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Abstract

conditions.

Sprague-Dawley rats exposed to hyperoxic conditions.

exposed rats. MK-801 inhibited these changes.

Background: Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors
(NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized
that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic

Methods: In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy
of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of
hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast
proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old

Results: Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely
disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization,
and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the
recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found
to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and
upregulation of alpha-smooth muscle actin and (pro) collagen | in lung fibroblasts were detected in hyperoxia-

Conclusions: NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the
development of hyperoxia-induced chronic lung damage in newborn rats.

Keywords: Hyperoxia, N-methyl-D-aspartate receptor, Newborn, Lung fibroblast, Chronic lung disease

Background

The introduction of prenatal steroid use, surfactant
treatment, new ventilation strategies, and other
treatments has resulted in major improvements in the
reduction of high-concentration oxygen inhalation in
newborns over the last 40 years. However, oxygen is still
the most commonly used therapy in neonatal nurseries
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as an integral part of respiratory support. Additionally,
in preterm infants, transition at birth from a relatively
hypoxic environment in utero to room air inevitably rep-
resents a hyperoxic event. Exposure of the developing
lung to hyperoxia is a critical factor in the occurrence of
bronchopulmonary dysplasia (BPD) [1, 2].

We previously demonstrated that large amounts of en-
dogenous glutamate were released into the lungs of new-
born rats exposed to hyperoxic conditions for 1 to
3 days; this phenomenon was found to be unrelated to
nonspecific acute lung injury and airway inflammation
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[3]. Glutamate, a major excitatory neurotransmitter that
is abundantly present in the mammalian central nervous
system (CNS), plays key roles in brain development,
learning and memory, and synaptic plasticity [4]. How-
ever, glutamate may also exert lethal effects on neurons
through the overactivation of N-methyl-D-aspartate re-
ceptors (NMDARs) [5]. Overstimulation of NMDARs
leads to neuronal cell death in several acute and chronic
conditions [6]. Previous studies strongly suggest that
endogenous glutamate and NMDARs play important
roles during acute lung injury and airway inflammation
[7-10]. Moreover, lung NMDARs are strongly expressed
after a 3-7-day exposure to hyperoxia [3], and the
NMDAR antagonist MK-801 was shown to decrease
hyperoxia-induced acute lung damage [3, 11]. These re-
sults indicated that glutamate and its NMDAR play im-
portant roles in hyperoxia-induced acute lung injury.

Pulmonary inflammation induced by the high levels of
oxygen free radicals during hyperoxia represents one of
the most important mechanisms underlying hyperoxia-
induced BPD [12]. Studies have shown that higher levels
of collagen deposition and alveolarization damage in the
lung are associated with more severe acute lung injury
[13, 14]. However, severe acute lung injury and inflam-
matory reactions are not observed in most preterm pa-
tients suffering from “new” BPD [1, 2]. “New” BPD is
considered a developmental disease resulting from an
interference or interruption in the growth of the lung
[2]. Studies have shown that exposure to 100 % hyper-
oxia for 1 to 3 days induces a model of “new” BPD,
which manifests as moderate lung inflammation and
delayed alveolarization during recovery in newborn rats
[15, 16]. Acute inflammation is not the essential cause of
chronic lung disease (CLD) induced by hyperoxia; how-
ever, the mechanism underlying the development of
CLD following hyperoxia is still unclear.

Fibroblasts of the fetal and neonatal lung are import-
ant interstitial cells in normal and abnormal lung func-
tion and development [17]; therefore, these cells play
important roles in the development of CLD in infants.
The principal role of lung fibroblasts is to maintain the
integrity of the alveolar structure via the synthesis, se-
cretion, maintenance, degradation, and remodeling of
the extracellular matrix (ECM) [18]. Tissue injury and
repair follows a defined pathway: fibroblasts migrate into
the provisional matrix, proliferate, and produce add-
itional ECM components, such as fibronectin and colla-
gen, resulting in the accumulation of fibroblasts within
granulation tissue [19, 20].

