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Abstract As we navigate through the world, eye and head movements add rotational velocity

patterns to the retinal image. When such rotations accompany observer translation, the rotational

velocity patterns must be discounted to accurately perceive heading. The conventional view holds

that this computation requires efference copies of self-generated eye/head movements. Here we

demonstrate that the brain implements an alternative solution in which retinal velocity patterns are

themselves used to dissociate translations from rotations. These results reveal a novel role for visual

cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal

area. Specifically, we show that the visual system utilizes both local motion parallax cues and global

perspective distortions to estimate heading in the presence of rotations. These findings further

suggest that the brain is capable of performing complex computations to infer eye movements and

discount their sensory consequences based solely on visual cues.

DOI: 10.7554/eLife.04693.001

Introduction
Retinal images of the environment are altered by self-generated rotations such as eye or head

movements. In order to perceive the world accurately, the component of retinal patterns resulting

from such rotations needs to be discounted by the visual system. How the brain achieves such

a rotation-invariant visual representation of the world remains unclear. Visually guided navigation

is an important context in which achieving rotation-invariance is critical for accurate behavior

(Gibson, 1950; Warren and Saunders, 1995; Grigo and Lappe, 1999). For example, while

walking down a sidewalk and simultaneously looking at a passing car using eye or head rotations,

the brain must discount the visual consequences of the self-generated rotations to estimate and

maintain one’s direction of translation (i.e., heading).

Self-motion results in retinal velocity patterns known as ‘optic flow’ (Gibson, 1950). During

translations, the resulting retinal pattern is generally an expansionary or contractionary radial flow

field from which the point of zero velocity (Focus of Expansion, FOE) can be used to estimate

heading (Tanaka et al., 1986; Warren et al., 1988; Duffy and Wurtz, 1995; Britten, 2008).

However, eye or head rotations alter this flow pattern such that deciphering heading requires

decomposing the resultant optic flow into translational and rotational components (Figure 1A).

Psychophysical (Royden et al., 1992; Royden, 1994; Crowell et al., 1998) and electrophysiological

(Bradley et al., 1996; Page and Duffy, 1999; Zhang et al., 2004) studies have often emphasized

the role of non-visual signals, such as efference copies of self-generated eye/head movements,
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in discounting rotations to estimate heading. Such non-visual signals can represent several different

sources of rotation, including eye-in-head (REH), head-on-body (RHB), and body-in-world (RBW)

movements (Figure 1B). Critically, retinal image motion is determined by the translation and rotation

of the eye relative to the world (TEW and REW, Figure 1B), such that extracting heading from optic flow

requires compensating for the total rotation of the eye-in-world (where, REW = REH + RHB + RBW).

Therefore, in general, multiple non-visual signals would need to be added to achieve a rotation-

invariant estimate of heading, potentially compounding the noise that is associated with each signal

(Gellman and Fletcher, 1992; Li and Matin, 1992; Crowell et al., 1998).

Alternatively, rotation-invariance can theoretically be achieved exclusively through visual

processing (Longuet-Higgins and Prazdny, 1980; Rieger and Lawton, 1985). If the brain can

use optic flow to directly estimate and discount rotations of the eye-in-world (REW), such

mechanisms may provide a complementary and potentially more efficient way to decompose

rotations and translations to achieve invariant heading perception. Psychophysical studies have

provided evidence that visual cues may play a role in estimating heading in the presence of

rotations (Grigo and Lappe, 1999; Li and Warren, 2000; Crowell and Andersen, 2001; Li and

Warren, 2002, 2004; Royden et al., 2006). However, electrophysiological evidence for the role of

visual cues is ambiguous, in part because previous neurophysiological studies either did not include

visual controls for eye rotation (Zhang et al., 2004), simulated rotations incorrectly (Bradley et al.,

1996; Shenoy et al., 1999, 2002) or employed insufficient analysis methods (Bradley et al., 1996;

Shenoy et al., 1999, 2002; Bremmer et al., 2010; Kaminiarz et al., 2014) (see ‘Discussion’).

We recorded neural activity from the macaque ventral intraparietal area (VIP) to evaluate the

relative roles of visual and non-visual cues in computing heading in the presence of rotations. To

elucidate the role of visual cues, we accurately simulated combinations of translations and rotations

using visual stimuli containing a variety of cues present during natural self-motion. Our results provide

novel evidence that (1) a subpopulation of VIP neurons utilizes visual cues to signal heading in

a rotation-invariant fashion and (2) both local motion parallax and global perspective cues present in

optic flow contribute to these computations. In addition, we find that visual and non-visual sources of

eLife digest When strolling along a path beside a busy street, we can look around without losing

our stride. The things we see change as we walk forward, and our view also changes if we turn our

head—for example, to look at a passing car. Nevertheless, we can still tell that we are walking in

a straight-line because our brain is able to compute the direction in which we are heading by

discounting the visual changes caused by rotating our head or eyes.

It remains unclear how the brain gets the information about head and eye movements that it

would need to be able to do this. Many researchers had proposed that the brain estimates these

rotations by using a copy of the neural signals that are sent to the muscles to move the eyes or head.

However, it is possible that the brain can estimate head and eye rotations by directly analyzing the

visual information from the eyes. One region of the brain that may contribute to this process is the

ventral intraparietal area or ‘area VIP’ for short.

Sunkara et al. devised an experiment that can help distinguish the effects of visual cues from

copies of neural signals sent to the muscles during eye rotations. This involved training monkeys to

look at a 3D display of moving dots, which gives the impression of moving through space. Sunkara

et al. then measured the electrical signals in area VIP either when the monkey moved its eyes (to

follow a moving target), or when the display changed to give the monkey the same visual cues as if it

had rotated its eyes, when in fact it had not.

Sunkara et al. found that the electrical signals recorded in area VIP when the monkey was given

the illusion of rotating its eyes were similar to the signals recorded when the monkey actually rotated

its eyes. This suggests that visual cues play an important role in correcting for the effects of eye

rotations and correctly estimating the direction in which we are heading. Further research into the

mechanisms behind this neural process could lead to new vision-based treatments for medical

disorders that cause people to have balance problems. Similar research could also help to identify

ways to improve navigation in automated vehicles, such as driverless cars.

DOI: 10.7554/eLife.04693.002

Sunkara et al. eLife 2015;4:e04693. DOI: 10.7554/eLife.04693 2 of 22

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.04693.002
http://dx.doi.org/10.7554/eLife.04693


rotation elicit similar responses in VIP, suggesting multi-sensory combination of both visual and non-

visual cues in representing rotations. We further show that rotation-invariance is distinct from the

reference frame used to represent heading, and provide additional support that heading

representation in VIP is close to eye-centered (Chen et al., 2013).

Results
To investigate the effect of rotations on the visual heading tuning of VIP neurons, we presented visual

stimuli simulating eight directions of translation in the horizontal plane (Figure 1C) and two directions of

rotation (Figure 1D). To evaluate the relative roles of visual and non-visual cues, rotations were introduced

in the form of either ‘real’ or ‘simulated’ pursuit eye movements. During real pursuit (RP, Figure 1E, left),

the monkey smoothly tracked a target moving across the screen such that both visual and non-visual

rotation cues were present. During simulated pursuit (SP, Figure 1E, right), the visual motion stimulus

accurately simulated a combination of translation and eye rotation while the monkey fixated a stationary

target at the center of the display (non-visual cues were absent). In order to provide a rich visual

environment, the first experiment simulated self-motion through a 3D cloud of dots, a stimulus that

contains both local motion parallax cues resulting from translation (Helmholtz and Southall, 1924;

Gibson, 1950; Longuet-Higgins and Prazdny, 1980; Koenderink and van Doorn, 1987) and global

perspective cues to rotation (Koenderink and van Doorn, 1976; Grigo and Lappe, 1999). To further

Figure 1. The problem of dissociating translations and rotations, and experimental approaches. (A) Optic flow patterns

during self-motion (shown as planar projections onto a flat image). Forward translations result in symmetric flow patterns

(black vector fields) with a focus of expansion (FOE) indicating heading. When rotations are added to forward

translations, the resultant optic flow pattern has an FOE shift in the direction of the added rotation (rightward rotation:

red, leftward rotation: blue). (B) VIP receives both visual and non-visual signals that may be used to achieve rotation-

invariant heading estimates. Visual optic flow signals contain information about translation and rotation of the eye in the

world (TEW, REW) whereas non-visual signals (efference copies) may contain information about rotation of eye-in-head

(REH), rotation of head-on-body (RHB), or rotation of body-in-world (RBW). (C) Visual stimuli simulating translations in eight

directions spanning the entire horizontal plane were presented to the monkey. (D) Schematic showing the translation

and rotation parameters in the simulated 3D cloud. Inset shows the trapezoidal velocity profile of translation and rotation

during the course of a trial (1500 ms). (E) During the ‘Real pursuit (RP)’ condition, the optic flow stimulus on the screen

simulated translation, while rotation was added by having the monkey smoothly pursue a visual target that moved

leftward or rightward across the screen. During the ‘Simulated pursuit (SP)’ condition, the monkey fixated at the center of

the display while optic flow simulated combinations of translation and eye rotation. During real and simulated pursuit,

the optic flow patterns projected onto the monkey’s retina were nearly identical.

