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Abstract: Thermal stabilities of DNA duplexes containing Gua (g), α- (a) or β-anomer of
formamidopyrimidine-N7-9-hydroxy-aflatoxin B1 (b) differ markedly (Tm: a < g < b), but the
underlying molecular origin of this experimentally observed phenomenon is yet to be identified
and determined. Here, by employing explicit-solvent molecular dynamics simulations coupled with
free-energy calculations using a combined linear-interaction-energy/linear-response-approximation
approach, we explain the quantitative differences in Tm in terms of three structural features
(bulkiness, order, and compactness) and three energetical contributions (non-polar, electrostatic,
and preorganized-electrostatic), and thus advance the current understanding of the relationships
between structures, free energies, and thermal stabilities of DNA double helices.

Keywords: adduct; aflatoxin B1; DNA; formamidopyrimidine; linear interaction energy; linear response
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1. Introduction

Aflatoxin B1 (AFB1), systematically (6aR,9aS)-4-methoxy-2,3,6a,9a-tetrahydrocyclopenta[c]-
furo[3′,2′:4,5]furo[2,3-h]chromene-1,11-dione 1 (Figure 1) [1,2], a secondary metabolite [3] produced
by aflatoxigenic [3] aspergilli [4–10] contaminates agricultural commodities (e.g., corn, peanuts, rice,
sorghum, and wheat) [11] in tropical, subtropical, and temperate climate zones [12]. Following ingestion,
inhalation, injection, or dermal absorption of matter contaminated with AFB1, and the subsequent
cellular uptake of AFB1, the unsaturated lactone ring of AFB1 [13] is epoxidized [14–17]—in humans
by various cytochrome P450 enzyme isoforms [18–22]—into metabolically activated [14,23–27]
AFB1-8,9-epoxide 2 (AFB1-E; Figure 1) [15]. The exo isomer of AFB1-E [28–31] is an alkylating
agent [13] that intercalates into both nuclear and mitochondrial dsDNA [31–39], and reacts with
the N7 atom of Gua 3 (Figure 1) [36,40,41] to form, via bimolecular nucleophilic substitution [29,40],
a covalent [16,17] cationic 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-AFB1 adduct 4 (Figure 1) [40,42–45]
whose AFB1 moiety is situated at the 5′-face of the modified Gua [34,35,39,46,47] and induces ∼20
degree bending of DNA [38]. 4 is thermally and alkali labile; therefore, 4 releases itself from
DNA as 2,3-dihydro-2-(N7-guanyl)-9-hydroxy-AFB1 [40,46,48–50], leaving behind an abasic site [48],
or transforms itself (by the opening of the imidazole ring of the modified Gua) into thermally
stable 8,9-dihydro-8-(N5-formyl-2′,5′,6′-triamino-4-oxo-N5-pyrimidyl)-9-hydroxy-AFB1 5 (FAPy-AFB1;
Figure 1) [40,43,51,52], which remains firmly attached to the deoxyribose (dRib) in the native
β-anomeric configuration (b) [39,53,54] and restores the original unbent DNA conformation [36,38].
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The interconversion between b and the alternative α-anomer (a) occurs only in ssDNA [39,53,54],
formed upon dissociation of the complementary strands of dsDNA during DNA replication,
transcription, and repair. Although ssDNA shows a slight preference for a, re-association of
the complementary DNA strands strongly favors b [39,53,54], which is a consequence of (1)
a to b conversion in ssDNA being very slow, (2) ssDNA life-time being too brief, and (3)
b being more conducive than a to the re-association [39]. a and b are strong blockers of
DNA replication [13,50,53,55–65] and transcription [23,25,32,55,59–62,66–69]. Additionally, b is
a strong mutagen for it is the material cause of the b·C→T·A transversion substitution
mutation [46,49,53,64,70–82], the efficient cause of which is an erroneous bypass of b lesion by the
translesion DNA polymerase ζ [64,65].

Figure 1. Structural formulae. 1, AFB1; 2, AFB1-E; 3, Gua; 4, Cationic Gua-N7-9-hydroxy-AFB1;
5, FAPy-N7-9-hydroxy-AFB1.

As a bulky adduct, b is a potential substrate for nucleotide excision repair (NER) [47,51,82–88],
a complex mechanism involving more than 40 proteins and operating in two modes: global genome
repair (GGR; sensitive to disrupted base-pairing at the site of the lesion) and transcription-coupled
repair (TCR; sensitive to, and triggered by, the ability of the lesion to block the elongating RNA
polymerase II complex) [86,88]. Owing to the intact Watson-Crick (WC) hydrogen-bonding interaction
between β-FAPy and the complementary cytosine [36], b is only a very poor substrate for GGR [88],
and thus the repair of b depends on TCR [81], which is restricted to the transcriptionally active
regions of genomic DNA [89], and within these regions only to the transcribed strand [81]. Moreover,
the efficiency of TCR is hampered by the binding of AFB1-induced lipid-peroxidation products
(acetaldehyde and crotonaldehyde) to, and inhibiting the natural roles of, NER proteins [82].
Alternatively, 5 can be excised by the promiscuous DNA glycosylase NEIL1 [90], but the base excision
repair pathway as a whole is inhibited by AFB1 [82].