In 1980, Gray et al. first found that 30 mM L-glutam-
ate exerts toxic effects on fibroblasts in the context of
Huntington’s disease [21]. Glutamate induces cellular
degeneration in fibroblasts from patients with Hunting-
ton’s disease and in normal skin fibroblasts [22-24].
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Early structure-activity studies have established that the
structure of glutamate is ideal for the activation of
NMDARSs. In the last few years, NMDA-type glutamate
receptors have been detected in fibroblasts, including
human fibroblast-like synoviocytes [25], NIH3T3 mouse
fibroblasts [26], and human periodontal ligament fibro-
blasts [27]. In our previous report demonstrating the
abundant release of glutamate in hyperoxia-induced
acute lung injury in newborn rats [3], our data suggested
that lung fibroblasts may be excited by endogenous glu-
tamate via NMDAR activation. However, to date, no
studies have focused on the expression and functions of
NMDARSs in lung fibroblasts.

In this work, we hypothesized that the activation of
NMDAR may regulate the proliferation and differenti-
ation of lung fibroblasts and may participate in
hyperoxia-induced CLD in newborn rats. Using a model
of lung injury in 3-day-hyperoxia-induced newborn rats,
the effects of NMDAR inhibitor treatment during the
chronic lung injury phase, following the withdrawal of
hyperoxic conditions, were evaluated in vivo. The role of
NMDAR activation in hyperoxia-induced lung fibroblast
proliferation and differentiation was examined in vitro
using primary cell cultures derived from the lungs of
newborn rats during the chronic injury phase.

Methods

Animals and study design

Timed pregnant Sprague-Dawley rats were purchased
from the Animal Center of Central South University,
Changsha, China. Pups were delivered naturally at full
term (22 days). All pups were maintained in room air
for the first 2 h of life before randomization into four
study groups: a) air + normal saline (control group, C);
b) air + MK-801 (M); c¢) hyperoxia + normal saline (H);
and d) hyperoxia + MK-801 (H + M). Hyperoxia-exposed
animals were placed in 95 % oxygen conditions for 72 h
and allowed to recover in room air for the next 18 days.
On postnatal days 8 to 10, the pups were intraperitone-
ally injected with 0.05 mg/kg MK-801 per day for a total
of 3 days; corresponding control groups were treated
with the same volume of normal saline on the same
days. Animals in each group were killed on postnatal
days 4, 8, 15, and 22 by intraperitoneal injection of
pentobarbital (50 mg/kg body weight), and lung tissue
was harvested for analysis. A total of 384 pups were used
in vivo study, including six pups at each time point for
each method in each group. Samples from each animal
were used for only one type of analysis.

Primary lung fibroblast culture and drug treatment

Six randomly chosen pups from the 3-day hyperoxia and
room-air control group were sacrificed on postnatal day
8. The lungs were removed, minced into 1-mm? pieces,
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and dissociated in Hanks buffered saline solution (HBSS;
Hyclone, China) containing DNAse (20 pg/mL) and
0.25 % trypsin at 37 °C for 10 min. Dissociation was
stopped by adding Dulbecco’s modified Eagle’s medium
(DMEM; Hyclone) with 10 % charcoal-stripped fetal calf
serum (FCS™). The cells were filtered through a sterile
45-pum cell strainer and centrifuged at 650 x g for 10 min
at 4 °C. The cell pellets were resuspended in DMEM
with 10 % FCS™, and cells were plated at 6 x 10° cells/
dish in 100-mm? culture dishes for 60 min at 37 °C to
allow lung fibroblast adherence. When fibroblasts
reached 90 % confluence, the cells were serum-starved
for 24 h in serum-free medium. mRNA transcripts cor-
responding to the N-methyl D-aspartate subunit 1 (NRI)
gene and four NR2 subunits (NR2s) from the hyperoxia
and control groups were measured directly. Cell prolifer-
ation and expression of type I procollagen (PC I) and
alpha-smooth muscle actin (ax-SMA) were measured
after treatment with 0.5 mM MK-801 or the same vol-
ume of saline for 24 h.

