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Structural basis of proton-coupled potassium
transport in the KUP family
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Potassium homeostasis is vital for all organisms, but is challenging in single-celled organisms
like bacteria and yeast and immobile organisms like plants that constantly need to adapt to
changing external conditions. KUP transporters facilitate potassium uptake by the co-
transport of protons. Here, we uncover the molecular basis for transport in this widely
distributed family. We identify the potassium importer KimA from Bacillus subtilis as a
member of the KUP family, demonstrate that it functions as a K*/H* symporter and report a
3.7 A cryo-EM structure of the KimA homodimer in an inward-occluded, trans-inhibited
conformation. By introducing point mutations, we identify key residues for potassium and
proton binding, which are conserved among other KUP proteins.
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T is the most abundant intracellular cation in all living

organisms and its homoeostasis is absolutely essential.

Microorganisms depend on a variety of different KT
uptake systems to adapt to rapidly changing external conditions.
The main players here can be grouped in two families, the Trk/
Ktr/HKT/Kdp family! and the Kup/HAK/KT (K* Uptake, KUP)
family?~4. Interestingly, members of both families are absent in
mammalian cells, while they were identified as virulence factors
in pathogenic bacteria®-8. The KUP family belongs to the APC
(amino acid-polyamine-organocation) superfamily, the second
largest superfamily of secondary active transporters®. Members of
the KUP family have different physiological roles in diverse
bacteria and even in different plant organs, with correspondingly
a wide scope of affinities for K, ranging from nano- to milli-
molar concentrations!?-13, KUP proteins have been proposed to
be particularly important under acidic environmental conditions
and to function as K+/H+ symporters!4-16, Reporter fusions and
cysteine labelling assays suggested the presence of 12 trans-
membrane helices and several residues crucial for K transport
activity have been identified in different KUP members!1-17-20,
Yet, due to the lack of detailed structural information KUPs’
transport mechanism remains largely unknown.

Recently, KimA from Bacillus subtilis was identified as a high-
affinity potassium importer?! and KimA homologs were pro-
posed to form a family within the APC superfamily. Here, we
show that KimA is in reality a member of the KUP family. We
functionally characterized KimA in vivo and in vitro and solved a
trans-inhibited, inward-occluded structure using cryo-EM. In
combination with mutational analysis, we propose a coupling
mechanism for the symport of potassium ions and protons.

Results

KimA functions as a KT/Ht symporter. KimA was previously
identified as a potassium uptake system in Bacillus subtilis cells
depleted of its long-known potassium-importing channels, KtrAB
and KtrCD?!, and is wide-spread among bacteria (Supplementary
Fig. 1). To characterize the K+ uptake mode of KimA, we per-
formed in vivo and in vitro transport assays. In vivo, KimA
mediates potassium uptake into potassium-depleted Escherichia
coli LB2003 cells deficient in endogenous potassium uptake sys-
tems, with a K, value of 215 pM and a V., of 245 nmol min~—!
mg~! (Fig. la, b). Potassium uptake increased at lower external
pH and was abolished in the presence of the proton ionophore
CCCP (Fig. 1c). The observed pH dependency and the apparent
requirement for a proton gradient suggest that KimA functions as
a K*t/H* symporter. In vitro transport assays performed in
proteoliposomes, in the presence of an inward-directed potassium
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gradient, confirmed that KimA couples potassium uptake and
proton transport (Fig. 1d).