The oxidative stress induced by AFB1 [82,91,92]; the conversion of AFB1 to AFB1-E;
and the formation, stability, inefficient repair, and mutagentic potential of b and acetaladehyde
(mHPG, α-methyl-γ-hydroxy-1,N2-propano-Gua) DNA adducts is the complex cause [82]
of the cytotoxic [3,4,13,55,59,65,93–98] (hepatotoxic [93–95,97,99–104], nephrotoxic [102,105],
pulmotoxic [56,106,107], immunotoxic [104,108], and neurotoxic [109]), terratogenic [110], tumorigenic,
and carcinogenic effects associated with AFB1 [32,82,93,94,99,101,102,106,111–115] and modulated by
cell- [97], tissue- [86], individual- [20,116], and species-specific susceptibility [15,55,110,117–119].
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b can exert its harmful influence on DNA information content and retrieval if, and only if,
it persists for a biologically meaningful time. In this regard, a peculiar characteristic of dsDNA
oligonucleotides containing b (dsDNAb) is a higher, resistance-to-NER conferring [47], thermal
stability (melting temperature, Tm) of the duplex relative to dsDNAa (∆Tm ∼ 27 K) and dsDNAg

(∆Tm ∼ 13 K) [33,34,36,38,39,47], which has been qualitatively (but not quantitatively) ascribed,
based on nuclear magnetic resonance (NMR) structures of dsDNAa and dsDNAb (Figure 2), to favorable
stacking interactions [27,36,38,39,47] (and not to perturbed WC hydrogen bonding interactions,
for these remain intact in both dsDNAa and dsDNAb) [36,39,47].

Figure 2. Structures of dsDNA decamers differing in the nucleobase 5. (g), Gua (standard B-DNA
model); (a), α-FAPy-N7-9-hydroxy-AFB1 (NMR structure; PDB ID 2KH3); (b), β-FAPy-N7-9-hydroxy-AFB1

(NMR structure; PDB ID 1HM1). Green, carbon; blue, nitrogen; red, oxygen.

And this brings us to defining the main object of our present inquiry, an attempt to answer
the following question: What are the structural and energetical causes, not only qualitatively but also
quantitatively, of the experimentally observed differences in the thermal stability of dsDNAg, dsDNAa,
and dsDNAb? For knowing the answer to this question—besides being the good per se (as one of
the pieces of the aflatoxin puzzle)—may help us to proceed from particular observations to general
principles that determine the structure and stability of N5-substituted FAPy lesions and intercalated
bulky DNA adducts on a long journey toward a complete understanding of the stability and energetics
of the DNA double helix in terms of the contributions of polar and non-polar interactions [120].

We approach the problem of quantifying the structural and energetical causes of the differences
in the thermal stability between dsDNAg, dsDNAa, and dsDNAb theoretically in three steps:
(1) generating ensembles of structures-and-energies of dsDNA and ssDNA models of DNAg [121–123],
DNAa [39], and DNAb [36] using molecular dynamics (MD) simulations [124], (2) calculating absolute
(∆G, dsDNA vs. ssDNA) and relative free energies (∆∆G, g vs. a vs. b) using a combination [125]
of linear response approximation (LRA) [126] and linear interaction energy (LIE) methods [127],
and (3) correlating the experimentally known melting temperatures [39,47] with the ensemble-derived
structural signatures and free energies.
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2. Results

2.1. Sizes

a (α-FAPy-N7-9-hydroxy-AFB1) and b (β-FAPy-N7-9-hydroxy-AFB1) are of equal size and
3.3 times bulkier than g (Gua), from which the ranking by bulkiness was determined: g < a = b.

2.2. Structures

The lengths of helical rise between the base pairs 4 and 5 in the initial dsDNA models vs. PMD1

(producing molecular dynamics; the polar state 1) structures of g, a, and b were, respectively, 3.4 vs. 3.0,
7.0 vs. 5.3, and 5.4 vs. 4.2 Å (the average of DNA1, the A·T variant, and DNA2, the G·C variant),
from which the ranking by disorder was determined: g < b < a (Figure 3A, top row). In contrast to
the length of helical rise, the length of rise between the base pairs 4 and 5 does not distinguish a from b:
g < a = b (Figure 3A, middle row). The distances between the C1’ atoms of the base-pair 5 in the initial
dsDNA models of g, a, and b were 10.7, 11.0, and 10.3 Å, respectively, and the average occupancies
of WC-5 (the Watson-Crick hydrogen bonds within the base-pair 5) in PMD2 (the non-polar state 2)
structures of g, a, and b were, respectively, 14, 11, and 17% (the average of DNA1 and DNA2); from these
two measures the ranking by looseness was determined: b < g < a (Figure 3A, bottom row).

Figure 3. Geometrical features of DNA with Gua (g, white), α- (a, red) and β-FAPy-N7-9-hydroxy-AFB1

(b, blue) adducts. (A) Inter- and intra-base-pair parameters in DNA models and PMD1 simulations.
(B) Perturbation of base-pair 5 in PMD2 simulations. (C) Angle between base-pair origins 1, 5, and 10 in
PMD simulations. (D) Intra-strand hydrogen bond between nucleobases 5 (a, red; b, blue) and 6 (Ade, cyan)
in PMD simulations and models of DNA1 (circles, dsDNA; squares, ssDNA; distances in Å).
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The same ranking, b < g < a, would be also obtained for the distances between the C1′ atoms of
the base-pair 5 in PMD structures, but only if ST, significance threshold, for the differences were ignored,
because the distances in PMD1 vs. PMD2 structures of g, a, and b were, respectively, 10.7 vs. 11.9,
11.1 vs. 12.3, and 10.5 vs. 11.8 Å (the average of DNA1 and DNA2), and so the differences (δ) between
g and b were δ 6 ST = 0.3 Å. The same ranking, b < g < a, would be also obtained for the occupancy
of the perturbed conformation of the nucleobase Cyt-16 (Figure 3B), but only if ST for the differences
in the occupancies were ignored, because the occupancies were 0.5, 1.6, and 0.2% (the average of
DNA1 and DNA2), respectively, for g, a, and b, and so the differences (δ) between the occupancies were
δ 6 ST = 3%.

The dsDNA bending angles in PMD1 structures of g, a, and b were, respectively, 25, 20, and 15◦

(the average of DNA1 and DNA2), and the corresponding dsDNA bending angles in PMD2 structures
were 30, 25, and 20◦, respectively; from these two measures the ranking by curvature was determined:
b < a < g (Figure 3C).