DOI: 10.7554/eLife.04693.003

The following figure supplement is available for figure 1:

Figure supplement 1. Dependence of translational and rotational optic flow properties on viewing distance.

DOI: 10.7554/eLife.04693.004
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explore the underpinnings of a retinal solution in achieving rotation-invariance, a second experiment used

a fronto-parallel plane (FP) of dots, which eliminates the local motion parallax cues but retains global

perspective cues to rotation.

Analysis of the effects of rotation on optic flow
When rotation and translation occur simultaneously, the resulting pattern of retinal velocity vectors

can differ substantially from the radial optic flow patterns observed during pure translation. This

change is often conceptualized as a shift in the focus of expansion (FOE) (Warren and Hannon, 1990;

Bradley et al., 1996; Shenoy et al., 1999, 2002). However, in a visual scene with depth structure,

adding rotation results in different FOE shifts at different depths (Zhang et al., 2004). This is due to

a key difference in the properties of optic flow resulting from translations and rotations—the

magnitudes of translational optic flow vectors decrease with distance (depth), whereas rotational

optic flow vectors are independent of depth (Longuet-Higgins and Prazdny, 1980). Hence, for more

distal points in a scene, rotations produce a larger FOE shift (Figure 1—figure supplement 1). For the

translation and rotation parameters used in this study, the nearest plane in the 3D cloud (25 cm) results

in an FOE shift of approximately 20˚. However, for any plane farther than 45 cm, the resultant optic flow

has an undefined FOE (Figure 1—figure supplement 1, top row). The simulated 3D cloud ranged from

25 cm to 125 cm, resulting in a large volume of the stimulus space having undefined FOE shifts. Since

FOE shift is an ill-defined measure of the visual consequence of rotations, we simply refer to the net

visual stimulation associated with simultaneous translation and rotation as the ‘resultant optic flow’.

Forward translations result in an expansionary flow field, for which adding a rightward rotation causes

a rightward shift of the focus of expansion (for any given plane). On the other hand, backward translations

produce a contractionary flow field and adding a rightward rotation results in a leftward shift in the focus of

contraction (Figure 2A). If a neuron signals heading regardless of the presence of rotations, then its tuning

curves during real and simulated pursuit should be identical to the heading tuning curve measured during

pure translation (Figure 2B). For a neuron that instead represents the resultant optic flow rather than the

translation component (heading), a transformation of the tuning curve is expected due to the added

rotations. As a result of the opposite shifts expected for forward (expansionary flow field) and backward

translations (contractionary flow field), the heading tuning curve of a neuron preferring forward headings

would have a peak that shifts to the right and a trough that shifts to the left during rightward eye rotation;

together, these effects cause a skewing of the tuning curve (Figure 2C, red curve). For the same neuron,

leftward eye rotation would cause the peak to shift to the left and the trough to shift to the right, thus

having an opposite effect on the shape of the tuning curve (Figure 2C, blue curve). Neurons that prefer

lateral headings, which are common in VIP (Chen et al., 2011), may in fact, show no shift in the peak. But,

since opposite shifts are expected for forward and backward headings, the resulting tuning curve may

exhibit substantial bandwidth changes (Figure 2D).

Therefore, under the null hypothesis that neural responses are simply determined by the resultant

optic flow, the expected effect of rotation on heading tuning is not simply a global shift of the tuning

curve, as was assumed previously (Bradley et al., 1996; Page and Duffy, 1999; Shenoy et al., 1999,

2002; Bremmer et al., 2010; Kaminiarz et al., 2014). Further illustrations of the expected effects of

rotation for hypothetical neurons with different heading preferences are shown in Figure 2—figure

supplement 1. We designed our quantitative analysis of heading tuning curves specifically to account

for these previously unrecognized complexities (see ‘Materials and methods’).

Influence of visual and non-visual cues on heading representation in VIP
Heading tuning curves (translation only) can be compared to real pursuit (RP) and simulated pursuit

(SP) tuning curves (translation + rotation) to evaluate whether a VIP neuron signals heading invariant to

rotations (Figure 2B), or whether it responds to the resultant optic flow (Figure 2C,D). Figure 3A shows

heading tuning curves for an example neuron during pure translation (black curve), as well as during

rightward (red) and leftward (blue) rotations added in RP and SP conditions. The tuning curves in this

example show only minor changes during RP indicating that the cell signals heading in a manner that is

largely invariant to eye rotation, consistent with previous findings for real eye rotation (Zhang et al.,

2004). Interestingly, the tuning curves of the same neuron during SP also change very little, showcasing

the role of visual signals in compensating for rotation. Thus, rotation invariance in VIP that was

previously attributed to non-visual signals (Zhang et al., 2004) might also be driven by visual cues.
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Data for another example VIP neuron (Figure 3B) reveal RP tuning curves that are also largely

consistent in shape with the pure translation curve, but which have larger response amplitudes during

leftward pursuit. During simulated pursuit, however, the tuning curves of this neuron show clear

bandwidth changes. Thus, this second example neuron appears to rely more on non-visual cues to

discount rotations. Note that this example neuron preferred lateral headings (leftward) and showed

large bandwidth changes during SP, as predicted in the schematic illustration of Figure 2D. Such

bandwidth changes were observed consistently among VIP neurons that preferred lateral translations;

specifically, rightward rotations increased bandwidth for cells preferring rightward headings (∼0˚) and

Figure 2. Predicted transformations of heading tuning curves due to rotations. (A) Forward and backward

translations result in expansion and contraction flow fields, respectively (row 1). Adding rotation causes the FOE to

shift in opposite directions for forward and backward translations (rows 2, 3). (B, C, D) Hypothetical heading tuning

curves showing the predicted transformations due to rotations (rightward, red; leftward, blue). (B) Schematic

illustration of rotation-invariant heading tuning curves. (C) Schematic representing a cell that responds to resultant

optic flow (no rotation tolerance) with a heading preference of straight ahead (90˚). Rightward rotation causes

a rightward shift of the tuning curve for forward headings (around 90˚), and a leftward shift for backward headings

(around 270˚). The opposite pattern holds for leftward rotations. Here, the net result of rotation is a skewing of the

tuning curve. (D) Schematic tuning of a cell with a leftward heading preference (180˚) and no rotation tolerance. In this

case, the tuning bandwidth increases for leftward rotations and decreases for rightward rotations. The opposite

bandwidth changes would be observed for a cell with a 0˚ heading preference (see Figure 2—figure supplement 1).

DOI: 10.7554/eLife.04693.005

The following figure supplement is available for figure 2:

Figure supplement 1. Schematic showing tuning curve transformations for hypothetical neurons with different

heading preferences.

DOI: 10.7554/eLife.04693.006
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decreased bandwidth for cells preferring left-

ward headings (∼180˚), with the opposite pattern

holding for leftward rotations (Figure 3—figure

supplement 1). We find analogous results for

cells that preferred forward/backward transla-

tions. Specifically, we find neurons with tuning

curve peaks around forward/backward heading

that are invariant to added rotations

(Figure 3—figure supplement 2A), as well as

neurons for which the tuning curve peaks shift

with real and simulated pursuit (Figure 3—figure

supplement 2B), as shown in the simulations in

Figure 2C.

Because of these changes in tuning curve

bandwidth or shape, analysis of the effects of

rotation on heading tuning requires more com-

plex and rigorous approaches (Figure 4—figure

supplement 1) than the cross-correlation or rank-

order methods used in previous studies (Bradley

et al., 1996; Shenoy et al., 1999, 2002;

Bremmer et al., 2010; Kaminiarz et al., 2014).

It is also critical to distinguish between changes in

response gain and changes in the shape

(Figure 4—figure supplement 2; see Discussion)

of tuning curves, which our analysis allows

because we sample the entire heading tuning

curve (Mullette-Gillman et al., 2009; Chang and

Snyder, 2010; Rosenberg and Angelaki, 2014).

As shown in Figure 4—figure supplement 1, the

first step in the analysis involves normalizing each

RP and SP tuning curve to match the dynamic

range of the pure translation tuning curve.