Structure of dimeric KimA in inward-occluded conformation.
To elucidate the structural basis for proton-coupled potassium
transport, we determined a 3.7 A resolution cryo-EM structure of
KimA solubilized with styrene-maleic acid (SMA) co-polymers in
the presence of potassium (Fig. 2, Supplementary Figs. 2 and 3
and Supplementary Table 1). Our structure shows that KimA
forms a homodimer, with each protomer consisting of an N-
terminal transmembrane (TM) domain and a C-terminal cyto-
plasmic domain (Fig. 2a, b), as previously suggested?2. The dimer
is stabilized by the swapping of the cytoplasmic domains, which
are placed under the opposite membrane domains via long loops
connected to the last TM helix (Fig. 2a). The interaction of these
loops with the other cytoplasmic domain forms the main dimer
interface (Fig. 2c). The two TM domains are tilted towards each
other at the extracellular side, creating a second interface, and
appear to enforce a bending of the membrane by ~130° against its
natural curvature (Supplementary Fig. 4a). The same arrange-
ment is observed for detergent-solubilized KimA (Supplementary
Fig. 4b and c), demonstrating that this shape does not derive from
forces exerted by the SMA co-polymer over the protein. However,
we could not exclude that the depletion of lipids from the dimer
interspace during purification may have led to the observed
interface. To investigate this further, we carried out molecular
dynamics (MD) simulations on the KimA dimer. An initial 100
ns coarse-grained (CG)?324 simulation on the positionally-
restrained KimA dimer reveals that the membrane freely forms
around the dimer (Fig. 3a; ‘input’). This results in a substantial
bending of the bilayer, in a similar arrangement to the one
observed in the EM map. When investigating the dynamics of the
unrestrained dimer over a total of 20 us, we see that it relaxes into
an ‘upright dimer’ arrangement with the TM domains separated
(Fig. 3a). The dimer switches between both positions in a highly
dynamic fashion (Supplementary Fig. 5a), with each arrangement
about equally likely. Plotting the angle of each TM domain over
the course of the simulation reveals that the two monomers move
in concert, akin to a ‘breathing’ motion (Fig. 3b, Supplementary
Fig. 5b, c). Such ‘breathing’ motion was also observed in the EM
sample during the refinement, albeit to a lesser extent. Upright
dimers were not observed in the cryo-EM analysis. Follow-up
simulations totalling 6 us using the atomistic CHARMM36 force
field confirm the presence of the upright dimer, with 2/3 systems
adopting the same pose (Fig. 3c and Supplementary Fig. 5d) and
principal component analysis (PCA) on the data revealing that
the breathing motion accounts for 68% of the total variance
(Supplementary Fig. 5e). These MD simulations reveal that
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Fig. 1 Functional analysis of KimA. a Concentration-dependent potassium uptake via KimA into potassium-depleted E. coli LB2003 cells. n=3
independent experiments; a representative experiment is shown. b, Kinetic parameters of the potassium transport via KimA determined based on (a). The
plotted uptake rates at different potassium concentrations are the means of three independent experiments; errors shown are s.d. ¢ pH-dependent
potassium transport via KimA into potassium-depleted E. coli LB2003. n = 3 independent experiments; a representative experiment is shown. d Potassium-
dependent proton transport into KimA-containing liposomes. n = 3 independent experiments; a representative experiment is shown. Source data are

provided as a Source Data file.
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Fig. 2 Overview of the structure of KimA. a KimA dimer viewed from the membrane, with one monomer coloured in grey and the other in a rainbow, from
blue (N terminus) to red (C terminus). b Schematic representation of the topology of KimA. Each KimA monomer is composed of 12 TM helices, organized
in a 5+ 5 inverted structural repeat and two additional, C-terminal TM helices located at the periphery of the dimer. The last TM helix extends into the
cytoplasm and positions the soluble domain below the TM domain of the second monomer. ¢ The cytoplasmic domain of a KimA monomer is formed by a
parallel, five-stranded p-sheet sandwiched by four a-helices, forming a continuous 10-stranded f-sheet in the dimer. d Side view and e top view of the

membrane domain of a KimA monomer.

approximately twice as many lipids bind in between the proto-
mers in the upright dimer compared to the tilted dimer (Fig. 3d).
We speculate that not enough lipids were present after purifica-
tion to fill the inter-dimer space and stabilize the upright position
of the TM domains. Importantly, the inter-subunit movement did
not affect the conformation of the TM domains over the course of
the performed simulations. It remains elusive whether this
movement has any physiological relevance or functional
consequences.

The cytoplasmic domain of each protomer consists of f-
strand-a-helix motifs, which form a parallel 5-stranded {-sheet
flanked by four helices and in the dimer generate an extended [-
sheet with 10 strands (Fig. 2a, c). Interestingly, the same fold was
previously observed in a number of proteins, including soluble
phosphopantetheine adenylyltransferases (PPAT) (PDB 1GN8)2>,
which bind ATP and ADP (Supplementary Fig. 7), and the
cytoplasmic domain of a prokaryotic cation-chloride cotranspor-
ter (PDB 3G40)2°. In analogy to the nucleotide binding to PPAT,
the cytoplasmic domains of KimA may provide binding sites for
cyclic di-AMP, which was recently identified as an inhibitor for
the potassium uptake by KimA27. However, although 50 pM c-di-
AMP was added to purified KimA before sample freezing, no
additional density for the molecule was observed, suggesting that
it could not bind to the present state. In agreement to this
assumption, no c-di-AMP binding could be determined using
isothermal titration calorimetry and thermal shift assay (data not
shown).

Each TM domain contains 12 TM helices (Fig. 2b, d, e), the
first ten of which adopt a typical LeuT fold?$, with a topologically

inverted repeat of TM helices 1-5 and TM helices 6-10 and
broken helices 1 and 6 (Supplementary Fig. 8). TM helix 12
extends into the cytoplasm (Fig. 2) and, as previously mentioned,
connects to the cytoplasmic domain. The structure represents an
inward-occluded conformation of KimA. The extracellular side is
tightly sealed by main chain packing of TM helices 1b, 3, 6a, and
10, while on the cytoplasmic side we observe a wide solvent-filled
tunnel, lined by polar residues (D117, Y118, E233, N237, T317,
$320, Q324) (Fig. 4a, b). A thin gate?®, formed by the side chains
of D36, T121, T230 and Y377, separates this tunnel from a
smaller cavity located next to the discontinuous region of TM
helices 1 and 6, which we hypothesize to be a potassium ion
binding site (Fig. 4a, b).