The average occupancies of nWC (the non-Watson-Crick hydrogen bond involving the formyl
group of the FAPy moiety and the exocyclic amino group of the 3′-neighboring Ade in DNA1) in PMD1

structures of dsDNAa, dsDNAb, ssDNAa, and ssDNAb were 31, 55, 6, and 30%, respectively, and the
corresponding occupancies in PMD2 structures were 2, 4, 1, and 3%, respectively; from these two
measures the rankings by the stability of nWC in dsDNA1 and ssDNA1, and the ranking by percentual
difference in the stability of nWC between dsDNA1 and ssDNA1, were determined: a < b, a < b,
and a = b, respectively (Figure 3D).

2.3. Free Energies

Contributions of the probes to the absolute free energies of dsDNA formation (Table S1) were
obtained from interaction energies (Table 1); relative free energies (Table 2) were obtained from
the corresponding absolute free energies. ∆Gvdw1 of g, a, and b were, respectively, −1.0, −2.9,
and −3.0 kcal/mol (the average of DNA1 and DNA2), from which the ranking by non-electrostatic
contribution of the probe to the dsDNA formation, was determined: a = b < g. ∆Gele1 of g, a, and b
were, respectively, −2.7, −0.5, and −1.4 kcal/mol (the average of DNA1 and DNA2), from which
the ranking by electrostatic contribution of the probe in the polar state 1 to the dsDNA formation,
was determined: g < b < a. ∆Gele2 of g, a, and b were, respectively, −0.4, 0.7, and −1.2 kcal/mol
(the average of DNA1 and DNA2), from which the ranking by electrostatic contribution of the probe
in the non-polar state 2—i.e., the ranking by the contribution of electrostatic preorganization to the
dsDNA formation—was determined: b < g < a. ∆Gele of g, a, and b were, respectively, −3.1, 0.2,
and −2.6 kcal/mol (the average of DNA1 and DNA2), from which the ranking by total electrostatic
contribution of the probe to the dsDNA formation, was determined: g < b < a. ∆G of g, a, and b
were, respectively, −4.1, −2.8, and −5.6 kcal/mol (the average of DNA1 and DNA2), from which the
ranking by the total contribution of the probe to the free energy of the dsDNA formation, b < g < a,
and the ranking by |∆∆G|, using g as the reference, a = b, were determined. The differences in ∆G
between DNA2 (the G·C variant) and DNA1 (the A·T variant), ∆∆Gdna = ∆Gdna2 − ∆Gdna1, for g, a,
and b were 0.4, −0.3, and 1.5 kcal/mol, respectively, from which the ratio of correct:incorrect signs of
∆∆Gdna was determined: 1:2.

The maximum average convergence errors of the scaled interaction energies, αEvdw1, βEele1, βEele2,
and βEele (obtained from PMD1 and PMD2 simulations of dsDNAg, dsDNAa, dsDNAb, ssDNAg,
ssDNAa, and ssDNAb) were, respectively, 0.3, 0.9, 0.7, and 1.1 kcal/mol (the average of DNA1 and
DNA2). The maximum average convergence errors of ∆Gvdw1, ∆Gele1, ∆Gele2, ∆Gele, and ∆G were,
respectively, 0.4, 1.5, 1.1, 2.0, and 2.2 kcal/mol (the average of DNA1 and DNA2). The maximum
standard deviations of these free energies were, respectively, 0.3, 1.7, 1.2, 2.0, and 2.0 kcal/mol
(the average of DNA1 and DNA2). The maximum spreads of these free energies were, respectively,
0.7, 3.9, 2.4, 4.8, and 4.4 kcal/mol (the average of DNA1 and DNA2). The ratios of low:medium:high
uncertainties of these interaction and free energies were 3:1:0 and 1:3:1, respectively—as determined
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from the maximum average convergence errors using arbitrary, but judicious thresholds (kcal/mol):
low 6 1.0 < medium 6 2.0 < high.

Table 1. Scaled non-bonded interaction energies (kcal/mol). a

αEvdw1 βEele1 βEele2 βEele

dsDNA1g −4.4 (0.0, 0.0, 0.1) −26.7 (0.4, 0.1, 0.2) 0.2 (0.1, 0.4, 0.8) −26.5 (0.4, 0.4, 0.9)
dsDNA1a −10.3 (0.1, 0.2, 0.4) −50.6 (0.1, 2.1, 4.5) −3.9 (0.6, 1.3, 3.1) −54.4 (0.7, 2.5, 5.7)
dsDNA1b −9.8 (0.0, 0.5, 1.0) −50.6 (0.5, 2.5, 5.7) −5.1 (0.6, 0.9, 1.9) −55.8 (0.8, 3.0, 6.6)
ssDNA1g −3.3 (0.2, 0.4, 0.8) −24.3 (0.3, 0.5, 1.1) 0.9 (0.3, 0.1, 0.2) −23.4 (0.4, 0.5, 1.1)
ssDNA1a −6.8 (0.6, 0.4, 0.8) −51.5 (1.1, 0.9, 2.1) −3.8 (0.3, 0.4, 0.8) −55.3 (1.0, 1.2, 2.7)
ssDNA1b −7.1 (0.3, 0.3, 0.6) −48.8 (0.9, 0.4, 0.8) −3.4 (0.3, 0.2, 0.6) −52.2 (1.2, 0.4, 0.9)

dsDNA2g −4.4 (0.0, 0.0, 0.0) −26.8 (0.3, 0.2, 0.6) 0.6 (1.3, 1.1, 2.7) −26.1 (1.5, 1.1, 2.3)
dsDNA2a −9.5 (0.1, 0.4, 0.7) −51.8 (0.6, 1.6, 2.8) −1.9 (1.3, 0.6, 1.3) −53.7 (1.7, 1.7, 3.8)
dsDNA2b −9.7 (0.2, 0.1, 0.3) −50.2 (0.8, 0.8, 2.0) −3.7 (0.7, 1.2, 2.5) −53.9 (1.5, 1.3, 2.7)
ssDNA2g −3.5 (0.3, 0.2, 0.4) −23.8 (0.4, 0.2, 0.4) 0.7 (0.1, 0.2, 0.5) −23.1 (0.4, 0.1, 0.1)
ssDNA2a −7.2 (0.4, 0.1, 0.4) −49.9 (0.7, 2.0, 4.8) −3.3 (0.9, 0.6, 1.4) −53.2 (1.5, 2.5, 5.9)
ssDNA2b −6.5 (0.4, 0.4, 0.9) −49.2 (0.9, 0.9, 2.0) −3.1 (0.1, 0.2, 0.4) −52.3 (0.8, 1.0, 2.3)

