0.53) and 
D1% (p = 0.63) was not statistically significant which 
means there is no significant difference between the 
two plans. The cribriform plate dose (D99%) was 
15.9% (3.1 Gy) lower than clinical plans, but the differ-
ence was not statistically significant (p = 0.084). Since 
the cribriform plate was not traditionally defined dur-
ing planning and the physician visually reviewed them, 
we were able to evaluate it only retrospectively after 
manually adding it to the plan. Last, the average dose 
of both lenses in the DL plan was lower by up to 19% 
than clinical plan (p < 0.05). Figure 7 shows box-and-
whisker plots for brain, lens, and cribriform plate dose 
metrics.

3.1.3  |  2nd evaluation of the predicted 
beam apertures after clinical deployment

In the comparison of the anterior-inferior border of the 
predicted and clinically used treatment fields, the av-
erage mean surface distance and Hausdorff distance 
between the predicted and clinically used fields were 
2.6 mm (±3.2 mm) and 4.5 mm (±5.6 mm), respectively.

4  |   DISCUSSION

The DL-based automated planning tool for WBRT has 
been clinically deployed at our institution. The auto-
mated WBRT planning tool can greatly improve the 
efficiency of clinical workflow and help to enhance 
treatment standardization to maintain a high standard 
in a busy radiation oncology clinic.

As Schreibmann et al reported,5 the presented 
study also shows comparable brain coverage and 
dose sparing in the lenses in the DL plans comparing 

F I G U R E  6   Schematic illustration of automatic planning process describing DL-generated field definition integrated to treatment 
planning system
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to clinical plans. While their WBRT planning does not 
allow a patient-specific plan customization, the pre-
sented study allows for a physician to select either tra-
ditional WBRT or scalp sparing WBRT with treatment 
extent to C1 or C2 vertebrae. Many studies have pre-
viously focused on automating individual tasks in the 
treatment planning process,1,2,5,15-18 yet very few offer 
end-to-end solutions which include automation of tar-
get definition, normal tissue contouring, beam selec-
tion, and dose optimization and calculation. Trained 
with clinical WBRT cases, the deep learning network 
could generate treatment fields comparable to clini-
cal fields. Before clinical deployment, the predicted 
fields appeared consistent with the majority of train-
ing data within 7–11 mm. Automated WBRT plans are 
dosimetrically comparable to clinical plans regarding 
brain dose coverage and lower lens dose. After clini-
cal deployment, a comparison of the anterior–inferior 
edge of the predicted and clinically used treatment 
fields showed that the predicted treatment fields are 
consistent within 3–5  mm with clinically used fields. 
There was a decrease in both distances (HD, MSD) in 
the post-clinical analysis of field apertures; this might 
mean that the deep learning-defined treatment fields 
produced clinically acceptable fields requiring only 
minor edits.

Since the WBRT plans with FIF have seen a steady 
increase in our clinical practice over the past decade 
(30% in 2012 to 61% in 2017), a future version of this 
tool will include an automatic FIF generation option to 
further improve dose homogeneity across the brain 
of WBRT patients and reduce the overall dosimetry 
workload and the analysis of clinical acceptance rate 
will be followed. In general, the use of the proposed 
tool would be deemed useful if it is used as a starting 
point on more than 50% of whole-brain cases over 
the first 200 patients treated in our clinic after clinical 
release.

5  |   CONCLUSIONS

The WBRT automated treatment planning tool was im-
plemented in our clinic. This tool provides a selection 
to account for patient-specific field aperture definition. 
The predicted fields in the anterior–inferior edge ap-
peared consistent with clinical data within 3–5 mm and 
automated plans are dosimetrically comparable to clini-
cal plans with regard to brain dose coverage and lower 
lens dose.
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