Each TM domain has three potassium ions bound. In agree-
ment with the hypothesized potassium ion binding site, the cryo-
EM map shows a non-protein density in this region, between
D36, Y43, T121, S125, T230, and Y377, consistent with the pre-
sence of a potassium ion (Fig. 4c, d, Supplementary Fig. 3f). This
location corresponds to the substrate binding site in other
transporters with the LeuT fold.

Below the thin gate two other non-protein densities, separated
by ~3 A, are observed near the side chains of D36, D117, and
E233 (Fig. 4e and Supplementary Fig. 3g). As the buffer contained
100 mM potassium chloride, and smaller molecules like waters
are only visible at a resolution better than 3 A, we also assign
these densities as potassium ions (Fig. 4c-e). Their close
proximity may indicate that their positions are not occupied at
the same time and the map densities have been averaged.
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Fig. 3 Molecular dynamics simulations of KimA in a lipid bilayer. a Cut-away views of KimA dimer in a membrane, taken from the CG simulation data.
The protein backbone is shown as grey surface and the POPE lipids as green, yellow and blue spheres. b Representative plot of the angle between the TM
domains over time for the CG simulations; n = 4 independent simulations (see Supplementary Fig. 5 for full data and a schematic of how the angles were
computed). € Upright dimer position as determined using ~2 us of fully atomistic simulation. Protein shown as grey cartoon, lipid phosphates as semi-

transparent blue circles. n = 3 repeats, with the upright dimer sampled in 2/3. d Views from atomistic simulation showing the lipid molecules (as coloured

spheres) present between the KimA monomer.

Generally, the limited resolution of the map and possibly some
dynamics of the ions led to comparably broad densities
(Supplementary Fig 3f and g), which left some uncertainties for
the assignment of correct potassium ion binding sites. Two 135 ns
atomistic simulations of the dimer in 150 mM KCI and in the
presence of the three bound K™ ions were performed to detail the
potassium ion binding. The simulations confirm the existence of
three ion binding sites (Fig. 4f and Supplementary Fig. 6). On
average, ca. 2.3 ions were bound to each monomer at any one
time, with the ions dynamically sampling all three sites. Of the
residues surrounding the occluded ion, a short minimum distance
and high contact (residue-K™ distance less than 0.4 nm for >75%
of the simulation time) was observed with residues D36, T121
and Y377, while residues Y43 and T230 make either a more
dynamic or more long-range contribution to K coordination. A
rather long minimum distance and hardly any contact was
observed with S125. Hence, the occluded Kt appears to be
located close to the residues forming the thin, cytoplasmic gate,
while S125, which was the closest residue to the density seen in

cryo-EM, is not directly involved in ion binding. The coordina-
tion of the two potassium ions below the thin gate was confirmed
by the MD simulations, the minimum distances between the
residues and the ions are similar to the distances determined in
the structure. Strong contact was found with residues D36 and
D117, while the interaction with E233 was dynamic; in both the
cryo-EM map and the MD simulations, E233 is too far from the
binding sites for an involvement in potassium ion coordination.

Key residues for substrate binding and trans-inhibition. To
further evaluate the role of the residues in close proximity to
the bound potassium ions, we tested point-mutated KimA
variants for their ability to complement growth at K* limitation
(Supplementary Figs. 9 and 10). For wild-type KimA a con-
centration of the half maximal growth (Kg) of 0.09 mM was
determined. Of the residues surrounding the occluded ion,
variants D36A/N and Y43A completely abolished K+ uptake,
while S125A, T121A and particularly Y377A led to reduced
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Fig. 4 Structural details of the transmembrane domain. a The translocation pathway reveals a tightly sealed extracellular side, a wide-open intracellular
tunnel and the putative occluded potassium ion binding site, which is separated from the cytoplasm by a thin gate. The residues lining the intracellular
entrance are represented in sticks. The surface representation of the pathway was calculated with HOLLOW>2. b Pore radii along the translocation
pathway of KimA determined by HOLE®3, Features defining the inward-occluded state are highlighted. ¢ Potential potassium ion binding sites within one
protomer. d, e Close-up views of the potassium ions and the residues surrounding them with dotted lines showing the distances in Angstrom. Potassium
ions are depicted as purple spheres. f Average minimum distance for each residue to the closest K ion over the course of two 135 ns atomistic
simulations; errors shown are s.d., individual distances as dot plots, n = 4 repeats. Dashed lines indicate the distances derived from the structural model.