dsDNAg −4.4 (0.0, 0.0, 0.0) −26.7 (0.2, 0.1, 0.3) 0.4 (0.7, 0.5, 0.9) −26.3 (0.6, 0.4, 0.9)
dsDNAa −9.9 (0.1, 0.1, 0.2) −51.2 (0.3, 1.8, 3.6) −2.9 (0.6, 0.9, 1.9) −54.1 (0.8, 2.0, 4.8)
dsDNAb −9.8 (0.1, 0.2, 0.5) −50.4 (0.7, 1.4, 3.2) −4.4 (0.6, 0.9, 2.2) −54.8 (1.1, 1.4, 3.4)
ssDNAg −3.4 (0.2, 0.3, 0.6) −24.0 (0.2, 0.3, 0.7) 0.8 (0.2, 0.1, 0.3) −23.2 (0.4, 0.3, 0.5)
ssDNAa −7.0 (0.3, 0.2, 0.5) −50.7 (0.8, 0.8, 1.7) −3.6 (0.5, 0.4, 0.8) −54.2 (1.1, 1.1, 2.4)
ssDNAb −6.8 (0.3, 0.3, 0.6) −49.0 (0.8, 0.5, 1.2) −3.2 (0.2, 0.1, 0.2) −52.2 (0.9, 0.4, 1.1)
a α = 0.161; β = 0.500; vdw, van der Waals; ele, electrostatic; Eele = Eele1 + Eele2; DNA = 0.5(DNA1 +
DNA2); scaled interaction energy (convergence, standard deviation, spread).

Table 2. Relative free energies of dsDNA formation (kcal/mol). a

∆∆Gvdw1 ∆∆Gele1 ∆∆Gele2 ∆∆Gele ∆∆G

DNA1a −2.3 (0.6, 0.5, 1.3) 3.3 (0.9, 3.0, 6.8) 0.7 (0.3, 1.7, 4.2) 4.0 (1.1, 4.0, 8.7) 1.7 (1.3, 3.6, 7.7)
DNA1b −1.6 (0.4, 0.6, 1.4) 0.6 (1.1, 2.5, 5.3) −1.0 (0.9, 1.0, 2.2) −0.4 (1.5, 2.8, 6.2) −2.0 (1.6, 2.3, 5.3)
DNA2a −1.5 (0.5, 0.6, 1.3) 1.0 (1.4, 1.2, 2.5) 1.6 (1.5, 2.3, 5.3) 2.6 (2.3, 3.0, 7.3) 1.1 (2.8, 3.2, 7.8)
DNA2b −2.3 (0.6, 0.3, 0.7) 1.9 (1.8, 1.3, 3.1) −0.5 (1.6, 2.2, 4.6) 1.4 (3.0, 2.8, 6.7) −0.9 (2.5, 2.5, 6.0)
DNAa −1.9 (0.4, 0.6, 1.3) 2.2 (1.1, 1.6, 3.7) 1.1 (0.7, 1.6, 3.1) 3.3 (1.6, 2.6, 6.2) 1.4 (1.9, 2.4, 5.2)
DNAb −1.9 (0.5, 0.4, 0.9) 1.2 (1.4, 1.5, 3.6) −0.7 (1.1, 1.3, 3.1) 0.5 (1.9, 1.7, 4.0) −1.4 (1.4, 1.4, 3.1)
a vdw, van der Waals; ele, electrostatic; ∆∆Gele = ∆∆Gele1 + ∆∆Gele2; ∆∆G = ∆∆Gvdw1 + ∆∆Gele; DNA = 0.5(DNA1 +
DNA2); reference systems: DNA1g, DNA2g, DNAg; free energy (convergence, standard deviation, spread).

2.4. Correlations

The ranking by bulkiness, g < a = b, was the same as the inverse of the ranking by ∆Gvdw1,
a = b < g; hence, the bulkier the probe, the more favorable its non-electrostatic contribution to the
free energy of dsDNA formation: ∆Gvdw1 ≈ −0.1 uB, where u is 1 kcal/mol and B is the number
of non-hydrogen atoms in the probe (Figure 4A). The ranking by disorder, g < b < a, was the
same as the ranking by ∆Gele1; hence, the greater the disorder, the less favorable the electrostatic
contribution from the polar state to the free energy of dsDNA formation: ∆∆Gele1 ≈ u∆D, where u
is 1 kcal/(mol·Å) and D is the helical rise obtained from PMD1 structures (Figure 4B). The ranking
by looseness, b < g < a, was the same as the ranking by ∆Gele2 (Figure 4C); hence, the greater the
looseness, the less favorable the electrostatic contribution from the non-polar state to the free energy of
dsDNA formation: ∆∆Gele2 ≈ −0.3u∆L, where u is 1 kcal/mol and L is the WC occupancy obtained
from PMD2 structures. The ranking by ∆G, b < g < a, was the same as the inverse of the ranking by
Tm (melting temperature); hence, the more favorable the free energy of dsDNA formation, the higher
the melting temperature: ∆Tm ≈ −10u∆∆G, where u is 1 mol·K/kcal (Figure 4D).
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Figure 4. Relationships between molecular structures, free energies (kcal/mol), and melting
temperatures of DNA containing Gua (g, white), α- (a, red) or β-FAPy-N7-9-hydroxy-AFB1 (b, blue)
adduct. (A) Probe vs. average van der Waals free energy per non-hydrogen probe-atom. (B) Helical
rise vs contribution of the probe to the electrostatic free energy of dsDNA formation obtained from
PMD1 simulations. (C) Average occupancy of the Watson-Crick hydrogen bonds between nucleobases
of the base pair 5 vs. contribution of the probe to the electrostatic free energy of dsDNA formation
obtained from PMD2 simulations. (D) Melting temperature vs. contribution of the probe to the free
energy of dsDNA formation.