Following this transformation, the change in the

shape of the RP and SP tuning curves can be

measured without ambiguity. To account for the

expected changes in bandwidth and skew, partial

shifts of the tuning curve were measured

separately for forward (0˚:180˚) and backward

(180˚:360˚) headings. Thus, four shift values were

obtained from each neuron for both real and

simulated pursuit, corresponding to forward/

backward headings and left/right rotation direc-

tions. These four values were averaged for each

neuron to quantify the transformation in shape

and obtain one shift metric for RP tuning curves

and one for SP tuning curves (see ‘Materials and

methods’, Figure 4—figure supplement 1).

Results are summarized for the population of

recorded neurons (n = 72; from two monkeys) in

Figure 4. A shift of 0˚ implies that the neuronal representation of translation is invariant to rotation

(i.e., the shape of heading tuning curves are highly similar, as in Figure 3A). A positive shift indicates

under-compensation for rotation, such that responses change in a manner consistent with the

resultant optic flow. Negative shifts indicate that the tuning curve transformation was in the direction

opposite to that expected based on the resultant optic flow. This can be interpreted as an over-

compensation for rotation. As noted earlier, though the FOE shift for the nearest depth plane (25 cm)

in our stimuli is 20˚, a majority of the cloud volume (45–125 cm deep) is dominated by rotations, such

Figure 3. Heading tuning curves from two example VIP

neurons. Five tuning curves were obtained per cell: one

pure translation curve (black), two real pursuit (RP, left

column) curves, and two simulated pursuit (SP, right

column) curves (rightward rotation: red, leftward rota-

tion: blue). Black horizontal line indicates baseline

activity. Red and blue stars in the left column (RP)

indicate responses during pursuit in darkness, and in the

right column (SP) indicate responses to simulated eye

rotation. (A) This neuron has largely rotation-invariant

tuning curves in both RP and SP conditions (shifts not

significantly different from 0, CI from bootstrap), and has

significant rotation responses during both pursuit in

darkness and simulated rotation (compared to baseline;

Wilcoxon signed rank test p < 0.05). (B) This example

neuron shows significant bandwidth changes during SP

(shifts >0˚, CI from bootstrap), similar to the prediction

of Figure 2D. Of the rotation-only conditions, the cell

only responds significantly during rightward pursuit in

darkness (Wilcoxon signed-rank test p = 0.01).

DOI: 10.7554/eLife.04693.007

The following figure supplements are available for

figure 3:

Figure supplement 1. Bandwidth changes observed in

data.

DOI: 10.7554/eLife.04693.008

Figure supplement 2. Heading tuning curves from two

example VIP neurons that preferred forward headings.

DOI: 10.7554/eLife.04693.009
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that the resultant optic flow has undefined FOEs.

This implies that neurons should show shifts that

are generally much larger than 20˚ if they do not

discount the rotations and merely represent the

resultant optic flow.

In the RP condition, 22/72 (30.6%) neurons

showed shifts that were not significantly different

from zero (bootstrap 95% CI); these cells can be

considered to represent heading in a rotation-

invariant fashion. For SP, 17/72 (23.6%) neurons

had shifts that were not significantly different

from zero, indicating that purely visual cues were

sufficient to achieve rotation-invariance in these

neurons. Only 13/72 (18.1%) neurons during RP

and 19/72 (23.4%) neurons during SP showed

shifts that were significantly greater than 20˚,

suggesting that only a minority of VIP neurons

simply represent the resultant optic flow.

The median shift of the population during RP is

8.5˚, which is significantly less than the 13.8˚ median

shift observed during SP (Wilcoxon signed-rank

test; p = 0.02), indicating greater tolerance to

rotations in the presence of both non-visual and

visual cues. However, both median shifts are

significantly greater than 0˚ (Wilcoxon signed-rank

test; p < 0.001), and less than 20˚ (Wilcoxon signed-

rank test; RP: p < 0.001, SP: p = 0.005) suggesting

that, on average, VIP neurons do not simply

represent the resultant optic flow, but rather signal

heading in a manner that is at least partially tolerant

to rotations. Together, these findings indicate that

VIP can signal heading in the presence of rotations

using both visual and non-visual cues. Importantly,

this tolerance to rotations is observed even when

only visual cues are present (SP).

Visual and non-visual rotation
signals in VIP
The previous section shows that VIP neurons can

use visual cues to signal heading in the presence

of rotations, but it is unclear if the rotational

component is also represented. During real

pursuit, the rotation arises from a movement of

the eye relative to the head. In this case, both

non-visual and visual sources of information

about the rotation are available. These two

sources of information differ in that the non-visual source signals the rotation of the eye relative to

the head (REH) and the visual source signals the rotation of the eye relative to the world (REW). Previous

studies have shown that VIP receives efference copies of pursuit eye movements (Colby et al., 1993;

Duhamel et al., 1997), reflecting an REH signal. However, no previous studies have tested if VIP also

carries an REW signal based on visual rotation information present in optic flow.

To test whether neurons in VIP signal rotations based on both non-visual and visual cues, we

analyzed data from interleaved rotation-only trials (leftward and rightward rotations) in which the

monkey either pursued a target in darkness (non-visual REH signal) or fixated centrally while the visual

stimulus simulated a rotation (visual REW signal) with the same velocity profile as pursuit in darkness.

We found that about half of the rotation responses were significantly different from baseline activity

Figure 4. Scatterplot and marginal distributions of shifts

measured during real pursuit (RP) and simulated

pursuit (SP) using 3D cloud stimuli (n = 72 cells). A shift of

0˚ indicates rotation-invariance. Positive and negative

shifts indicate under-compensation and over-

compensation for rotation, respectively. Grey shaded

area corresponds to shifts >20˚ (conservative estimate of

shift for cells with no tolerance to rotations). Red data

points correspond to the shifts associated with the

example cells shown in Figure 3. Error bars depict

bootstrapped 95% confidence intervals (CI). Colored

regions of marginal distributions indicate shifts ≤20˚.
Darker colors indicate shifts not significantly different

from 0˚. Uncolored histograms indicate shifts significantly

>20˚. Diagonal histogram shows difference in RP and SP

shifts for each neuron with a median of −6.0˚ indicating
that for most cells SP shifts tended to be larger than

RP shifts (significantly <0˚; Wilcoxon signed-rank test

p = 0.02).

DOI: 10.7554/eLife.04693.010

The following figure supplements are available for

figure 4:

Figure supplement 1. Method for analyzing tuning

curve shifts.

DOI: 10.7554/eLife.04693.011

Figure supplement 2. Problems with previous

approaches to measuring shifts in the absence of full

tuning curve measurements.

DOI: 10.7554/eLife.04693.012
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during both real and simulated rotations (144 responses from 72 cells; 73/144, 50.7% during pursuit in

darkness and 78/144, 54.2% during simulated rotation). Since we only tested horizontal (yaw axis)

rotations at a single constant velocity, it is likely that more VIP neurons are responsive to rotation, but

prefer different rotation velocities or axes of rotation.

In our experiments, the REW signal is equivalent to the REH signal since only eye rotations are

considered. Therefore, similarity between the efference copy signal (REH) and the neural responses to

purely visual rotation stimuli (REW) would suggest the presence of an integrated (visual and non-visual)

REW signal in VIP. We find that the baseline-subtracted responses to these two types of rotation

stimuli are significantly correlated (rightward rotation: Spearman r = 0.50, p < 0.001; leftward rotation:

Spearman r = 0.39; p = 0.001), supporting the presence of a rotation signal derived from purely visual

cues (REW) in area VIP (Figure 5A). Furthermore, the difference in response between rightward and

leftward rotations (Figure 5B) shows that many VIP neurons exhibit direction-selective responses to

rotation. We also find significant correlation between the differential responses (left—right rotation)

during real and simulated rotation (Spearman r = 0.59; p < 0.001). These results support the

hypothesis of multi-sensory convergence of visual and non-visual cues to provide consistent rotation

information, which may be critical for encoding rotations, in addition to achieving a rotation-invariant

representation of heading.

It is important to note that, in general, retinal motion corresponding to REW is a combination of

REH, rotation of the head-on-body (RHB), and body-in-world (RBW). And each of these different

rotations will be accompanied by different efference copy (non-visual) signals. If VIP neurons represent

REW based on non-visual signals, then they would have to represent a combination of all efference

copy signals: REW = REH + RHB + RBW. Although we cannot test this directly with our data, the

correlations observed in Figure 5 allow for the possibility that VIP neurons represent REW based on

both visual and non-visual cues.

Role of perspective distortions in achieving rotation-invariance
Results from the 3D cloud experiment (Figure 4) demonstrate, for the first time at the neural level,

a clear contribution of visual cues in achieving a rotation-tolerant representation of heading. To gain

a deeper understanding of the visual mechanisms involved in dissociating translations and rotations,

Figure 5. Neural responses to pure rotation stimuli. (A) Scatterplot and marginal distributions of baseline-

subtracted rotation responses. The monkey either pursued a target across a dark screen (pursuit in darkness) or

fixated centrally as rotation was simulated in the 3D dot cloud (simulated rotation). Filled marginal distributions

indicate significant rotation responses compared to baseline (t-test, p ≤ 0.05). Red and blue symbols denote

rightward and leftward rotations, respectively. (B) Scatterplot of differences between leftward and rightward

rotation responses. Filled marginal distributions indicate significant differences between leftward and rightward

rotation responses (t-test, p ≤ 0.05).