growth rates with Kg values of 0.20, 0.27 and 11.0 mM,
respectively. With a Ky of 0.07 mM, variant T230A enabled a
similar growth phenotype as the wild-type protein (Supple-
mentary Fig. 9). The fact that some of these mutations did not
simply abolish cell growth but showed a reduction of the
apparent affinity corroborates their role in substrate binding
and/or occlusion. The effects of mutating residues D36, T121,
and Y377 are in agreement with a role in ion coordination. Y43
was suggested to only weakly interact with the potassium ion.
Its localization towards the extracellular side of the TM domain
suggests that it may instead form the extracellular gate of the
binding site, which would explain the lethal effect of mutating
it. Residue S125, which does not appear to be directly involved
in potassium ion binding, may be important for the overall
structure of the binding site and the high affinity binding, while
residue T230 is not essential for potassium uptake.
Surprisingly, of the residues near the potassium ions in the
cytoplasmic tunnel E233A/Q abolished K* uptake, while D117A/
N/E had no effect on growth (Supplementary Fig. 8). Both the
cryo-EM density and the MD simulations suggested that the
essential residue E233 is not directly involved in coordinating the
bound potassium ions (Fig. 4e, f). However, in the observed
inward-facing conformation E233 has a predicted pK, of ~8 and
thus could be easily protonated and deprotonated. For that
reason, we hypothesized that E233 is responsible for proton

coupling. Determining the KT/Rb'T exchange activity of
KimAg,334 confirmed this assumption: similar to wild-type
KimA, the variant could still exchange KT for Rb™, a process
uncoupled from proton transport. In contrast, mutation D36A
abolished KT/Rb* exchange by KimA confirming the role of
residue D36 in K+ binding (Fig. 5a, b, Supplementary Fig. 11).
Unlike E233, residue D117 clearly coordinates one of the
potassium ions in the cytoplasmic tunnel, and it was therefore
surprising that it is not required for transport. A possible
explanation is that this residue acts as a sensor for the
cytoplasmic potassium ion concentration, preventing further
uptake by trans-inhibition. We propose that D117 may have a
role in regulation by securing a fast response to variations in
potassium concentration. In support of this hypothesis, mutation
D117A led to diminished growth of E. coli LB2003 exclusively at
high potassium concentration, while cells expressing wild-type
KimA grew similar at all tested concentrations (Fig. 5¢, d). The
diminished growth at increased potassium concentrations argues
for a toxic effect of an excess of potassium inside the cells as
previously described?!:30. The essential residue D36 coordinates
the second potassium ion in the cytoplasmic tunnel as well as the
potassium in the actual substrate binding site, and contributes to
the thin gate. D36 appears to play a central role in KimA,
participating not only in substrate binding and in gating, but also
in regulation in a similar way to D117.
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Fig. 5 Involvement of residues in proton coupling or potassium binding or trans-inhibition. a Time courses of the K*/Rb™ exchanges of E. coli LB2003
cells transformed with plasmids encoding wild-type KimA (blue), KimAg>33a (green), KimApzea (orange) or with the empty vector pBAD24 (black). To
initiate the exchange, cells loaded with 50 mM KCI were diluted into an equivalent buffer with 50 mM RbCl. n =3 independent experiments; a
representative experiment is shown. b Initial rates of K¥/Rb* exchange given as means of three independent experiments; errors shown are s.d., individual
exchange rates as dot plots. ¢, d Growth curves of E. coli LB2003 expressing wild-type KimA (¢) and KimAp74 (d) at different potassium concentrations,
ranging from 0.3 to 115 mM. n = 3 independent experiments; a representative experiment is shown. Source data are provided as a Source Data file.
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Fig. 6 Schematic representation of alternating access transport in KimA. The outward-open conformation should provide access of protons and
potassium ions from the extracellular side to the binding sites, while at the cytoplasmic side the exit tunnel should be tightly sealed. The binding of a proton
and a potassium ion could result in the movement of Y43, which serves as external gate occluding the bound substrate. Subsequently, broken helices TM1
and TM6 could alternate, sealing the extracellular tunnel and opening the intracellular tunnel. A thin, intracellular gate formed by residues D36 and Y377
could yet sustain an occluded state. Upon deprotonation of E233, the intracellular gate could open, allowing potassium ion release to the cytoplasm. At high
intracellular potassium concentrations, potassium ions could bind within the intracellular tunnel preventing the opening of the intracellular gate. We
hypothesize that our cryo-EM structure represents such a trans-inhibited, inward-occluded state (highlighted with dashed box).