3. Discussion

3.1. Relationships between Structures, Free Energies, and Melting Temperatures

Now, let us bring to the reader’s attention the main question to which we seek answers in
our present, theoretical work (in which we simulate the molecular dynamics of dsDNA decamers
and ssDNA trimers—containing g, a, or b as the probe of non-bonded interactions—in aqueous
solution), What are the structural and energetical causes, not only qualitatively but also quantitatively, of the
experimentally observed differences in the thermal stability of dsDNAg, dsDNAa, and dsDNAb?, and let us
offer the reader an answer: The differences in the melting temperatures (a < g < b) can be explained
(1) structurally by the differences in bulkiness (g < a = b; measured by the number of non-hydrogen
atoms in the probe), disorder (g < b < a; measured by the average length of the helical rise between
the base pairs 4 and 5 in the ensemble of PMD structures of dsDNA generated with the probe in
the natural, charged state 1), and looseness (b < g < a; measured by the average occupancy of
the WC hydrogen bonds between nucleobases belonging to the base pair 5 in the ensemble of PMD
structures of dsDNA generated with the probe in the artificial, uncharged state 2), and (2) energetically
by the differences in the non-electrostatic (a = b < g; ∆Gvdw1, calculated from the Lennard-Jones
van der Waals interaction energies), electrostatic (g < b < a; ∆Gele1, calculated from the Coulombic
interaction energies obtained for the ensemble of PMD structures generated with the probe in its
natural, charged state 1), and preorganized electrostatic (b < g < a; ∆Gele2, calculated from the
Coulombic interaction energies obtained for the ensemble of PMD structures generated with the probe
in its artificial, uncharged state 2) free energy contributions of a given probe to the total free energies
of dsDNA formation (b < g < a; ∆G, calculated as the sum of ∆Gvdw1, ∆Gele1, and ∆Gele2).

Thus, the three structural attributes, bulkiness (which anticorrelates linearly with ∆Gvdw1),
disorder (which correlates linearly with ∆Gele1), and looseness (which correlates linearly with ∆Gele2),
determine ∆G (which correlates linearly with ∆Gele2 and anticorrelates linearly with the melting
temperature, Tm) as follows: the bulkier the nucleobase/adduct, and the less disordered the dsDNA,
and the less loose the dsDNA, the higher the melting temperature. If the combined differences in
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the bulkiness (∆Gvdw1) and disorder (∆Gele1) reflect the differences in the favorability of stacking
interactions of g, a, and b with the nucleobases of the neighboring base-pairs—which, in general, is a
reasonable assumption [128]—our results are qualitatively in agreement with other studies [36,38,39,47]
but quantitatively unprecedented (for our computational work is the first of this kind). If the differences
in ∆Gele2, quantified here for the first time, do indeed reflect the electrostatic preorganization of the
WC hydrogen bonding interactions involving the nucleobases of the base pair 5, we have identified
a hitherto unknown contribution to the differences in thermal stability, and the current view of the
intactness of these interactions in both a and b adducts [36,39,47] might need to be reconsidered.
However, compactness is the contrary to looseness, and what is compact, is put together closely, and
thus the single best measure of looseness might be the distance between C1’ atoms of the base pair
5, which is the shortest in the NMR structure of dsDNAb [36] the longest in the NMR structure of
dsDNAa [39] and intermediate in the standard B-DNA model of dsDNAg [121]. However, we did not
find any explicit mentioning of these differences in the scientific literature. As for our PMD structures,
they do, regardless of the charge state of the probe, preserve this ranking but only if we ignore our
strict ST (significance threshold) of 0.3 Å. However, even if we do not ignore ST, which is our primary
strategy, we can still clearly distinguish dsDNAa from dsDNAg from dsDNAb using this measure
and so our current view is that the distance between C1’ atoms of the base pair 5 is indeed a useful
indicator of looseness.

A peculiar feature of DNA1 is nWC (the intrastrand non-Watson-Crick hydrogen bond involving
the formyl group of the FAPy moiety and the exocyclic amino group of the 3′-neighboring Ade) [36],
which stabilizes the WC hydrogen-bonding interactions between the nucleobases in the base pairs
4–7 [36] but does not contribute to the differences in the melting temperature between DNA1,g, DNA1,a,
and DNA1,b [39,47], even though, compared to a, nWC involving b is more stable [39], and even
though, compared to ssDNA, nWC in dsDNA is more stable [47]. In addition, while our PMD1 and
PMD2 structures do not show the experimentally observed stabilizing effect of nWC on WC in the
base pairs 4–7, they do agree with the remaining three experimental observations concerning nWC.
Moreover, if our relative nWC occupancies (calculated as percentual differences) are quantitatively
correct, the cause of the difference in the stability between nWC involving a and b resides in the
geometric preferences of the adducts (and not in the differences between dsDNA and ssDNA).