Study measurements

Collection and analysis of bronchoalveolar lavage

fluid (BALF)

On postnatal days 4, 8, 15, and 22, pups from each
group were sacrificed by administration of intraperito-
neal pentobarbital (50 mg/kg). After tracheal intubation
and injection of ice-cold 0.9 % saline (0.035 mL/gx g
body weight, five times), BALF was pooled, and the total
volume was recorded. More than 85 % of the instilled
saline was collected from each animal. Total cells in
BALF were counted using a CASY-1 cell counter (RJF
Sales, Scotch Plains, NJ, USA). BALF samples were then
spun at 400xg for 5 min, and supernatants were
aliquoted and frozen at -80 °C. Total protein (TP) con-
tent in BALF (as an index of protein leakage due to al-
veolar microvascular membrane injury) was measured
using Lowry assays. Lactate dehydrogenase activation
(LDH) was assayed as an index of respiratory membrane
barrier damage and cellular membrane injury, using an
LDH assay kit (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China) according to the manufacturer’s
protocol.

Lung wet weight and dry weight

Lung specimens were obtained from random samples of
different groups on postnatal days 4, 8, 15, and 22. After
the wet weights were measured, the tissues were placed
in an oven and maintained at a temperature of 80 °C for
72 h. After the dry weight of the lung was measured, the
presence of pulmonary edema was examined by deter-
mination of the lung wet-weight/dry-weight ratio (W/D).
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Lung hydroxyproline (HYP) assays

Since lung HYP is almost exclusively derived from colla-
gen, whole-lung collagen content was estimated by
measurement of HYP levels. The whole pulmonary lobes
were dissected free from their bronchi and blood vessels.
The wet weights of the whole right lungs were mea-
sured, and the lungs were then homogenized. HYP con-
tent in lung hydrolysates was determined using an HYP
assay kit (Nanjing Jiancheng Bioengineering Institute).

Measurement of dynamic lung compliance (Cdyn)

Low pulmonary compliance indicates a stiff lung and
can be thought of as a thick balloon; this parameter has
been widely used in the evaluation of lung development
in neonatal patients with CLD [28-31]. To determine
the functional impact of our histological findings, we
further performed dynamic lung compliance testing.
Measurements were performed using the Buxco system
(Buxco Research Systems, Wilmington, NC, USA). At
postnatal day 22, rats of each group were anesthetized
with 10 % chloral hydrate (0.5 mL/kg) and tracheosto-
mized. The Cdyn (mL/cmH,O), which reflects the
change in pulmonary elastic resistance, was calculated
according to the recorded variance in thoracic pressure
in the esophagus and the respiratory flow.

Lung histology

Rats were sacrificed on postnatal days 4, 8, 15, and 22.
The lungs of a random sample from each group were in-
flated with 4 % paraformaldehyde in PBS via polyethyl-
ene catheters in the trachea, at a pressure of 23 cm H,O
[32]. The lungs were then fixed in 4 % paraformaldehyde
and embedded in paraffin. Five-micron-thick sections of
the lung were stained with hematoxylin and eosin. Lung
sections from all lungs were examined for histological
changes. All histological evaluations were performed by
an independent pathologist who was unaware of the ex-
perimental groups.

Radial alveolar count (RAC)

One of the hallmarks of CLD in neonates is simplified
distal airspaces, representing arrest of lung development.
RAC, an objective measure of alveolar number, was used
to assess lung development, as previously described [33,
34]. Respiratory bronchioles were identified as bronchi-
oles lined by the epithelium in one part of the wall
From the center of the respiratory bronchiole, a perpen-
dicular line was dropped to the edge of the acinus con-
nective tissue, septum, or pleura, and the number of
septa intersected by this line was counted. At least 15
counts were performed for each animal.
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Analysis of genes expression by reverse transcription
quantitative polymerase chain reaction (RT-qPCR)

Total RNA were isolated from the samples of pulmonary
tissues and primary lung fibroblast using Trizol Reagent
(Sigma, St. Louis, MO, USA) according to the manufac-
turer’s instructions. Reverse transcription was performed
using 1 pg total RNA and oligo (DT) primers in a 20-pL
reaction, according to the manufacturer’s protocol (PE
Applied Biosystems, Foster City, CA, USA). Relative
quantitative SYBR Green-based real-time PCR was per-
formed (Shinegene Molecular Biology Technology Ltd.,
Shanghai, China) with the actin gene as an endogenous
control. The primers were designed using Primer Ex-
press version 1.0 software (Table 1). mRNA levels of type
I procollagen for pulmonary tissues, and those of NRI
and four NR2Zs, as well as type I procollagen and a-SMA
for lung fibroblast, were measured.