Discussion binding from the outside, KimA needs to adopt an outward-open
Based on the presented data and the knowledge from other APC  conformation. Therefore, broken helices TMla and TM6b
transporters31:32, we propose a model for proton-coupled potas-  probably move towards TM helices 3 and 10, tightly sealing the
sium transport via KimA (Fig. 6). To allow potassium and proton  potassium ion binding site from the cytoplasm by main chain
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packing. At the same time, orienting TM1b and TM6a away from
TM helices 3 and 10 would open a tunnel to the extracellular
space. To completely expose the binding site to the outside,
residue Y43 probably reorients, functioning as the extracellular
gate. Upon binding of at least one proton and one potassium ion
to the respective binding sites (E233 for HT, D36, T121 and Y377
for KT), Y43 could occlude the bound ions from the extracellular
side. Subsequently, TM1b and TMé6a likely move towards TM
helices 3 and 10 tightly sealing the extracellular side, while a
displacement of TM1la and TM6b would open the intracellular
tunnel. As seen in the presented structure, the potassium ion
probably remains occluded towards the intracellular side by the
thin intracellular gate formed by D36 and Y377. Ultimately, E233
could get deprotonated and trigger the opening of the intracel-
lular gate, which would expose the binding site to the cytoplasm
and allow potassium jon release. We suggest that the here-
presented cryo-EM structure represents a trans-inhibited, inward-
occluded state of KimA, in which the intracellular tunnel is filled
with potassium ions at high internal potassium concentrations.
We propose that these ions prevent the opening of the intracel-
lular gate and the exposure of the potassium ion binding site
towards the cytoplasm, hindering the further accumulation of
potassium ions despite the presence of a driving proton gradient.

By performing a model-based sequence alignment of KimA
with members of the KUP family, we found that the residues we
identified as playing an important functional role in KimA are all
fully or highly conserved among KUP members, while the
sequence conservation in the KUP family is generally low (Sup-
plementary Fig. 12). The overall structure of KimA is in agree-
ment with the predicted overall structure of the low-affinity K+
transporter Kup from E. coli, the best characterized KUP pro-
tein!l. In addition, residues of E. coli Kup essential for transport,
D23, E116 and E2291! are equivalent to D36, D117, and E233 in
KimA (Supplementary Fig. 12). However, the otherwise highly
conserved VFGD/IYGD motif within TM helix 1 of KUP mem-
bers is not conserved in KimA. This leads us to conclude that
KimA actually forms a subfamily within the KUP family, and that
the presented structure is relevant for all potassium transporters
in this family. Our analysis provides the molecular basis for the
proton-coupled potassium ion transport in the KUP family and
sets the framework for the full characterization of this widely
distributed group of transporters, in particular the elucidation of
the structural basis for the different potassium ion binding affi-
nities within this family.

Methods

Cloning, expression and purification of KimA. The gene encoding KimA was
amplified from B. subtilis genomic DNA and cloned into a pBAD24 expression
vector including a C-terminal His;o-tag. Point mutations in the kimA gene were
applied by restriction-free cloning techniques. A list of all primers used is included
in the Supplementary Methods. Wild-type KimA was produced in E. coli strain
LB2003 (available from the authors upon request) by growing an overnight culture
in KML medium supplemented with 100 ug/mL ampicillin. This culture was
diluted 100-fold in 12 L of fresh KML medium, and overexpression was induced at
an ODygg of 0.8 by the addition of 0.002% arabinose. After 1.5 h of induction the
cells were harvested and resuspended in 50 mM Tris pH 8, 100 mM KCl, 400 mM
NaCl, 1 mM EDTA supplemented with 0.5 mM PMSF, 1 mM benzamidine and
DNase I. The suspension was passed through a homogenizer at a pressure of 1 kbar
to disrupt the cells. The cell extract was centrifuged at 15,000 x g for 15 min to
remove unbroken cells and debris. Membranes were collected by centrifugation at
180,000 x g for 3 h. The membrane pellet was resuspended in solubilization buffer
(50 mM Tris pH 8, 100 mM KCl, 400 mM NaCl) to 50 mg/mL and solubilized by
the addition of 2% SMA co-polymer Xiran SL30010 P20 (2:1 molar ratio of styrene:
maleic acid), provided by Polyscope Polymers B. V., at 4 °C overnight. Subse-
quently, the solution was centrifuged at 180,000 x g for 30 min to remove unso-
lubilized particles. The supernatant was incubated with Ni-NTA overnight. Then,
the resin was washed with 50 column volumes of solubilization buffer supple-
mented with 50 mM imidazole to remove any unspecific protein. Finally, the
protein was eluted using 500 mM imidazole in the solubilization buffer, and further
purified by size exclusion chromatography using a Superose 6 10/300 GL column

(GE Healthcare) previously equilibrated with 50 mM Tris pH 8, 100 mM KCIL
Fractions containing the protein were pooled and the sample was concentrated to
1 mg/mL prior to cryo-grid preparation. In the case of the detergent-solubilized
KimA, the membrane pellet was solubilized with 1% DDM (from 20% stock). For
the rest of that purification the buffers were supplemented with 0.04% DDM.