DOI: 10.7554/eLife.04693.013
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we investigated which optic flow properties are used by the visual system to infer self-motion from

visual cues. Helmholtz and Southall (1924) and Gibson (1950) suggested that local motion parallax

information plays an important role in deciphering self-motion based on the depth structure of

a scene. In a 3D environment, two points can have similar retinal locations, but different depths. As

illustrated in Figure 1—figure supplement 1, optic flow vectors resulting from observer translation

are dependent on depth, producing different retinal velocities for points at different depths. This

difference in velocity between nearby points at different depths gives rise to local motion parallax.

Rotations, on the other hand, produce image motion that is not depth-dependent, and therefore

lacking local motion parallax. As a result, for a rich 3D environment, computing the local difference

between optic flow vectors corresponding to points at different depths allows the rotational

component of optic flow to be subtracted away (Longuet-Higgins and Prazdny, 1980; Rieger and

Lawton, 1985; Warren and Hannon, 1990), and the singularity point of the resulting motion parallax

field (Figure 6A) corresponds to the observer’s heading. This solution requires rich depth structure in

the scene, which is not always present. For instance, walking through a dense forest provides robust

local motion parallax cues, but walking towards a wall or through an open field, does not.

In addition to local motion parallax cues resulting from observer translation, optic flow also

contains global components of motion that convey information about observer rotation. When a pure

eye rotation is simulated using optic flow stimuli, the image contains distortions resulting from the

changing orientation of the eye relative to the scene, that we term ‘dynamic perspective cues’

(see Kim et al., 2014 for more details). A correct simulation of rotational optic flow can thus be

characterized as a combination of laminar flow and dynamic perspective cues (Figure 6B).

Importantly, these cues are independent of the depth structure of the scene and are present in

scenes having rich 3D structure as well as scenes consisting of a single plane. Theoretical studies have

proposed that such cues may play an important role in estimating and discounting the rotational

component of optic flow to estimate heading (Koenderink and van Doorn, 1976, 1981; Grigo and

Lappe, 1999). A recent electrophysiological study in MT provides evidence that the visual system may

be capable of using these dynamic perspective cues to disambiguate the sign of depth specified by

motion parallax (Kim et al., 2014).

To examine the role of dynamic perspective cues, we conducted a second set of experiments using

a fronto-parallel (FP) plane of dots with zero disparity. These visual stimuli contain global perspective

cues to rotation, as in the 3D cloud stimulus, but lack local motion parallax cues. For 11/34 neurons

recorded, the stimulus was viewed binocularly; the remaining cells were recorded while the monkey

viewed the stimulus monocularly with the eye contralateral to the recording hemisphere. In contrast to

previous studies, which kept the simulated distance to a FP wall constant over the duration of a trial

(Bradley et al., 1996; Shenoy et al., 1999, 2002), the simulated distance of the FP plane changed, in

our stimuli, from 45 cm at the beginning to 18 cm at the end of the trial. This more accurately

simulates the real world situation in which approaching a wall reduces its distance from the observer

over time. As a result, the speed of the translation component of optic flow increased over time for

forward translations as the distance to the wall decreased (Figure 1—figure supplement 1). Since

rotational optic flow is invariant to the distance from a wall (Figure 1—figure supplement 1), the

resulting shift in FOE due to added rotations changed over time in our stimulus. During the middle

750 ms of a forward translation stimulus, real or simulated pursuit results in an average FOE shift of

37˚. Hence, heading tuning shifts significantly smaller than 37˚ would provide evidence for the

hypothesis that the visual system can use dynamic perspective cues to discount rotations.

Figure 6C summarizes the shifts in heading tuning measured during presentation of the FP plane

stimulus. The median shifts across the population for real pursuit (14.3˚) and simulated pursuit (21.5˚) were

both significantly less than the 37˚ expected if there were no tolerance for rotations (Wilcoxon signed-rank

test; p < 0.005). The median values were also significantly different from each other (Wilcoxon signed-rank

test; p = 0.03) and greater than 0˚ (Wilcoxon signed-rank test; p < 0.001). Furthermore, 8/34 (23.5%)

neurons during RP and 5/34 (14.7%) neurons during SP had shifts that were not significantly different from

0˚ (darker colors in Figure 6C), implying rotation-invariant heading responses. Only 6/34 (17.6%) neurons

during RP and 12/34 (35.3%) neurons during SP showed shifts that were statistically greater than or not

different from 37˚ (95% CI; see ‘Materials and methods’). These results indicate that, even in the absence of

non-visual signals and 3D visual cues such as local motion parallax, a large sub-population of VIP neurons

can use global perspective cues to at least partially mitigate the effect of rotations on heading tuning.

Shifts measured during simulated pursuit in the 3D cloud experiments were significantly less than shifts
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measured using the FP plane (Wilcoxon rank sum

test; p = 0.02). This implies that both local motion

parallax cues arising from translations, and global

features such as dynamic perspective cues arising

from rotations play important roles in visually

dissociating translations and rotations.

Reference frames for representing
heading
Since the eyes physically rotate during real

pursuit, but the head does not, previous studies

interpreted rotation-invariant heading tuning as

evidence that VIP neurons represent self-motion

in a head-centered reference frame (Zhang et al.,

2004). In contrast, studies that measured head-

ing tuning with the eye and head at different

static positions have revealed an eye-centered

reference frame for visual heading tuning in VIP

(Chen et al., 2013, 2014). On the surface, these

results appear to be incompatible with each

other. However, we posit that the issues of

rotation-invariant heading tuning and reference

frames are not necessarily linked. Indeed, we

show below that VIP neurons can discount

rotations without signaling translation direction

in a head-centered reference frame.

The key to reconciling these issues is appre-

ciating that, during eye pursuit, the eye-centered

reference frame rotates relative to a subject’s

heading (Figure 7A). As the eye rotates, the

direction of translation remains constant in head-

centered coordinates (Figure 7A, dashed green

lines). However, in the rotating eye-centered

reference frame, the translation direction relative

to the eye changes over time, such that the focus

of expansion moves across the retina (Figure 7B).

This is true for both the RP and SP conditions.

During RP, the eye physically moves and the FOE

remains constant on the screen, whereas during

SP, the eye remains stationary as the FOE drifts

across the screen. Hence, the temporal change in

the translation direction with respect to the retina

is the same during both real and simulated

pursuit.

In our experimental protocol, as well as that of

previous studies (Bradley et al., 1996; Shenoy

et al., 1999, 2002; Zhang et al., 2004), the

average eye position during the translation-only,

real pursuit and simulated pursuit conditions is

the same (centered on the screen) over the

duration of a trial. Therefore, the average eye

position is the same as the average head

position. As a result, time-averaged neural responses may provide insight into what signal is

represented (heading or resultant optic flow), but not about whether these signals are represented in

an eye- or head-centered reference frame. To evaluate reference frames, responses must be

examined with the eye at different positions relative to the simulated heading. In our experiments, we

Figure 6. Role of dynamic perspective cues in signaling

rotation-invariant heading. (A) Optic flow fields during

combined translation and rotation at two different

depth planes have different FOE shifts. The dotted

circle indicates true heading. Subtracting these flow

fields yields a motion parallax field that eliminates the

rotational component and the point of zero local motion

parallax corresponds to the true heading. (B) Rotational

optic flow can be decomposed into laminar flow and

dynamic perspective cues. Dynamic perspective cues

may signal eye rotations even in the absence of depth

structure. (C) Scatterplot and marginal distributions of

shifts measured using the fronto-parallel plane stimulus

during real and simulated pursuit (n = 34 cells). Format

as in Figure 4. Open and filled symbols denote data

collected during binocular and monocular viewing,

respectively. Errorbars denote bootstrapped 95% CIs.

All filled histograms indicate shifts significantly <37˚.
Dark colored histogram bins indicate cells with shifts not

significantly different from 0˚. Uncolored bars indicate

shifts ≥37˚.
DOI: 10.7554/eLife.04693.014
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can examine the temporal responses of neurons to study reference frames since the translation

direction in eye coordinates changes over time. Accordingly, an eye-centered representation of

heading would result in systematic temporal response variations due to the rotating reference frame,

and these variations would be different for leftward and rightward rotations of the eye. In contrast,

a head-centered representation would result in responses that are constant over time, and similar for

rightward and leftward rotations during both real and simulated pursuit.