3.2. Errors

Every measurement, no matter whether experimental or theoretical, is associated with errors:
perfect measurement is impossible: every measurement is only approximate. In general, however,
compared to experimental measurements, theoretical, computational results are prone to larger errors,
because the latter do not actually observe real phenomena, but merely simulate (imitate) them,
and they do so by using simplified models. The combined LRA-LIE approach, as employed in
our present work, is no exception, despite the physical soundness and beautiful simplicity of the
expression for the calculation of ∆G as the sum of ∆Gele1 (LRA), ∆Gele2 (LRA), and ∆Gvdw1 (LIE)
contributions [125–127,129,130]. Simply put, it is extremely difficult to calculate absolute binding free
energies [127,129]; and the larger the molecules involved, the more degrees of freedom, and the bigger
the problem [131]. Besides the problem with obtaining accurate ∆G values, there is also the issue of
assessing the uncertainty of the ∆G values themselves [127]. We use three uncertainty metrics, namely,
(1) convergence errors [127] (calculated as differences between ∆G values obtained from the first and
second halves of PMD simulations), (2) standard deviations (calculated from ∆G values obtained
from four parallel sets of PMD simulations), and (3) spreads (calculated as maximum differences
between four parallel sets of ∆G values). While high convergence errors would imply that our 5.0 ns
PMD simulations are too short, high standard deviations would imply that our four parallel sets of
PMD simulations are too few; and large spreads would illustrate the necessity of generating multiple
parallel sets of PMD simulations. The uncertainties in the rankings of the free energy values are low
(∆Gvdw1: a < g and b < g; ∆Gele1: g < a; ∆Gele2: g < a), medium (∆Gele1: g < b; ∆G: b < g), and high
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(∆Gele2: b < g; ∆G: g < a), for the convergence errors smaller, similar (within ST of 0.3 kcal/mol),
or greater than the unsigned free energies, and our confidence in the meaningfulness of the rankings
are, correspondingly, high, medium, and low. However, no average convergence error in ∆Gvdw1,
∆Gele1, ∆Gele2, and ∆G is greater than 0.4, 1.5, 1.1, and 2.2 kcal/mol, respectively, and, therefore, if we
adopt 2.0 kcal/mol as the threshold of good convergence [127,130,132] only the convergence error of
∆G for DNAa, and only due to the convergence error of ∆G for DNA2,a, exceeds this good convergence
threshold, and only by 0.2 kcal/mol. We would have to generate one or more additional sets of PMD
simulations to lower the convergence error, but no improvement in the accuracy could be expected
because our ∆G values for DNAg, DNAa, and DNAb are already perfectly linearly correlated with the
corresponding melting temperatures.

3.3. Strengths and Weaknesses

Interpreting quantitative relationships based on three points requires extreme caution because
the probability of fortuitous correlations is not negligible. We would like to emphasize that we
use the original scaling parameters of the van der Waals (α = 0.161) and electrostatic (β = 0.500)
interaction energies [127], because neither the refined scaling parameters (α = 0.180, βg = 0.430,
βa = βb = 0.370) [133] nor free parametrization (all combinations of α and β from 0.000 to 1.000 by 0.001
increments) improves the linear correlation between the free energies and the corresponding melting
temperatures, which is supportive of the physical meaning residing in the free energy contributions to
∆G, and we would caution against the use of α and β parameters as freely adjustable fudge factors if
the purpose of obtaining binding free energies is truly scientific (Proclus): “For the task of science is
the recognition of causes, and only when we recognize the causes of things do we say that we know
them.” If the original α and β values do not result in a good agreement between the calculated free
energies and the corresponding experimental quantities, it is, in our opinion, less likely, due to the lack
of robustness of the combined LRA-LIE approach but, rather, due to a problem with the molecular
model or due to an insufficient sampling of the configurational space. The latter is the probable reason
why our ∆G rankings for DNA variants with swapped identities of the nucleobases in the base pair 6
with respect to DNA1 (T·A: g < b < a) and DNA2 (C·G: g = b < a) were incorrect (and therefore not
included in the dataset used for the interpretation of the relationships between structures, free energies,
and melting temperatures).

The reliability of this computational approach depends, to a certain extent, on the availability of
the corresponding experimental quantities. In addition if the differences between the experimental
quantities translate into sub-1.0 kcal/mol differences in the calculated free energies, such as, in our
case of DNA1 vs. DNA2, it is difficult, if at all possible, to distinguish such small differences with high
confidence, and the reason for this is, ultimately, as with any other computational or experimental
technique, the detection limit, which is a function of both signal strength (sensitivity) and signal
stability (noisiness). Only massively parallel PMD simulations would provide a definite answer about
the true sensitivity and noisiness limits—and only for a given case, really, because the limits are partly
case-specific—but such an undertaking is beyond the scope of our present work.

4. Materials and Methods

4.1. Structural Models

NMR structures of dsDNA decamers in B-conformation, PDB IDs 2KH3 [39] (a; model ID 1)
and 1HM1 [36] (b; model ID 1) consisting of two complementary DNA strands (strand ID 1:
5′-CTATXYTTCA-3′, where X-5 is a or b, and Y-6 is Ade, A; and strand ID 2: 5′-TGAAZCATAG-3′,
where Z-15 is Thy, T) were obtained from the Protein Data Bank [134], and named, for convenience,
dsDNA1,a and dsDNA1,b, respectively; dsDNA2,a and dsDNA2,b were generated from their
corresponding dsDNA1 models by replacing the original nucleobases Y-6 and Z-15 with Gua and
Cyt, respectively, for the purpose of exploring two sequence-specific effects: (1) an intra-strand
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non-WC hydrogen bond involving the formyl group of the FAPy moiety and the exocyclic amino
group of the 3′-neighboring Ade, but not the Gua, and (2) two vs. three WC hydrogen bonds
involving the complementary nucleobases Y·Z (A·T vs. G·C). Four single-stranded DNA models
(ssDNA1,a, ssDNA1,b, ssDNA2,a, and ssDNA2,b), were created by extracting the nucleotides 4–6 from the
corresponding dsDNA models (5′-TXY-3′, where X-2 is a or b, and Y-3 is Ade or Gua); and these trimeric
models were considered to be suitable approximations of the corresponding decameric strands 1 in the
dissociated, single-stranded configuration [135,136]. The reference dsDNA1,g model in the standard
B-conformation [121] was built using X3DNA 2.1 [122,123] (fiber −seq=CTATXYTTCA −b, where X-5
is Gua and Y-6 is Ade), and the three remaining models—dsDNA2,g, ssDNA1,g, and ssDNA2,g—were
created analogously to the corresponding DNAa and DNAb models.