Analysis of type | collagen by enzyme-linked immuno-
sorbent assays (ELISAs)

The type I collagen levels in cell homogenates were
measured using ELISA kits from Boster Biotechnology
Co. (Wuhan, China), according to the manufacturer’s
protocols.

Analysis of a-SMA by western blotting

Total protein was extracted from cells using RIPA buffer,
according to the manufacturer’s protocol (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Protein concen-
trations were measured by BCA protein assays using a
commercial kit from Pierce Biotechnology Inc. (Rock-
ford, IL, USA). Total proteins (50 g/sample) were
fractionated by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) on 4-12 % Tris-glycine

Table 1 Polymerase chain reaction primer sequences

Primer name Primer sequence
NR1 f CAGGAGTGGAACGGAATCAT
r:ACTTGAAGGGCTTGGAGAAC
NR2A f-AGCCATTGCTGTCTTCGTTT
rATCTTGCTGGTTGTGCCTTT
NR2B fGCGATAATGGCGGATAAGGA
rrAGGTAGGTGGTGACGATGGAA
NR2C f:.CACACCCACATGGTCAAGTTC
rATGGTGACCAGCTTGCAGC
NR2D f.CGAGGATGGCTTTCTGGTGA
rATACTTGAGGCGGAGGGTCTG
PCI f.CCATCAAGGTCTACTGCAACATG
r.CATCGGTCATGCTCTCTCCAA
a-SMA f: ACTGGGACGACATGGAAAAG,
r.CATCTCCAGAGTCCAGCACA
B-Actin: fTGACGTGGACATCCGCAAAG

r:.CTGGAAGGTGGACAGCGAGG

NR1: NMDAR 1; NR2 A: NMDAR 2A; NR2 B: NMDAR 2B; NR2 C: NMDAR 2C; NR2
D: NMDAR 2D; PC I: type | procollagen
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precast gradient gels (Invitrogen, Carlsbad, CA, USA),
transferred to nitrocellulose membranes (Amersham,
Piscataway, NJ, USA), and incubated with monoclonal
anti-a-SMA and anti-pB-actin antibodies (Cell Signaling
Technology, Beverly, MA, USA) at 4 °C for 12 h. There-
after, membranes were incubated with horseradish per-
oxidase (HRP)-conjugated anti-rabbit IgG (1:5000) for
60 min at 24 °C. The reactions were visualized using en-
hanced chemiluminescence and detected on a photo-
graphic film. The intensities of protein bands were
quantified using a Quantity One Imaging Analysis Pro-
gram (Bio-Rad, Hercules, CA, USA). The relative level
of protein was measured by determining the ratio of a-
SMA to B-actin.

Cell proliferation assay

Cell proliferation was measured by 5-ethynyl-29-deox-
yuridine (EdU) assays using an EdU assay kit (Ribobio,
Guangzhou, China) according to the manufacturer’s in-
structions. Briefly, the cells were cultured in triplicate at
5x10% cells/well in 96-well plates and treated as de-
scribed. Cells were then exposed to 50 mM of EdU for
additional 2 h at 37 °C. Next, cells were fixed with 4 %
formaldehyde for 15 min at 24 °C and treated with 0.5 %
Triton X-100 for 20 min at 24 °C for permeabilization.
After three washes with phosphate-buffered saline (PBS),
cells were treated with 100 pL of 1x Apollo® reaction
cocktail for 30 min. Subsequently, the DNA contents of
each well of cells were stained with 100 puL Hoechst
33342 (5 pg/mL) for 30 min and visualized using a fluor-
escent microscope (Olympus, Japan). The red fluores-
cence indicated cells (EdU-positive) in the S phase of
mitosis, and the blue fluorescence (Hoechst 33342 stain-
ing) indicated nuclei for identification of all cells. Cell
proliferation was evaluated by determining the percent-
age of EdU-positive cells per 100 cells.

Statistical analysis

All data were expressed as means + standard deviations.
Differences between groups were evaluated using ana-
lysis of variance (ANOVA), followed by Tukey’s multiple
comparison test. SPSS15.0 statistical software was used
for all analyses. Differences with P values of less than
0.05 were considered significant.