For a neuron representing heading in an eye-centered reference frame, a rightward eye rotation

would result in an upward trend in firing rate over time for headings along the positive slope of the

tuning curve. In contrast, a leftward eye rotation would result in a downward trend (Figure 7C,D,

dashed lines). It is important to note that these trends are determined by the changing eye position

and are independent of how tolerant the heading representation is to rotations (i.e., the extent of

compensation). The degree of rotation compensation would result in a shift in the mean firing rate

away from the pure translation responses (as discussed in previous sections), irrespective of the

reference frame in which translations are represented. Therefore, neurons can represent translations

invariant to rotations in either a head-centered or an eye-centered reference frame.

In order to evaluate the underlying reference frame for representing translations in area VIP, we

examined the temporal changes in firing rate for each neuron over the same 750 ms epoch used in the

rest of the analyses. If neurons signal heading in an eye-centered reference frame, the largest

temporal variations in firing rate will occur at headings along the steepest portion of the tuning curve.

Therefore, we identified the heading corresponding to the largest positive gradient for each tuning

curve, and examined the temporal dynamics of responses for that direction. In order to determine the

expected temporal changes in firing rate under the assumption of an eye-centered reference frame,

Figure 7. Distinguishing reference frames from rotation invariance. (A) Schematic of a rightward eye rotation while

translating forward. As the eye position changes during smooth pursuit, the eye reference frame (ERF, black axes)

rotates relative to the head (REH) and the direction of translation in the world, TEW. Since the head is not rotating

relative to the world, the head reference frame (HRF, green axes) remains constant with respect to the heading. (B) In

retinal co-ordinates, the translation component of optic flow changes with eye position and results in a drifting FOE

(x) across the retina. The translation direction represented by the FOE changes from right of straight ahead to left of

straight ahead for rightward rotations. (C, D) Heading corresponding to the largest firing rate gradient was identified

for each neuronal tuning curve and the temporal responses at that heading were evaluated. Dashed straight lines

show the predicted population response slopes based on the assumption of an eye-centered reference frame. The

population average of the normalized time course of firing rate is plotted for each condition type—translation only

(grey), rightward rotation (red) and leftward rotation (blue) for real pursuit (C) and simulated pursuit (D). Shaded

regions indicate standard errors. The significant positive and negative trends observed are consistent with

a reference frame that is intermediate between eye- and head-centered, but closer to an eye-centered reference

frame.

DOI: 10.7554/eLife.04693.015

Sunkara et al. eLife 2015;4:e04693. DOI: 10.7554/eLife.04693 11 of 22

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.04693.015
http://dx.doi.org/10.7554/eLife.04693


the slope of the tuning curve at the heading corresponding to the largest gradient was calculated for

each normalized tuning curve. The average predicted slopes for the population based on our data

were ±0.41/s during real pursuit and ±0.4/s for simulated pursuit (dashed lines in Figure 7C, D).

These predictions, based on an eye-centered reference frame hypothesis, were compared to the

average time course of normalized responses of the population of VIP neurons (see ‘Materials and

methods’ for details). VIP population responses show trends in the directions predicted by an eye-

centered reference frame, but are inconsistent with the expectation for a head-centered reference

frame (red, blue curves in Figure 7C,D). The slopes observed in VIP responses correspond to an

intermediate reference frame that lies closer to an eye-centered frame than a head-centered

reference frame. Specifically, for real pursuit, average responses increased for rightward eye

rotation (slope = 0.29/s, 95% CI = [0.21 0.37], linear regression) and decreased for leftward rotation

(slope = −0.24/s, 95% CI = [−0.16–0.32]). These slopes are significantly different from 0 and ∼65%
as steep as the predictions of the eye-centered reference frame, thus indicating an intermediate

reference frame. Since the temporal response profile was essentially flat during the translation only

condition (slope = 0.01/s, 95% CI = [−0.04 0.06]) and opposite trends are observed for rightward vs

leftward rotations, these response patterns cannot be explained by other basic aspects of neural

response dynamics, such as adaptation.

Interestingly, similar trends are also observed during simulated pursuit (rightward: slope = 0.28/s,

95% CI = [0.21 0.35]; leftward: slope = −0.26/s, 95% CI = [−0.17–0.35], linear regression), for which
the eye does not physically rotate. These slopes are again about two-thirds as steep as expected

based on the eye-centered reference frame hypothesis. Whereas previous studies have demonstrated

a role of non-visual signals in estimating the position of the eye or head relative to the body (Squatrito

and Maioli, 1997; Lewis et al., 1998; Klier et al., 2005), these results suggest that visual signals in

VIP carry information about changes in eye position even in the absence of efference copy signals. In

other words, the temporal dynamics of an eye rotation may be inferred from the rotational

components of optic flow and used to modulate neural responses during simulated pursuit. This

further strengthens the functional role of visual signals in VIP for estimating rotational information and

contributing to a rotation-invariant heading representation.

Discussion
We evaluated how heading is represented in macaque area VIP in the presence of rotations, finding

that a sub-population of VIP neurons represent heading in a rotation-invariant fashion while a majority

of the population is at least partially tolerant to rotations. Importantly, rotation invariance can be

achieved using both non-visual and purely visual cues. Previous neurophysiology literature

emphasized the importance of non-visual cues, especially efference copy signals, but clear evidence

for the role of visual cues has been missing, as discussed below. In contrast, our study provides novel

evidence for the role of visual cues in discounting rotations and representing heading. Furthermore,

we show that both local motion parallax and global dynamic perspective visual cues present in optic

flow play a significant role in decomposing the components of self-motion. The importance of visual

signals is reinforced by our finding that VIP neurons also carry rotation signals derived from purely

visual cues. The significant correlation between visual and non-visual rotation responses is consistent

with a multi-sensory representation of rotations. In addition, we resolve an important ambiguity in the

literature between the concepts of tolerance to rotations and reference frames. Specifically, we

examine the effect of a rotating eye reference frame on visual responses to show that rotation

tolerance does not necessarily imply a head-centered reference frame. Our findings show conclusively

that visual cues play a significant role in achieving rotation-invariant heading representations.

Importance of visual cues
It is important to recognize that the significance of visual cues in discounting rotation extends beyond

eye pursuit to head-on-body (RHB) and body-in-world (RBW) rotations as well. The efference copy

signals for each of these sources of rotation depend on the specific motor commands generating the

movement. If we consider that eye, head, and body rotations are often generated simultaneously,

multiple efference copy signals must be added together and subsequently discounted from the

resultant optic flow to signal heading accurately. Each of these non-visual signals is associated with

signal-dependent noise (Gellman and Fletcher, 1992; Li and Matin, 1992; Crowell et al., 1998);

thus, combining multiple, potentially independent, efference copy signals to estimate rotations may
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not always be an efficient solution for the brain. On the other hand, the information contained in visual

cues is independent of the source of rotation and represents rotation of the eye relative to the world

(REW). The REW information present in optic flow inherently reflects the sum of all the different sources

of rotation (REW = REH + RHB + RBW) and thus provides direct information regarding the total rotation

of the eyes during self-motion. Therefore, visual signals may have important advantages when the

goal is to accurately estimate heading in the presence of self-generated rotations.

However, we also face situations in which visual information may be sparse, such as driving at night

on an open road (limited visual range and depth structure), where non-visual signals may be crucial. As

expected, given the brain’s propensity towards multi-sensory integration, we find that both visual and

non-visual signals contribute to discounting rotations to represent heading. Real pursuit shifts are

smaller than simulated pursuit shifts, and both types of shifts are smaller for a dense 3D cloud than

a fronto-parallel plane.

Given the variety of efference copy signals present in parietal cortex (Andersen, 1997) and the

correlation observed between the REH (pursuit in darkness) and REW (pure simulated rotation)

responses in our data (Figure 5), we postulate that VIP contains an integrated representation of

rotation that relies on both visual signals and efference copy inputs. However, to conclusively test

these theories, experiments with multiple rotation velocities and directions as well as different sources

of rotation (e.g., eye vs head pursuit) need to be conducted. How these visual rotation cues are

combined with efference copy signals and other non-visual sensory cues to rotation (e.g., vestibular

inputs) warrants further investigation.

Comparison to previous behavioral studies
Several human psychophysical studies have assessed pursuit compensation during heading estimation

based on visual and non-visual cues. However, owing to variations in experimental protocols, visual

stimuli, and instructions given to the subjects, the results of these studies vary substantially. If we

consider studies that used 3D cloud stimuli, we find that some studies report large errors in heading

perception (the difference between reported heading and true heading) in the absence of efference

copy signals (Royden et al., 1992; Royden, 1994; Banks et al., 1996), whereas other studies report

that subjects are able to accurately perceive their heading based on purely visual stimuli (Warren and

Hannon, 1988, 1990; van den Berg and Brenner, 1994). In order to compare results across these

studies, we calculated the degree of compensation as the difference between the error in heading

perception and the shift in FOE based on the experimental parameters, normalized by the expected

shift in FOE ([FOE shift-heading error]/FOE shift). The rotation compensation observed in these

studies during simulated pursuit (only visual cues) ranged from 100% to 20% for a 3D cloud stimulus

(based on the depth plane corresponding to the screen distance). Studies with smaller compensatory

effects (Royden et al., 1992; Royden, 1994; Banks et al., 1996) concluded that optic flow was

insufficient for estimating translations in the presence of rotations. However, these studies used visual

stimuli with a small field of view and a low density of dots in the 3D cloud, thus limiting the visual

information available for estimating heading in the presence of rotations (Grigo and Lappe, 1999).