K+ uptake assay. An adapted protocol from ref. 33 was established for potassium
uptake experiments into intact, potassium-depleted E. coli LB2003 cells, which lack
all endogenous potassium uptake systems. LB2003 transformed with the plasmid
that encodes the protein of interest was grown in 1 mL KML medium supple-
mented with 100 pg/mL ampicillin at 37 °C shaking at 180 rpm overday. The
preculture was used to inoculate 50 mL K30 medium (the number indicates the
mM potassium concentration added to the minimal media) supplemented with
ampicillin for an overnight culture. The next day, the cells were diluted to an ODggo
of 0.15 in 500 mL K30 medium containing ampicillin and 0.002% L-arabinose for
gene expression. After the cells reached an ODgg of ~0.6-0.8, they were centrifuged
at 5000 x g at 15 °C for 10 min and the cell pellets were resuspended in 120 mM
Tris-HCI pH 8 to an ODgg of 30 and washed three times by centrifuging at 4000 x
g at 20 °C for 10 min. After the last centrifugation step, the cells were adjusted to an
ODggo of 30 with the same buffer. The resuspended cells were incubated at 37 °C
for 5 min. To release K™ and Na* from the cytoplasm, the cells were treated with 1
mM EDTA while gently shaking at 37 °C for another 5 min. Subsequently, the cells
were centrifuged twice to wash out EDTA and ions at 4000 x g at 20 °C for 8 min
and the pellets were resuspended each time in 100 mM HEPES, 100 mM MES
pH 7.5.

For the KT uptake experiment, cells were diluted into flasks to an ODgg of 3 in
100 mM HEPES, 100 mM MES at the desired pH values under constant shaking at
20 °C. Ten minutes before initiating the potassium uptake, the cells were energized
with 0.2% glycerol and 0.002% L-arabinose. The uptake was initiated by addition of
various K* concentrations (0.05; 0.15 0.2; 0.5; 1 and 2 mM). At different time points
samples of 1 mL from each flask were transferred onto 200 pL silicone oil with a
density of 1.04 g/cm? in a 1.5 mL centrifuge tube. The samples were immediately
centrifuged at 17,000 x g at 20 °C for 2 min to isolate the cells from the supernatant.
The supernatant and the silicon oil were removed and the cell pellets were cut out
with a razor blade and were added to 1 mL of 5% trichloracetic acid (TCA)
solution. Cell pellets were resuspended by vortexing. The suspensions were frozen
at —20 °C and subsequently cook at 90 °C for 10 min to release the cations.
Afterwards the solutions were diluted with 3 mL 6.7 mM CsCl and 4 mL 5 mM
CsCl. After removing the cell fragments by centrifugation at 4000 x g for 20 min
the K concentration was determined by flame photometry.

K*/Rb* exchange assay. E. coli LB2003 cells were transformed with plasmids
that encode KimA, KimAp;sa and KimAg,334, respectively, or with the empty
vector pBAD24, and grown in K30 minimal medium as indicated above for the K™
uptake assay. After harvesting, the cell pellets were resuspended and washed twice
with 200 mM HEPES-TEA pH 7.5. Afterwards, cells were adjusted to an ODggo of
300 with the same buffer supplemented with 50 mM KCI and incubated at room
temperature for 3 h to load the cells with potassium ions. To initiate the exchange,
cells were diluted 100-fold in 200 mM HEPES-TEA pH 7.5 supplemented with 50
mM RbCl (or 50 mM NaCl for the negative control) and with 30 uM of the proton
ionophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP). CCCP abolished
the proton motive force, avoiding active transport. To monitor K™/Rb* exchange,
samples were taken at different time points, cells were treated as described for the
K+ uptake assay and intracellular K concentrations were determined using flame
photometry.

Complementation assay. Cells harbouring plasmids encoding for KimA and
variants thereof were picked from agar KML plates and incubated in 1 mL KML
medium supplemented with 100 pg/mL ampicillin at 37 °C shaking at 180 rpm
overday. Then, the cells were incubated in 5mL K30 medium supplemented with
100 pg/mL ampicillin, at 37 °C shaking at 180 rpm overnight. The next day, pre-
cultures were washed and centrifuged twice at 4000 x g for 10 min in KO medium to
remove external potassium. After that, 5mL of different minimal media (K0.01,
K0.02, K0.03, K0.05, K0.1, K0.2, K0.5, K1, K3, K10, K30 and K115) each supple-
mented with 100 pg/mL ampicillin and in the presence of 0.002% arabinose for
gene expression were inoculated to an ODggo of 0.15. The ODggo was measured
hourly for the first 10 h and after 24 h. After 24 h, samples were taken for SDS-
PAGE and subsequent Western blotting to analyze the protein production.

Preparation of proteoliposomes. Proteoliposomes were prepared with a standard
protocol?4. Briefly, E. coli polar lipids in chloroform were dried in a rotary evaporator,
resuspended to 10 mg/mL and sonicated in a buffer containing 100 mM NaP; pH 7.
After three freeze-thaw cycles, large unilamellar vesicles were prepared by extrusion
through a 400-nm diameter polycarbonate filter. Liposomes were diluted to 4 mg/mL
and destabilized beyond Ry, with Triton X-100. DDM-solubilized KimA was added
to the liposomes at a weight ratio of 1:50 (protein:lipid), and detergent was subse-

quently removed by the addition of BioBeads. Proteoliposomes were harvested by

centrifugation at 250,000 x g and resuspended to a lipid concentration of 10 mg/mL.
After three freeze-thaw cycles, proteoliposomes were stored in liquid nitrogen until
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use. For the preparation of the empty control liposomes SEC buffer was added to the
lipids in the same ratio as the protein.