4.2. Energetical Models

Atom types, bond lengths, bond angles, torsion angles, and partial atomic charges of the natural
nucleotides in the DNA models were described using the AMBER 95 Force Field [137,138]. The total
charge of each 5′-terminal, non-terminal, and 3′-terminal natural nucleotide was, −0.3079, −1.0000,
and −0.6921 e, respectively (amber11/data/leap/lib/DNA_CI.lib) [138]. Atom types, bond lengths,
bond angles, and torsion angles of a and b were primarily described by the AMBER 95 Force Field [137],
secondarily by the General AMBER Force Field (which is compatible with the AMBER 95 Force
Field) [139], and tertiarily by the analogy to the AMBER 95 Force Field. Partial atomic charges of a
and b were derived using the Restrained Electrostatic Potential (RESP) method [140], as implemented
in AMBER 11 (resp −O −i resp.in −o resp.out −p resp.pch −t resp.chg −e esp) [138], applied to
the quantum-mechanically calculated electrostatic potential (ESP) at the Hartree-Fock (HF) level
of theory with 6-31G(d) basis set using Gaussian 09 (#HF 6−31G(d) opt scf = tight pop = MK
iop(2/11 =1) iop(6/33 = 2)) [141] for 8-methyl-9-hydroxy-AFB1, with the carbon atom of the methyl
group corresponding to the C1′ atom of the dRib to which the FAPy moiety is attached. The net
charges of the methyl groups in 8-methyl-9-hydroxy-AFB1 were evenly distributed among all atoms
of FAPy-N7-9-hydroxy-AFB1, and rounded to four decimal places; thus the original partial atomic
charges of the dRib (including the atoms C1′ and H1′) and the net −1 e charge of X-5 nucleotide
containing either a or b were preserved.

4.3. Solvation

The net −18 and −2 e charge of dsDNA and ssDNA models, respectively, was neutralized by an
addition of 18 and 2 sodium ions (each with +1 e charge) on a grid surrounding the DNA: randomly,
but not closer than 5 Å from any atom of the DNA, not farther than 18 Å from the geometrical center of
the DNA, and not closer than 6 Å from each other. The resulting electroneutral complexes, composed of
DNA and sodium ions, were immersed in a spherical grid—being centered at the geometrical center
of DNA and having 28 Å in radius—of TIP3P water molecules [142] using the preparation program
Qprep (version 5.03) from the molecular dynamics package Q (version 5.0) [124].

4.4. Simulation

The variable parts of the DNAg, DNAa, and DNAb models—i.e., g (15 atoms; net charge−0.0888 e),
a (54 atoms; net charge−0.0888 e), and b (54 atoms; net charge−0.0888 e)—would be used as the probes
(Tables S2 and S3; Figure S1), for which their van der Waals interaction energies (Evdw), modeled using
Lennard-Jones potential, and their electrostatic interaction energies (Eele), modeled according to the
Coulomb’s law, with all the components of the surrounding environment—i.e., with the probe-less part
of the DNA, the ions, and all the water molecules—would be collected from MD simulations for these
are the potential energies from which the van der Waals (∆Gvdw) and electrostatic (∆Gele) contributions
of the probe to the free energy of dsDNA formation (∆G) would be obtained. MD simulations would
be performed, separately, using the normally charged probe (state ID 1) and the uncharged probe
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(state ID 2; with all partial atomic charges set to 0 e), and the charged probe would be used for collecting
Evdw1, Eele1, and Eele2, where the integers 1 and 2 denote the simulated state.

The solvated DNA models, containing the probe in the state 1, were prepared for the subsequent
collecting of structures and energies by a well-tried, continuous series of 12 equilibrating MD
simulations (EMD) [143] using the simulation program Qdyn (version 5.04) from the molecular
dynamics simulation package Q (Table S4): Water molecules were subjected to the surface-constraint
all-atom solvent (SCAAS)-type boundary conditions [124]. DNA was prevented from moving toward
the boundary of the simulation sphere, but not hindered in its tumbling motion, by being restrained to
its geometrical center with a force constant of 2.0 kcal/(mol·Å2) (dsDNA), or by having the C1′ atom of
the nucleotide X-2 restrained to its initial coordinates with a force constant of 50 kcal/(mol·Å2) (ssDNA).
No cut-off was applied to non-bonded interactions involving the atoms of the probe. Non-bonded
interactions between atoms not belonging to the probe were evaluated explicitly and using the Local
Reaction Field method for distances 6 and > 10 Å, respectively. Four parallel equilibrations were
generated for each solvated DNA model by executing the equilibrating MD simulation protocol with
four different values of the seed for the pseudo-random number generator (which is used by Qdyn to
generate initial velocities). The collecting of structures (every 1.0 ps) and energies (every 0.02 ps) was
performed in the last 5000 ps of 5000 ps (with the probe being in the state 1) and 5500 ps (with the probe
being in the state 2) of 96 producing MD simulations (PMD1 and PMD2), each of which was a natural
continuation of the 12th EMD simulation (ensemble, constant NVT; temperature, 298.15 K; step size,
2 fs; bonds involving hydrogen atoms restrained using the SHAKE algorithm). Hence, 5000/250,000
and 480,000/24,000,000 structural/energetical configurations were harvested per PMD simulation and
in total, respectively.

4.5. Visualization

Molecular structures were visualized using PyMOL (version 0.99rc6) [144] and VMD
(version 1.87) [145].