Despite these limitations in the visual stimuli, the compensatory effects were greater than 0.

Moreover, other studies have shown that richer visual stimuli, including landmarks (Li and Warren,

2000, 2004; Royden et al., 2006) and larger fields of view (van den Berg and Brenner, 1994; Grigo

and Lappe, 1999), resulted in larger compensatory effects based on purely visual cues.

In this study, using a 3D cloud stimulus, we observed a large and continuous range of

compensatory effects, including a substantial subset of VIP neurons that compensated completely for

rotations, as well as neurons that do not compensate at all or even over-compensate for rotations.

Since the experimental parameters used in our study and the various behavioral papers are different,

it is difficult to compare our results quantitatively with the published behavioral findings. However, the

fact that we find moderate, but significant, compensation during simulated pursuit is broadly

consistent with the psychophysical literature.

Furthermore, depending on how the population of VIP neurons is decoded, a substantial range of

behavioral effects might be expected. For instance, if the rotation-invariant neurons are selectively

decoded to estimate heading, it should be possible for VIP to support behavioral responses with

compensation close to 100%. On the other hand, if all VIP neurons are decoded with equal weights,

we would expect the behavioral errors to be comparable to the mean compensation observed in the

neural population. It is also important to note that in many behavioral studies, subjects made small but
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significant errors even during real pursuit (Freeman, 1999; Freeman et al., 2000; Crowell and

Andersen, 2001), consistent with our finding that the average compensation among VIP neurons is

not complete even when both visual and non-visual cues to rotation are available.

Some psychophysical studies attribute the errors observed during simulated pursuit to the

misinterpretation of path-independent rotations (such as eye pursuit during straight translations) as

motion along a curved path (Royden, 1994; Royden et al., 2006). In behavioral studies that eliminate

this ambiguity through specific instruction to subjects, heading errors during simulated pursuit are

reported to be largely reduced (Li and Warren, 2004; Royden et al., 2006). This provides further

evidence that the visual system is indeed capable of estimating rotation-invariant heading based on

purely visual stimuli. It is also possible that the range of compensation observed in our data could be

a result of this perceptual ambiguity. To evaluate how the brain resolves this ambiguity,

neurophysiological studies using both path-independent rotations and curved path stimuli are

needed.

Comparison with previous electrophysiological studies
Previous physiological studies emphasized the contribution of efference copy signals to achieving

rotation invariance (Bradley et al., 1996; Page and Duffy, 1999; Shenoy et al., 1999; Zhang et al.,

2004). However, these studies could not conclusively establish a contribution of visual rotation cues to

heading tuning for various reasons. Some studies did not use a simulated pursuit condition and

therefore could not disambiguate visual and non-visual contributions to the rotation-invariance of

heading tuning they observed (Page and Duffy, 1999; Zhang et al., 2004). On the other hand,

Bradley et al. (1996) and Shenoy et al. (1999); (2002) included a simulated pursuit condition in their

experiments, but the visual stimulus used to simulate pursuit was incorrect. To mimic pursuit, they

simply added laminar flow to their fronto-parallel plane (i.e. no local motion parallax cues) optic flow

stimuli, and thus their stimuli lacked the dynamic perspective cues necessary to accurately simulate

eye rotations on a flat display. When rendering visual stimuli, dynamic perspective cues should be

incorporated any time the eye changes orientation relative to the scene (Kim et al., 2014).

If eye rotation is simulated (incorrectly) as laminar flow on a flat screen, then it should not be

possible for neurons to exhibit rotation-tolerant heading tuning because the addition of laminar

motion simply shifts the focus of expansion in the flow field, and does not provide any rotation cues.

Indeed, Bradley et al. (1996) found that MSTd neurons did not compensate for rotations when

pursuit was simulated in this manner. In contrast, Shenoy et al. (1999); (2002) reported that MSTd

neurons show considerable tolerance to rotation when pursuit was simulated as laminar flow, despite

the fact that little or no rotation tolerance was reported psychophysically by the same laboratory for

simulated pursuit (Crowell et al., 1998). Compared to Bradley et al. (1996), Shenoy et al. (2002)

used a smaller display size and yet observed larger compensatory effects. This finding contradicts

theoretical and psychophysical studies that have established that a larger display size should improve

pursuit compensation based on visual cues (Koenderink and van Doorn, 1987; Grigo and Lappe,

1999). We believe that the counter-intuitive results obtained by Shenoy et al. (1999); (2002) stem

from the fact that the boundary of their visual stimuli moved across the retina during real and

simulated pursuit (but not during the fixation condition), and thus stimulated different regions of the

visual field in and around the receptive field of a neuron over time. Such a moving image boundary

defined only by the rotation velocity would not occur under natural conditions as a result of eye

rotations. By changing the region of visual space that was stimulated over the course of a trial, Shenoy

et al. (1999); (2002) likely induced changes in the amplitude (response gain) or shape of heading

tuning curves.

Shenoy et al. (1999); (2002) measured heading tuning over a narrow range (±32˚) around straight

ahead, and estimated shifts in tuning by cross-correlation analysis. While cross-correlation is invariant

to gain changes, it only provides an accurate measure of tuning shifts if the tuning curve has a clear

peak within the range of headings tested (Figure 4—figure supplement 2C,D; see ‘Materials and

methods’). In contrast, cells that prefer lateral headings generally have monotonic tuning curves

around straight ahead (e.g., Figure 4—figure supplement 2E), and this generally yields rather flat

cross-correlation functions with no clear peak (e.g., Figure 4—figure supplement 2F). As a result,

cross-correlation analysis produces fairly accurate estimates of shifts for cells with heading preferences

within the range of headings tested, but does not provide reliable shifts for neurons with monotonic

tuning functions in that range (Figure 4—figure supplement 2G).
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These simulations suggest that the degree of rotation compensation reported previously (Shenoy

et al., 1999, 2002) may have been inaccurate for neurons with monotonic tuning around straight-

forward, which are common in areas MSTd (Gu et al., 2006, 2010) and VIP (Chen et al., 2011). This

may also help explain the partial rotation compensation observed by Shenoy et al. (1999); (2002) in

their (incorrect) simulated rotation condition, which contained no relevant visual cues that could be

used to compensate for rotation. In contrast to the cross-correlation method, our method for

measuring shifts works well for cells with all heading preferences (Figure 4—figure supplement 1E),

and is robust to variations in the gain, offset and shape of tuning curves.

More recently, Bremmer et al. (2010) and Kaminiarz et al. (2014) reported that neurons in

areas MSTd and VIP, respectively, show rotation-invariant heading tuning based solely on visual

cues. However, these studies only measured neural responses to three headings (forward, 30˚

leftward, and 30˚ rightward), and defined rotation-tolerance based on a rank-ordering of heading

responses across the different eye movement conditions. Since absolute firing rates were not

considered, it is likely that shifts in tuning curves could go undetected by this method in the

presence of gain fields or bandwidth changes. For instance, this analysis would report identical rank-

order for the tuning curves shown in Figure 4—figure supplement 2A, and would erroneously

classify them as rotation-invariant. In addition, the authors did not attempt to compare their results

to the tuning shifts that would be expected if neurons do not compensate for rotation. Consider

that, in their ground-plane stimuli (e.g., Figure 1 of Kaminiarz et al., 2014), rotation has a large

effect on slow-speed optic flow vectors near the horizon, and high-speed foreground vectors are

much less altered. For neurons with receptive fields below the horizontal meridian or those with

responses dominated by high speeds, one might not expect the rank ordering of heading responses

to change even if neurons do not compensate for rotation. Thus, the results of these studies are

difficult to interpret.

By comparison with the above studies, we accurately simulated eye rotations such that correct 2D

and 3D visual cues are present in the stimuli. We also measured full heading tuning curves and our

analysis methods allowed us to disambiguate changes in response gain from shifts or shape changes

in the tuning curve. By using a large display and maintaining the same area of retinal stimulation for all

viewing conditions (see ‘Materials and methods’), we eliminated artifacts that likely confounded the

results of some previous studies (Shenoy et al., 1999, 2002). Therefore, we are confident that our

findings in the simulated rotation condition reflect a true contribution of visual cues to the problem of

dissociating translations and rotations.