Results

Three-day exposure to hyperoxia induced CLD in
newborn rats

Lung histology revealed that there few inflammatory
cells in some of the alveolar spaces in the hyperoxia
group at day 4. By day 8, inflammatory cells in the alveo-
lar spaces had almost disappeared, and fewer alveoli
were observed relative to the air group on day 8. Add-
itionally, wider alveolar septa and fewer alveoli were
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observed compared with those in the air group on post-
natal day 15. On postnatal day 22, alveolar septa had
widened, and alveolar numbers had decreased more
markedly; additionally, lung fibroblast proliferation was
observed (Fig. 1g—j versus a—d, respectively).

After a 3-day exposure to hyperoxia, LDH, TP, total
cell counts in BALF, and the W/D in the hyperoxia
group were significantly higher than those in the air
group (P <0.01). These values showed obvious decreases
4 days after cessation of hyperoxia exposure (on postna-
tal day 8; P<0.01) and were not different from those
observed in the air control group on the same day
(Fig. 2a—d).

On day 8, there was a decrease in RAC in the hyper-
oxia group compared with that of the air group (P<
0.05; Fig. 2f). The RAC was lower than that in the air
group on postnatal days 15 and 22 (P < 0.01; Fig. 2f). On
days 15 and 22, there was an increase in the level of
HYP and the mRNA levels of type I procollagen in the
hyperoxia group relative to those in the air group (P<
0.01; Fig. 2e and g). A noticeable decrease in Cdyn in
the hyperoxia group was recorded on day 22 (Fig. 2h).
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MK-801 treatment during recovery from acute injury
inhibited hyperoxia-induced pulmonary fibroplasia in
newborn rats

Previous studies have shown that MK-801 treatment
prevents hyperoxia-induced acute lung damage and air-
way inflammation in newborn SD rats [3, 11]. In order
to rule out the anti-inflammatory effects of the NMDAR
inhibitor on acute lung injury, MK-801 treatment was
started 4 days after withdrawal of hyperoxia exposure
(on postnatal day 8); at this stage, acute lung injury and
inflammation had nearly disappeared, as described above
(Fig. 2a—d).

Lung histology revealed that the hyperoxia + MK-801
group exhibited thinner alveolar septa, greater numbers
of alveoli, and a lower degree of lung fibroblast prolifera-
tion than the air group on postnatal days 15 and 22
(Fig. 1k and 1). MK-801 did not exert macroscopic ef-
fects in normal rats (Fig. 1e and f).

MK-801 treatment on postnatal days 8—10 in hyperoxia-
exposed rats elicited lower levels of HYP and pro collagen
I mRNA expression. Additionally, higher RACs were ob-
served on days 15 and 22 (P <0.05 or 0.01, respectively),

Air Control

Hyperoxia

Hyperoxia
+MK-801

Fig. 1 Lung histology. Normal development of alveolarization is seen in the control group (a-d). 3 days’ 95 % hyperoxia induced a small number
of inflammatory cells in some of the alveolar spaces compared with the air control group at day 4 (g vs a). By day 8, inflammatory cells in the
alveolar spaces had disappeared, and fewer alveoli were observed relative to the air group (h vs b). Wider alveolar septa and fewer alveoli were
seen than in the air group on postnatal day 15 (i vs €). On postnatal day 22, alveolar septa had widened and alveolar numbers had decreased
more markedly, and lung fibroblast proliferation could be observed in hyperoxia group (j vs d). MK-801 treatment in hyperoxia exposure rats
showed thinner alveolar septa, greater numbers of alveoli, and a lower degree of lung fibroblast proliferations compared with the air group at
postnatal days 15 and 22 (k and | vs i and j, respectively). MK-801 had no macroscopic effects on normal rats (e and f vs ¢ and d, respectively).