4.6. Measurement

The size of the probe was determined by the number of non-hydrogen atoms constituting the
probe. Every 10th PMD structure was characterized—based on three attributes of bodies: locality,
length, and angularity—using X3DNA. The presence of hydrogen-bonding interactions—both WC
(involving complementary nucleobases, including FAPy) and non-WC (involving the formyl group
of the FAPy moiety and the exocyclic amino group of the 3′-neighboring Ade)—was determined,
for every PMD structure, using hydrogen · · · acceptor distance (62.5 Å) and donor–hydrogen · · ·
acceptor angle (>135◦) criteria, and hydrogen-bonding occupancies were calculated as fractions of
the structures in the ensemble that satisfied these arbitrary, but stringent, geometrical standards for
hydrogen-bonding [146]. The conformation of Cyt-16 in PMD structures of dsDNA was classified as
perturbed when the distance between the geometrical centers of Cyt-16 and Gua- or FAPy-5 exceeded
our arbitrary, but judicious, threshold of 8.0 Å.

The contribution of the probe to the absolute free energy of dsDNA formation was calculated
from the average Evdw1, Eele1, and Eele2 interaction energies (〈· · ·〉), which were extracted from the
collections of energies from PMD simulations of dsDNA (ds) and ssDNA (ss) models using Qfep
(version 5.01) from the molecular dynamics simulation package Q as follows (Equations (1)–(4)): [125]

∆G = ∆Gvdw1 + ∆Gele1 + ∆Gele2 (1)

∆Gvdw1 = α∆Evdw1 = α(〈Evdw1,ds〉 − 〈Evdw1,ss〉) (2)

∆Gele1 = β1∆Eele1 = β1(〈Eele1,ds〉 − 〈Eele1,ss〉) (3)

∆Gele2 = β2∆Eele2 = β2(〈Eele2,ds〉 − 〈Eele2,ss〉) (4)
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where α = 0.161 and β1 = β2 = 0.500 = β [127,131]. The relative free energies of dsDNAg, dsDNAa,
and dsDNAb formation were calculated as differences between the corresponding absolute free
energies (Equation (5)):

∆∆G f−g = ∆G f − ∆Gg (5)

where f is either a or b.
The structural and energetical quantities obtained from parallel PMD simulations were simply

averaged. The rounding error was set, arbitrarily, but judiciously, to 0.1 Å for distances, 1.0◦ for
angles, 1.0% for occupancies, and 0.1 kcal/mol for energies. The average energetical quantities
were also calculated (1) separately for each of the four parallel sets of PMD simulations (for the
purpose of assessing non-cumulative uncertainties in these quantities as standard deviations and
spreads), and (2) separately for the first and last 130,000 energies (for the purpose of assessing
non-cumulative convergences of these quantities as differences between the two averages). An arbitrary,
but judicious, significance threshold (ST) of three times the rounding error was set for the structural and
energetical differences between the DNA models distinguished by the identities of X-5, Y-6, and Z-15
nucleotides. The rankings of the DNA models according to the structural and energetical quantities,
produced from the sums of integer significance scores obtained from the matrices of differences (δ)
between the DNA models (−1, if δ 6 −ST; 0, if −ST < δ < ST; 1, if ST 6 δ), were compared with
each other and with the ranking according to the experimental Tm (a < g < b). In the cases of
matching rankings, linear correlation coefficients (R2; ST set to 0.96) were calculated by comparing
the actual quantities, for the purpose of which only one set of experimental Tm values—representing,
approximately (within the experimental error of 1 K), the average of DNA1 and DNA2—was used:
Tm,g = 312 K, Tm,a = 298 K, and Tm,b = 325 K, indicating that Tm,g lies, approximately, in the middle
between Tm,a (∆Tm,a−g = −14 K) and Tm,b (∆Tm,b−g = 13 K) [39,47].

5. Conclusions

Having identified the general attributes of a (bulky), b (as bulky as a), dsDNAa (disordered and
loose) and dsDNAb (disordered, but less than dsDNAa, and compact), and thus having answered
our main question, we ask ourselves: (1) How do the attributes of thermal (de)stabilization modulate
(i) the efficiency and fidelity of the bypass of these lesions by the translesion-synthesis DNA
polymerase ζ (which “preferentially misincorporates Ade opposite the lesion [64,65],” suggesting that
this polymerase is “responsible for the predominant G·C→T·A mutation” induced by FAPy-AFB1
adducts) [64,65], (ii) the recognition of these lesions by the global-genome-repair-specific XPC-HR23B
complex (which “screens the genome for damage on the basis of disrupted base-pairing instead of
lesions per se”) [88], and (iii) the subsequent dual incision (which is the “rate-limiting step of the nucleotide
excision repair [86],” and which releases an oligonucleotide containing the lesion) [147], and (2) why is
the thermal stabilization of DNA duplex by b (which is the dominant FAPy-N7-9-hydroxy-AFB1 adduct in
genomic DNA) [54] not common among bulky-and-intercalated-but-not-cross-linked DNA adducts [36]?
These questions remain to be answered by future experimental and theoretical studies.

Supplementary Materials: The following are available online, Table S1: Contributions of the probes (g, a, or b) to
the absolute free energy of dsDNA formation (kcal/mol), Table S2: Atom types and partial atomic charges of the
Gua probe, Table S3: Atom types and partial atomic charges of the α- and β-FAPy-N7-9-hydroxy-AFB1 probes,
Table S4: Parameters of 12-stage equilibrating molecular dynamics (EMD) simulations, Figure S1: Atom identifiers
of the probes.
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Abbreviations

The following abbreviations are used in this manuscript:

AFB1 aflatoxin (Aspergillus flavus toxin) B1

a α-FAPy-N7-9-hydroxy-AFB1

b β-FAPy-N7-9-hydroxy-AFB1

g Gua
AFB1-E exo-8,9-epoxide of AFB1

dsDNA double-stranded DNA
∆∆G relative free energy of dsDNA formation
∆G contribution of a probe (g, a, or b) to the absolute free energy of dsDNA formation
EMD equilibrating MD simulation
FAPy formamidopyrimidine
LIE linear interaction energy
LRA linear response approximation
MD molecular dynamics
PMD producing MD simulation
ssDNA single-stranded DNA
Tm melting temperature
WC Watson-Crick
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