Implications for self-motion and navigation
In order to navigate through the environment and interact successfully with objects, it is imperative

that we distinguish visual motion caused by self-generated movements from that caused by external

events in the world (Probst et al., 1984; Wallach, 1987; Warren and Saunders, 1995). For instance,

the visual consequences of eye or head rotations need to be discounted in order to accurately

perceive whether an object is stationary or moving in the world. The neuroscience literature has

extensively studied and emphasized the contribution of efference copy signals to discounting self-

generated movements in several sensory systems (Andersen, 1997; Cullen, 2004; Klier et al., 2005).

We have presented novel evidence for an alternative solution that is available to the visual

system—using large-field visual motion cues to discount self-generated rotations. The ability of VIP

neurons to represent heading during rotations, even in the absence of efference copy signals,

suggests that visual mechanisms may make substantial contributions to a variety of neural

computations that involve estimating and accounting for self-generated rotations.

The contribution of visual cues may be especially important in situations where efference copy

signals are either unreliable or absent. For instance, driving along a winding path and looking in

the direction of instantaneous heading does not result in any eye or head movements relative to

the body (i.e., no efference copy signals). However, such curvilinear motion still introduces

rotational components in the optic flow field and disrupts the FOE. In order to estimate such

motion trajectories, the visual system would need to decompose self-motion into both

translational and rotational components. This study suggests that such trajectory computations

based purely on optic flow may be feasible. How the visual system may implement such

computations warrants further research and may provide useful insights to neuroscientists as well

as those in the fields of computer vision and robotic navigation.
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Materials and methods

Subjects and surgery
Two adult rhesus monkeys (Macaca mulatta), weighing 8–10 kg, were chronically implanted with

a circular molded, lightweight plastic ring for head restraint and a scleral coil for monitoring eye

movements (see Gu et al., 2006; Fetsch et al., 2007; Takahashi et al., 2007 for more detail).

Following recovery from surgery, the monkeys were trained to sit head restrained in a primate chair.

They were subsequently trained using standard operant conditioning to fixate and pursue a small

visual target for liquid rewards, as described below. All surgical materials and methods were

approved by the Institutional Animal Care and Use Committees at Washington University and Baylor

College of Medicine, and were in accordance with NIH guidelines.

The primate chair was affixed inside a field coil frame (CNC Engineering, Seattle, WA, USA) with

a flat display screen in front. The sides and top of the coil frame were covered with a black enclosure

that restricted the animals’ view to the display screen. A three-chip DLP projector (Christie Digital

Mirage 2000, Kitchener, Ontario, Canada) was used to rear-project images onto the 60 × 60 cm

display screen located ∼30 cm in front of the monkey (thus subtending 90˚ × 90˚ of visual angle). Visual

stimuli were generated by an OpenGL accelerator board (nVidia Quadro FX 3000G). The display had

a pixel resolution of 1280 × 1024, 32-bit color depth, and was updated at the same rate as the

movement trajectory (60 Hz). Behavioral control and data acquisition were accomplished by custom

scripts (see Source code 1) written for use with the TEMPO system (Reflective Computing, St. Louis,

MO, USA).

Stimulus and Task
Visual stimuli were presented for a duration of 1500 ms during each trial and consisted of various

combinations of eight heading directions in the horizontal plane (Figure 1C) and two rotational

directions (leftward and rightward). Translation and rotation velocities followed a trapezoidal profile in

which the velocity was constant (translation: 24 cm/s, rotation: 17˚/s) during the middle 750 ms

(Figure 1D) of the stimulus period.

The optic flow stimuli were generated using a 3D rendering engine (OpenGL) to accurately

simulate combinations of observer translation and rotation. In the 3D cloud protocol, the virtual

environment consisted of a cloud of dots that was 150 cm wide, 100 cm tall, 160 cm deep and had

a density of 0.002 dots/cm3. The part of the cloud visible to the monkey was clipped in depth to range

from 25 cm to 125 cm (relative to the observer) at all times. This clipping ensured that the same

volume of dots was visible to the monkey over the duration of a trial as we simulated a translation of

27 cm through the cloud. The stimulus was rendered as a red-green anaglyph that the monkey viewed

stereoscopically through red/green filters.

In the second experimental protocol, a fronto-parallel plane (FP) of dots was rendered with

a density of 0.2 dots/cm2. The plane was rendered with zero binocular disparity and was viewed by the

monkey either binocularly or monocularly, without any red/green filters. During the course of a trial

(1500 ms), the 27 cm translation resulted in the simulated distance of the wall changing from 45 cm at

the beginning, to 18 cm at the end. We simulated this change in wall distance to better replicate the

real world situation of approaching a fronto-parallel wall. Apart from replacing the 3D cloud with a FP

plane and the removal of binocular disparity in the stimuli, all other experimental parameters (such as

velocity profiles, trial types, stimulus duration, etc) were the same as in the 3D cloud experiment.

During each session, the monkey’s eye position was monitored online using the implanted scleral

search coil. Only trials in which the monkey’s eye remained within a pre-determined eye window

(see below) were rewarded with a drop of juice. Trials were aborted if the eye position constraints set

by the eye window were violated.

The experiment consisted of three main trial types: pure translation, translation + real eye pursuit

(RP), and translation + simulated pursuit (SP). (i) For the pure translation condition, the monkey fixated

a visual target at the center of the screen and maintained fixation within a 2˚ eye window while the

optic flow stimuli were presented. Optic flow stimuli simulated eight headings within the horizontal

plane, corresponding to all azimuth angles in 45˚ steps. The pure translation stimuli were rendered by

translating the OpenGL camera along one of the eight headings with the velocity profile shown in

Figure 1D. (ii) For the real pursuit (RP) condition, the animal actively pursued a moving target
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while the same translational optic flow stimuli as above were presented on the display screen.

A rightward rotation trial started when the fixation target appeared 9.5˚ to the left of center.

Once the monkey fixated this target (within 1000 ms), it moved to the right following

a trapezoidal velocity profile (Figure 1D). Analogously, leftward pursuit trials began with the

target appearing on the right and moving leftward. The monkey was required to pursue the

moving visual target and maintain gaze within a 4˚ eye window during the acceleration and

deceleration periods (0:375 ms and 1125:1500 ms). During the middle 750 ms of the trial

(constant velocity phase), the monkey was required to maintain gaze within a 2˚ window around

the visual target. Importantly, the optic flow stimulus was windowed with a software rendered

aperture that moved simultaneously with the pursuit target. Thus, the area of the retina being

stimulated during the RP trials remained constant over time, eliminating potential confounds

from moving the stimulus across the receptive field over time (see ‘Discussion’). (iii) For the

simulated pursuit (SP) condition, optic flow stimuli accurately simulated combinations of the

same eight headings with leftward or rightward rotations, while the monkey fixated at the center

of the screen (2˚ window). These stimuli were rendered by translating and rotating the OpenGL

camera with the same trapezoidal velocity profile of the moving target in the RP condition. This

ensured that the retinal optic flow patterns in the RP and SP conditions were identical (assuming

accurate pursuit in the RP condition). The area of retinal stimulation was also identical in the SP

and RP conditions.

In addition to these main stimulus conditions, the experimental protocol also included three

types of pure rotation conditions for both leftward and rightward directions: (i) eye pursuit over

a black background (with the projector on), (ii) eye pursuit over a static field of dots, and (iii) pure

rotational optic flow in a 3D cloud (simulated rotation-only). We also included a blank screen

during visual fixation and a static field of dots during fixation to measure the spontaneous activity

and baseline visual response of the neurons, respectively. Therefore, each block of trials (for both

3D cloud and FP protocols) consisted of 48 unique stimulus conditions: eight directions * (1

translation only +2 RP + 2 SP) + 8 controls.

Electrophysiological recordings
To record from single neurons extracellularly, tungsten microelectrodes (FHC; tip diameter, 3 μm;

impedance, 1–3 MΩ at 1 kHz) were inserted into the cortex through a transdural guide tube, using

a hydraulic microdrive. Neural voltage signals were amplified, filtered (400–5000 Hz),

discriminated (Plexon Systems), and displayed on SpikeSort software (Plexon systems). The

times of occurrence of action potentials and all behavioral events were digitized and recorded

with 1 ms resolution. Eye position was monitored online and recorded using the implanted scleral

search coil. Raw neural signals were also digitized at a rate of 25 kHz using the Plexon system for

off-line spike sorting.