Fluorescence-based transport assay. Potassium-dependent proton transport was
measured with the ApH-sensitive fluorophore 9-amino-6-chloro-2-methox-
yacridine (ACMA). Proteoliposomes and empty liposomes, respectively, were
thawed, extruded through a 400-nm polycarbonate filter, centrifuged and resus-
pended to a final concentration of 10 mg/mL lipids in 100 mM NaP; pH 7. For the
fluorescence measurements, proteoliposomes and empty liposomes were diluted
100-fold into 100 mM KP; pH 7 and 500 nM ACMA. Fluorescence was recorded at
an excitation wavelength of 410 nm and emission wavelength of 490 nm in a
spectrofluorimeter over time. The K*-coupled HT transport was initiated upon the
addition of 500 nM sodium ionophore IV, which initially resulted in a membrane
potential of —120 mV and hindered the establishment of an inhibitory positive
potential. At the end of each experiment, the proton ionophore CCCP was added
to dissipate the membrane potential allowing protein-independent proton fluxes.

Sequence alignment. Sequence conservation of KimA was evaluated by per-
forming an alignment in T-coffee3’ using a list of genes obtained from the BLAST-
NCBI server. Due to the low sequence similarity between KimA and members of
the KUP family, a model-based sequence alignment between them was performed
using the PROMALS3D3¢ server. In general, the sequence alignment is a pro-
gressive method using database searches, secondary structure predictions, and
available or provided 3D structures. For the presented alignments only database
searches and secondary structure predictions were applied. The figures were pre-

pared with Jalview’,

Negative-staining EM. Samples of KimA solubilized with DDM or SMA co-
polymer were negatively stained for up to 3 min with 1% (w/v) uranyl acetate pH 4.
Electron micrographs were acquired with a CCD camera (Gatan Ultrascan 4000)
on a Tecnai Spirit at 120 kV under low-dose conditions, at a magnification of
52,000x for a pixel size at the specimen of 2.11 A. Particles were picked first
manually with EMAN boxer8 and, after generation of appropriate templates by 2D
classification in Relion 2.1%, automatically using Gautomatch (by Kai Zhang,
MRC-LMB). A total of 3110 and 67,292 good particles of KimA in SMA lipid
particles (SMALPs) and DDM, respectively, were picked. Two-dimensional class
averages were obtained by 2D classification with Relion 2.1.

Cryo-EM specimen preparation and data collection. Cryo-EM grids of KimA in
SMALP at 1.1 mg/mL with 50 uM cyclic di-AMP were prepared in a FEI Vitrobot
plunge freezer at 10 °C and 90% humidity, using Quantifoil R2/2 holey carbon grids
(Quantifoil Micro Tools), pre-treated in chloroform for 1 to 2h and freshly glow-
discharged. The grid was blotted for 9 sec and plunge-frozen in liquid ethane. Images
were collected automatically using EPU (Thermo Scientific), on a FEI Titan Krios
operating at 300 kV and aligned as previously described*’, with a Gatan K2 camera in
counting mode and with an energy filter. The nominal magnification of 130,000x
yielded a pixel size at the specimen of 1.077 A. Each micrograph was recorded as a
movie stack with 40 frames over 8 sec, with a calibrated dose of ~1.77 e /A2 per frame
and defocus values between —0.5 and —3.2 um.

Image processing. A set of 5418 micrographs was collected automatically, of
which 4951 were of sufficient quality for processing. Drift correction and dose
weighting of each movie stack were performed with MotionCor24!. Whole-
micrograph CTF was determined with CTFFIND4#2 on drift-corrected, non-dose
weighted movies. After manual picking of a small particle set using EMAN boxer38,
templates were generated (first by 2D classification and later by reprojection of a
low-resolution 3D map) for automatic picking by template matching using Gau-
tomatch (by Kai Zhang, MRC-LMB). The initial dataset contained 2,043,209
particles, windowed with a 208 pixels squared box. A low-resolution initial model
was generated from ~19,000 particles using the stochastic gradient descent method
implemented in Relion 2.1 and low-pass filtered to 60 A%3.