(Hematoxylin and Eosin x 40. Bar is 100 um)

Air+MK-801
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hyperoxia group were significantly higher than in the air group (P < 0.01) (a-d). An obvious decrease 4 days after cessation of hyperoxia exposure
(on postnatal day 8) was shown (P < 0.01). It was not different from the same day’s air control group (a-d). At day 8, there was a decline in RAC in
the hyperoxia group compared with the air group (P < 0.05). RAC was also lower than in the air group at day 15 and 22 (P < 0.01) (f). At day 15
and 22, there was an increase in the level of HYP and the mRNA of type | procollagen in the hyperoxia group relative to the air group (P < 0.01)
(e and g). A noticeable decrease in Cdyn in the hyperoxia group was recorded on day 22 (h). H: hyperoxia group; C: control group; CLD: chronic
lung disease; BALF: bronchoalveolar lavage fluid; TP: Total protein; LDH: Lactate dehydrogenase activation; W/D: wet-weight/dry-weight ratios;
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per group

and greater improvement in Cdyn (P < 0.01) was noted on
day 22 compared with that in the hyperoxia group. In con-
trast, MK-801 had no significant influence on HYP and
RAC, but lowered Cdyn in normal rats (Fig. 3a—d).

Upregulation of NR2 mRNA in lung fibroblasts of
hyperoxia-exposed newborn rats

The molecular and functional diversity of NMDARs is
derived from at least seven gene family members that
are alternatively spliced, leading to seven known types of
subunits (NR1, NR2 [A-D], and NR3 [A-B]). The NR1

subunit allowed ions to permeate the heteromeric
NMDA channel; the NR2 subunits, which are differen-
tially expressed in various cell types, control the electro-
physiological properties of the NMDAR [35, 36].

The mRNA levels of NRI and the four NR2 subtypes
(A, B, C, and D) in the lung fibroblasts of newborn rats
were detected using real-time PCR. The results showed
that NRI and NR2A were the dominant subtypes relative
to other NR2 subtypes, NR2B and NR2D were
moderately expressed, and NR2C expression was barely
detectable. Hyperoxia had no influence on NRI, but
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upregulated the mRNA levels of all NR2s (P < 0. 01), par-
ticularly NR2A and NR2D (Fig. 4).

NMDAR activation promoted the proliferation of lung
fibroblasts and their differentiation into myofibroblasts in
hyperoxia-exposed newborn rats

Myofibroblasts are metabolically and morphologically
distinctive fibroblasts that express a-SMA; their activa-
tion plays a key role in the development of the fibrotic
response. The expression of a-SMA correlates with the
activation of myofibroblasts, which acquire new func-
tions, such as a greater level of proliferation and collagen
production than normal fibroblasts.

The gene expression and protein levels of a-SMA
(Fig. 5A) and (pro) collagen I (Fig. 5B) were significantly
higher in newborn rat lung fibroblasts stimulated by
hyperoxia (P < 0.01). Treatment with the NMDAR antag-
onist MK-801 inhibited these changes (P<0.01). The
percentage of EdU-positive cells was significantly higher
in the hyperoxia group (P<0.01), whereas MK-801
inhibited the increase in the levels of EdU-positive cells
induced by hyperoxia (P <0.01). MK-801 alone had no
influence on normal cell growth (Fig. 6).

Discussion

Apparent pulmonary fibrosis, impaired alveolarization,
and decreased pulmonary compliance were observed at
postnatal days 15 and 22 after 3-day exposure to hyper-
oxia; however, acute lung inflammation and injury were

nearly completely absent 4 days after cessation of hyper-
oxia. Our previous studies show that MK-801 treatment
during acute lung injury improves lung histopathology
and alveolarization and attenuates pulmonary ECM de-
position in hyperoxia-induced lung injury in newborn
rats via the inhibition of acute inflammation in the lung
[3, 11]. In this study, MK-801 therapy initiated during
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Fig. 4 Upregulation of NR2 mRNA in lung fibroblasts of hyperoxia-
exposed newborn rats. The mRNA levels of NRT and the four NR2
subtypes (A, B, C, and D) in the lung fibroblasts of newborn rats
were detected using real-time PCR. NR1 and NR2A were the domin-
ant subtypes compared with other NR2 subtypes, NR2B and NR2D
were moderately expressed, and NR2C expression was barely
detectable. Hyperoxia had no influence on NR1, but upregulated the
mRNA levels of all the NR2s (P < 0. 01), especially NR2A and NR2D. H:
hyperoxia group; C: control group; NRT: NMDAR 1; NR2 A: NMDAR
2A; NR2 B: NMDAR 2B; NR2 C: NMDAR 2C; NR2 D: NMDAR 2D.