VIP was first identified using MRI scans as described in detail in Chen et al. (2011). Electrode

penetrations were then directed to the general area of gray matter around the medial tip of the

intraparietal sulcus with the goal of characterizing the entire anterior-posterior extent of area

VIP—typically defined as the intraparietal area with directionally selective visual responses

(Colby et al., 1993; Duhamel et al., 1998). To determine direction selectivity, we presented a patch

of drifting dots for which the size, position, and velocity could be manipulated manually with

a computer mouse. We used this mapping procedure to characterize the presence or absence of

strong visual drive as well as the direction and speed selectivity of multi-unit and single-unit activity. At

each location along the anterior–posterior axis, we first identified the medial tip of the intraparietal

sulcus and then moved laterally until there was no longer a directionally selective visual response in

the multi-unit activity.

During each experimental session, we inserted a single microelectrode into the region of

cortex identified as VIP. Single unit action potentials were then isolated online using a dual

voltage-time window discriminator. Within the region of gray matter identified as VIP, we

recorded from any neuron that showed robust visual responses during our search procedure.

Once a single unit was isolated, we ran the 3D cloud protocol with all conditions randomly

interleaved (72 neurons). Each stimulus was repeated at least four, and usually five, times. At the

end of the 3D cloud protocol, if isolation of the neuron remained stable, we ran the fronto-

parallel plane (FP) protocol for 4–5 repetitions (34 neurons). For the FP protocol, the red/green
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stereo glasses were either removed during the binocular viewing sessions (11/34), or replaced

with an eye patch during the monocular viewing sessions (23/34), such that the eye ipsilateral to

the recording hemisphere was occluded.

Analyses
Analysis of spike data and statistical tests were performed using MATLAB (MathWorks). Tuning

curves for the different stimulus conditions (translation only, RP, SP) were generated using the

average firing rate of the cell (spikes/s) during the middle 750 ms of each successfully completed

trial. This analysis window was chosen such that rotation/translation velocities were constant and

the monkey was pursuing or fixating the visual target in the small 2˚ window. To determine the

effect of rotations on neural responses, the translation only tuning curve was compared to the RP/

SP tuning curves.

Previous studies (Bradley et al., 1996; Page and Duffy, 1999; Shenoy et al., 1999, 2002; Zhang

et al., 2004; Kaminiarz et al., 2014) only measured tuning curves over a narrow range of headings

around straight ahead. Without measuring the full tuning curve, it is very difficult to distinguish

between gain fields and shifts in the tuning curves (Mullette-Gillman et al., 2009; Chang and Snyder,

2010; Rosenberg and Angelaki, 2014). Furthermore, these previous studies assumed that rotations

would cause a global shift of the tuning curve in the absence of pursuit compensation. However, as

shown in Figure 2 and Figure 2—figure supplement 1, rotations can change the shape of the tuning

curve, including both skew and bandwidth changes. Therefore, we suspect that the cross-correlation

methods or rank-ordering of responses used in previous studies are insufficient to characterize all of

the changes in heading tuning due to rotations (see also Figure 4—figure supplement 2).

To account for these more complex changes in heading tuning curves, we developed a novel

3-step analysis procedure, as illustrated for an example cell in Figure 4—figure supplement 1. Step

1: we measured the minimum and maximum responses of the pure translation tuning curve. The

lowest response (trough) and amplitude (maximum—minimum) of the RP/SP tuning curves were

then matched to those of the pure translation curve by vertically shifting and scaling the responses,

respectively. Step 2: because the predicted effects of rotation are opposite for forward and

backward headings (Figure 2A), RP and SP tuning curves were split into heading ranges of 0–180˚

and 180–360˚. We tested whether each half of the tuning curve was significantly tuned using an

ANOVA (p ≤ 0.05). All the tuning curves were then linearly interpolated to a resolution of 1˚. Step 3:

for half-curves that showed significant tuning, we performed a shift analysis as follows. The pure

translation tuning curve was circularly shifted (in steps of 1˚) to minimize the sum-squared error with

each half of the RP/SP tuning curves. For neurons that were significantly tuned in all conditions and

in both direction ranges, this analysis yielded four shift values for real pursuit and four shifts for

simulated pursuit. In order to quantify the transformation of heading tuning due to rotations, the

four shift values were averaged to arrive at one shift value for real pursuit and one shift for simulated

pursuit for each cell.

The 95% confidence intervals (CIs) for the shifts plotted in Figures 4 and 6C, were calculated using

a bootstrap analysis. Bootstrapped tuning curves for translation only, real pursuit, and simulated

pursuit were generated by resampling responses with replacement. The same offset, gain and shift

calculations were performed on each one of 300 bootstrapped tuning curves to produce a distribution

of shifts for each neuron from which the 95% CI was calculated by the percentile method.

In order to test the efficacy of our analysis method, we simulated heading tuning curves using von

Mises functions (Equation 1), with gain (A), preferred direction (φ), and width (k) as free parameters

(Swindale, 1998).

VMðθÞ=Aefk½cosðθ−φÞ−1�g: (1)

To simulate the tuning curve transformations caused by adding rotational optic flow, a second

shape parameter (Equation 2) and skew (Equation 3) terms were added to the von Mises functions as

follows:

VMwidthðθÞ=Aefk½cosðθ−φ+σsinðθ−φÞÞ−1�g; (2)

VMskewðθÞ=Aefk½cosðθ−φ+γðcosðθ−φÞ−1Þ−1�g; (3)
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where, σ is the second shape parameter (such that slope of the function at half-height can vary

independently of the width at half-height) and γ is the skew parameter (see Swindale, (1998) for more

details). The second shape parameter (σ) was manipulated to yield rotation-added tuning curves with

bandwidth changes of 40˚ (20˚ on each half of the tuning curve) for cells preferring close to lateral

translations ([340˚:20˚], [160˚:200˚]). For cells preferring all other headings (close to forward or

backward translations), the skew parameter (γ) was manipulated to yield a 20˚ shift in the peaks of the

rotation-added tuning curves.

Random gain values ranging from 0.66 to 1.33 were used to scale the rotation-added tuning curves

and random offset values (0–40 spikes/s) were also added to the tuning curves corresponding to

leftward and rightward rotations. Poisson random noise was added to all tuning curves (averaged over

five simulated stimulus repetitions) and the curves were sampled at heading intervals of 45˚, similar to

the recorded data. Shifts were measured between the translation only and rotation-added curves

using the partial shift analysis method described above. The mean shifts resulting from 10 sets of

simulated tuning curves with heading preferences ranging from 0:360˚ are shown in Figure 4—figure

supplement 1E. These simulations demonstrate that our method is capable of accurately measuring

shifts in the presence of gain, offset and shape changes for neurons with a variety of heading

preferences.

To compare our method with the cross-correlation method used in previous studies (Bradley

et al., 1996; Shenoy et al., 1999, 2002), von Mises functions with Poisson noise were generated

as described above (Equations 1–3), but were sampled and analyzed as described in those

papers. Specifically, simulated tuning curves were generated by sampling the von Mises

functions at headings in the range of ±32˚ around straight ahead, with 8˚ sampling intervals. To

match the previous studies, the resulting data were then smoothed with a three-point moving

average and interpolated using a spline function at 1˚ intervals (Figure 4—figure supplement

2C,E). The rotation-added tuning curves were horizontally shifted in 1˚ increments relative to the

translation-only curve and the maximum correlation coefficient between the curves was

measured using the equation described in Shenoy et al. (1999) (Figure 4—figure

supplement 2D,F). This analysis was repeated for 10 sets of simulated tuning curves (different

random noise samples) for 10 different heading preferences in the range from 0:180˚

(Figure 4—figure supplement 2G). Since this analysis was based only on the narrow heading

range of ±32˚ around straight forward, we did not simulate neurons with backwards heading

preferences in the range of 180–360˚ because such neurons would have little response in this

heading range. In contrast with our analysis, this cross-correlation method resulted in unreliable

tuning shifts for simulated neurons with heading preferences outside the narrow range of

measured headings (Figure 4—figure supplement 2G).

To test the rotating reference frame hypothesis (Figure 7), the gradient of firing rate was

calculated at each heading on each measured tuning curve and the heading associated with the

largest positive gradient was selected. The predicted slopes for an eye-centered reference frame

were calculated as the average gradient for all the neurons for a given condition (dashed lines in

Figure 7C,D). To test whether the temporal responses match this prediction, the time course of

firing rate was measured at the heading associated with the largest positive gradient, for neurons

recorded during the 3D cloud protocol. For sharply tuned neurons, it is possible that the true largest

gradient lay between sampled headings. Hence, the measured largest gradient could be part of the

peak or trough of the tuning curve. To account for such instances in the data, we excluded tuning

curves for which the mean response at the largest gradient heading was not significantly different (t-

test; p ≤ 0.05) from the responses of its immediate neighboring headings (29/360 total tuning

curves from 72 cells). The time course of firing rate during each trial for the selected heading was

calculated by convolving the spike events with a Gaussian kernel (σ = 25 ms). The temporal

responses from all selected tuning curves were averaged by condition and used to calculate the

mean and standard errors shown in Figure 7C,D.
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