A reference-free 2D classification with ISAC, within Sphire*4, was used to
discard clear false positives and bad particles, outputting a subset with 1,614,900
particle images. A more homogeneous set of 314,399 particles was identified
through two consecutive rounds of 3D classification, with five classes and no
symmetry applied, in Relion 3.0%3. After Bayesian polishing, CTF refinement and
beam tilt estimation with Relion 3.0, refinement of this subset with a soft mask and
applied C2 symmetry produced a map at 3.8 A. However, the resolution degraded
towards the periphery of the dimer, especially at the cytoplasmic domain, due to
small variations in the relative position of the KimA monomers. Since the signal
from a single monomer was insufficient for proper alignment, we attempted to
identify a particle subset where these deviations were minimized through a 3D
classification of the symmetry-expanded dataset (629,798 particles) with three
classes, only local searches and a reference map low-pass filtered to 4.5 A; after
every five iterations, the map of each class was aligned to a partial map, composed
of one transmembrane domain and one cytoplasmic domain, within Chimera%’, in
order to keep the position of one half of the dimer constant, while the position of
the other half drove the classification (a similar approach was implemented in

ref. 40). The best 3D class contained 198,366 particles. Symmetry expansion was
reversed by removal of duplicates, for a total of 149,724 unique particle images. A
homogeneous refinement of these particles with cryoSPARC v247 produced a map
with a nominal resolution of 3.7 A and improved densities at the periphery. Local
resolution was estimated with cryoSPARC v247.

Model building and validation. An homology model of the transmembrane
domain of KimA obtained by the Phyre2 server?® was docked initially into the
cryo-EM map using USCF Chimera®> and used as a starting point for modelling
with Coot#. The cytoplasmic domain was built de novo. The model was then
subjected to an iterative process of real space refinement using Phenix.real_spa-
ce_refinement® with geometry and secondary structure restraints followed by
manual inspection and adjustments in Coot*’. The final model includes 572
residues of the 607 that compose a KimA monomer, lacking the first 26 amino acid
residues at the N terminus and residues 480-481, 534-538 and 607 in the cyto-
plasmic domain. The geometries of the atomic model were evaluated by Mol-
Probity®!. The translocation pathway and the surface representation were obtained
with HOLLOW?®2, Pore radii along the translocation pathway were calculated using
HOLE software®3. pK, calculations were performed with the multiconformation
continuum electrostatics (MCCE) program>*. Figures were prepared with UCSF
ChimeraX>> and PyMOL.

CG simulations. CG simulations of dimeric KimA were run using the CG Martini
forcefield2>24, using the open beta 3.0.b.3.2 version. Additional bonds of 500 k] mol !
nm 2 were applied between all protein backbone beads within 1 nm, except for
interactions across the extracellular interface of the TM domains, designed to allow
inter-domain dynamics and not bias the simulations towards the cryo-EM pose.

Initial simulations were run following the MemProtMD protocol®®°7. The input
protein was aligned accordingly on the xy plane, and POPE (1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphoethanolamine) lipids were placed randomly around the
transmembrane region of protein, in a z range of 8 nm. All systems were solvated
with Martini waters and Na® and Cl~ ions to a neutral charge and 0.15 M. Self-
assembly simulations were run to allow the membrane lipids to assemble into a
bilayer around the protein. These were minimized using the steepest descents
methods, then run over 100 ns in the NPT ensemble, with V-rescale temperature
coupling® at 323 K and semi-isotropic Berendsen pressure coupling at 1 bar>,
with positional restraints of 1000 k] mol~! nm~2 applied to the backbone beads.

Following this, the systems were simulated for a further 4 x 5 ys, using V-rescale
temperature coupling at 323 K and a semi-isotropic Parrinello-Rahman barostat®.
Electrostatics were described using the reaction field method, with a cut-off of 1.1
nm using a potential shift modifier, and van der Waals interactions were shifted
from 0.9-1.1 nm. Bonds were constrained using the LINCS algorithm. All
simulations were run using Gromacs 2019°!. Data were analyzed in Gromacs®? or
VMD®3, as described in the figure legends.

Atomistic simulation. Snapshots of the KimA dimer following 100 ns of restrained
CG simulation in a POPC bilayer were converted to the CHARMMS36 forcefield®*
following the CG2AT protocol®®. Systems were solvated with TIP3P water and Na®
and CI~ ions to 0.15 M. Electrostatics were handled using the Particle-Mesh-Ewald
method, and a force-switch modifier was applied to the Van der Waals forces.
Dispersion corrections were turned off. Systems were equilibrated for 2.5 ns with
protein backbone restraints, before production simulations were run with V-rescale
temperature coupling at 310 K using a time constant of 0.1 ps and Parrinello-
Rahman semi-isotropic pressure coupling of 1 bar with a time constant of 2 ps,
using 4 fs time steps with virtual-sites on the protein and lipids®. All simulations
were run in Gromacs 20192,

For analyses of dimer stability, three simulations were run for ca. 2 s to allow
for the slower kinetics of dimer rearrangement to occur. For K* ion binding
analysis, the K™ ions of the structural model were reintroduced to the binding sites,
and the system was re-solvated with K+ and Cl~ ions to 0.15 M. The bound ions
and protein backbone were restrained for 1 ns of equilibration, before two
production simulations of 135 ns were run, for a total of n =4 ion binding sites.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request. A reporting summary for this Article is available as
a Supplementary Information file. The source data underlying Figs. 1 and 5 and
Supplementary Figs. 9 and 11 are provided as a Source Data file. The cryo-EM map and
the model were deposited in the wwPDB with accession codes EMD-10092 and 6S3K,
respectively.
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