**P <0.01 vs. air group, n =6 per group
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Fig. 5 NMDAR activation upregulate lung fibroblasts a-SMA and collagen expression in hyperoxia exposure newborn rat. The protein levels (A a-
b) and gene expression of a-SMA (A c) were significantly higher in cells stimulated with hyperoxia (P < 0.01) in newborn rat lung fibroblasts. The
protein levels (B a) and gene expression of type | (pro) collagen (B b) were also higher in cells stimulated with hyperoxia (P < 0.01). Treatment with
NMDAR antagonist MK-801 inhibited these changes (P < 0.01). PCl: type | procollagen. H: hyperoxia group; C: control group; M: air + MK-801 group;
HM: hyperoxia + mk-801 group. **P <0.01 vs. air group, T1 P < 0.05 vs. hyperoxia group, n =6 per group

the recovery period from acute injury improved alveolar-
ization and pulmonary compliance and attenuated pul-
monary ECM deposition manifested with the lower HYP
and collagen expression. In this study, the expression of
NMDARs was detected for the first time in vitro in lung
fibroblasts of newborn rats. Hyperoxia upregulated the
expression of four NR2s in the lung fibroblasts of new-
born rats, stimulating cell proliferation and increasing
the expression of a-SMA and type I (pro) collagen, al-
though the cells were cultured during recovery from
acute lung injury. MK-801 was found to inhibit these
changes. These in vitro and in vivo findings indicated a
possible mechanism underlying the morphologic trans-
formation, via NMDAR activation, in hyperoxia-induced
CLD in the lung fibroblasts of newborn rats.

Previous studies have shown that 1-3 days of 100 %
hyperoxia exposure induces moderate lung inflammation
and delayed alveolarization during recovery in newborn
rats [15, 16]. The most important mechanism underlying
hyperoxia-induced “old” BPD and pulmonary fibroplasia
is the pulmonary acute inflammation induced by hyper-
oxia. However, over the last 15-20 years, studies have
suggested that active cellular inflammation in the lung is
not necessary for the development of pulmonary fibro-
ses, such as idiopathic pulmonary fibrosis (IPF) [37]. In
addition, severe acute lung injury and inflammatory re-
actions are not observed in most patients with BPD [1,
2]. These results coincide with our findings that 3-day

hyperoxia exposure induced moderate inflammation and
injury in the newborn rat lung and that these changes
were nearly absent after stopping hyperoxia exposure for
4 days, progressing to aggravated apparent pulmonary fi-
brosis at postnatal days 15 and 22.

We have previously demonstrated that large amounts
of endogenous glutamate are released in the lungs of
newborn rats and that lung NR2D is strongly expressed
after a 3-day exposure to hyperoxic conditions [3]. The
NMDAR antagonist MK-801 decreases hyperoxia-
induced acute lung damage [3, 11]. In this work, we
showed that MK-801 therapy during recovery from acute
lung injury (postnatal days 8—10) improves alveolariza-
tion and pulmonary compliance and attenuates pulmon-
ary ECM deposition. The protective effects of MK-801
were attributable both to the inhibition of acute injury
and inflammation and to chronic lung disease, as
hyperoxia-induced acute lung injury and inflammation
were nearly absent on postnatal day 8. These findings
suggested that the activation of NMDAR during recov-
ery from hyperoxia-induced lung injury played the same
critical role as in acute lung injury.

Glutamate is the main ligand of NMDA receptors.
However, the conflicting results of our previous studies
showed that the content of Glu in the BALF decreases
dramatically to a level below that of the air group after
7 days of hyperoxia exposure [2]. In contrast, the expres-
sion of NR2D in the hyperoxia group was much higher
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on day 7 than on days 1 or 3. Actually, persistent high
extracellular glutamate levels are not observed in most
brain injuries. For example, in patients with severe head
injuries, intracerebral microdialysis often exhibits in-
creased extracellular levels of glutamate in the brain only
for a few hours to a few days after the primary insult
[38, 39]. The initial increase in extracellular glutamate is
cleared within 5 min after moderate traumatic brain in-
jury, whereas antagonists of glutamate receptors remain
effective when administered 30 min after insult [40].
These are consistent with our findings demonstrating
that the content of Glu in the BALF decreased dramatic-
ally to a level below that of the air group at 7 days after
hyperoxia exposure, while MK-801 therapy during re-
covery from acute lung injury improved hyperoxia-
induced chronic lung injury. The mechanism of this
incongruity between glutamate depletion and NMDAR
activation in brain injury may involve glutamate receptor

activation, which could help nervous tissue cope with re-
duced permeability of the cellular membrane to ions and
increased efficacy of Na* extrusion [40]. However, fur-
ther studies are required to elucidate the underlying
mechanism of NMDAR in hyperoxia-induced chronic
lung injury.

The target cells of NMDAR inhibitors in hyperoxia-
induced CLD are not known. The key processes of initi-
ation and progression of lung fibrosis are thought to
cause acute lung injury and inflammation, the epithelial-
mesenchymal transition (EMT), fibroblast proliferation,
and collagen deposition. Lung fibroblasts play a key role
in lung development and repair following injury [17, 18].
Studies have shown that glutamate and NMDAR partici-
pate in cell differentiation and proliferation in the CNS
[41-43], non-neuronal tissues, such as the retinal pig-
ment epithelium (RPE) [44], and cancer cells [45]. In the
last few years, NMDA-type glutamate receptors have
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been detected in fibroblasts. NMDARs modulate the
expression of matrix metalloproteinase-2 in human
fibroblast-like synoviocytes [25] and regulate cell differ-
entiation in human periodontal ligament fibroblasts [27].
In the present study, NR1 and NR2 expression levels
were detected in lung fibroblasts. Hyperoxia upregulated
the four NR2s in lung fibroblasts in newborn rats,
stimulating cell proliferation and increasing the expres-
sion of pro collagen I, whereas MK-801 inhibited these
changes. These findings indicated that NMDAR activa-
tion in lung fibroblasts may play a role in hyperoxia-
induced CLD in newborn rats.

Dysregulated myofibroblast development has been im-
plicated in BPD [46, 47]. Although myofibroblasts are
integral to normal repair mechanisms, the persistence of
the myofibroblast beyond a period of normal repair has
been shown to be associated with ECM deposition,
structural remodeling, and destruction of alveocapillary
units [48]. Lung myofibroblasts may be derived from
peripheral blood fibrocytes and lung fibroblasts or from
the pulmonary EMT; lung fibroblasts are a major source
of lung myofibroblasts. However, the regulatory mecha-
nisms of NMDAR activation involved in hyperoxia-
induced pulmonary fibroblast transdifferentiation are
poorly understood. In this work, we found that hyper-
oxia promoted the transdifferentiation of lung fibroblasts
via the overactivation of NR2s, resulting in increased ex-
pression of a-SMA and improvement of cell prolifera-
tion and collagen deposition.

However, NR2 subunits, which are differentially
expressed across various cell types, control the electro-
physiological properties of the NMDAR [35, 36]. In this
work, we observed upregulation of four NR2s in the
lung fibroblasts of newborn rats. It is not known which
NR2 receptor plays a key role in hyperoxia-induced
transdifferentiation of lung fibroblasts. Additionally, lung
myofibroblasts may also be derived from the pulmonary
EMT. Indeed, NMDARs are expressed by alveolar epi-
thelial cells [49]. However, we did not examine the role
of NMDARSs in the EMT in this study. Further studies of
the various roles of the four NR2s in transdifferentiation
of lung fibroblasts and the EMT are necessary for the
development of therapeutic strategies against CLD and
pulmonary fibrosis.

Conclusion

In summary, the upregulation of NMDAR and the
greater release of intrinsic glutamate in the neonatal rat
lung after 3-day hyperoxia exposure [3], the protective
role of MK-801 in hyperoxia-induced chronic lung in-
jury, and the regulation of fibroblast transdifferentiation
through overactivation of NR2s in lung fibroblasts indi-
cated that NMDAR activation in lung fibroblasts plays
important roles in hyperoxia-induced CLD in newborn
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rats. Our findings are expected to provide a therapeutic
rationale for the treatment of infant CLD and other lung
diseases that manifest as pulmonary fibrosis.
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