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Thymidylate synthase drives the phenotypes of epithelial-to-
mesenchymal transition in non-small cell lung cancer
Mohammad Aarif Siddiqui 1,2, Paradesi Naidu Gollavilli2, Vignesh Ramesh2, Beatrice Parma2, Annemarie Schwab2,
Maria Eleni Vazakidou2, Ramakrishnan Natesan3, Ozge Saatci4, Ida Rapa5, Paolo Bironzo5, Harald Schuhwerk6, Irfan Ahmed Asangani3,
Ozgur Sahin4, Marco Volante5 and Paolo Ceppi 1,2

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) enhances motility, stemness, chemoresistance and metastasis. Little is
known about how various pathways coordinate to elicit EMT’s different functional aspects in non-small cell lung cancer (NSCLC).
Thymidylate synthase (TS) has been previously correlated with EMT transcription factor ZEB1 in NSCLC and imparts resistance
against anti-folate chemotherapy. In this study, we establish a functional correlation between TS, EMT, chemotherapy and
metastasis and propose a network for TS mediated EMT.
METHODS: Published datasets were analysed to evaluate the significance of TS in NSCLC fitness and prognosis. Promoter reporter
assay was used to sort NSCLC cell lines in TSHIGH and TSLOW. Metastasis was assayed in a syngeneic mouse model.
RESULTS: TS levels were prognostic and predicted chemotherapy response. Cell lines with higher TS promoter activity were more
mesenchymal-like. RNA-seq identified EMT as one of the most differentially regulated pathways in connection to TS expression.
EMT transcription factors HOXC6 and HMGA2 were identified as upstream regulator of TS, and AXL, SPARC and FOSL1 as
downstream effectors. TS knock-down reduced the metastatic colonisation in vivo.
CONCLUSION: These results establish TS as a theranostic NSCLC marker integrating survival, chemo-resistance and EMT, and
identifies a regulatory network that could be targeted in EMT-driven NSCLC.

British Journal of Cancer (2021) 124:281–289; https://doi.org/10.1038/s41416-020-01095-x

BACKGROUND
Epithelial-to-mesenchymal transition (EMT) is an embryonic process
hijacked by epithelial-like carcinoma cells to gain mesenchymal-like
phenotype. Oncogenic EMT is a gamut of functional changes, such
as enhanced motility, invasiveness, stemness, aggressiveness and
chemoresistance, and is a key determinant of metastasis. EMT is a
complex cascade of molecular events engendered by master EMT
transcription factors (EMT-TFs, ZEB1/2, SNAI1/2 and TWIST) in
response to extracellular cues including cytokines and hypoxia.1,2

EMT-TFs activate multiple molecular pathways that ultimately leads
to alteration in cytoskeleton and cell-adhesion proteins.3 EMT is a
key early event in NSCLC biology and steers epithelial-like cells
towards stemness, chemoresistance and metastatic dissemination.4,5

It is engineered through coordination of divergent molecular
pathways,6 and presumably orchestrated by different EMT-TFs at
different progression time points.7–9 How these pathways connect
to each other and affect different modalities of EMT is still largely
unexplored.
Thymidylate synthase (TS) is a de novo pyrimidine biosynthesis

enzyme that catalyses the conversion of deoxyuridine monopho-
sphate to thymidine monophosphate, essential for DNA synthesis

and cell proliferation. It is targeted by chemotherapeutic drugs,
like pemetrexed, in NSCLC, and has been widely studied as a
chemoresistance marker.10 Our lab recently showed a correlation
between TS expression and EMT markers in NCI-60 panel of cancer
cell lines originating from different tissues11 and established its
role in maintaining the de-differentiated mesenchymal-like state
of triple-negative breast cancer.12 In this study we present
evidence that TS is not a mere proliferation marker in NSCLC,
but also has a direct role in driving EMT phenotypes, with several
biological and clinical implications.

METHODS
Cell lines
A549 (NCI), SK-MES-1 and Calu-1 (both ATCC) were cultured in RMPI-
1640, supplemented with 10% FBS, 1%Pen/Strep and 1%L-
Glutamine (all from Sigma). NIC-H23 cells were cultured in RMPI-
1640, supplemented with 10% FBS, 1%Pen/Strep, 1%L-Glutamine
and 1mM sodium pyruvate (Sigma). LL/2, Ladi 3.1 and Ladi 2.1 cells
were cultured in DMEM (Sigma) supplemented with 10% FBS, 1%
Pen/Strep and 1%L-Glutamine. Human cells were STR-profiled, used
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between passages 3 and 15, examined for mycoplasma and
maintained in Plasmocin (Invivogen) to prevent contamination.

Lentiviral transduction
Plasmids for TS knock down (TRCN0000456666 for human cell
lines and TRCN0000317583 for murine cell lines) are from Sigma.
Scrambled pLKO.1 (referred to as pLKO) was used as control.
Plasmids from TYMS-promoter reporter (HPRM33357-LvPM02),
GAPDH promoter reporter (HPRM39787-LvPM02), TS expression
vector (Ex-T0406-LV105b) and control vector (Ex-Neg-LV105b) are
from GeneCopoeia. For production of lentiviral particles, 293T cells
were transfected with 8 µg knock-down/expression vectors and 2
µg of pMDL, pVsVg and pRevRes in complex with 24 µg PEI
(Polysciences). After 48 h, supernatant was collected, centrifuged
and filtered. For transduction, 105 cells were seeded in a six-well
plate and infected in presence of 8 μg/ml polybrene (Sigma).
Selection was done with 3 μg/ml puromycin (Sigma) and cells
were maintained in 1 µg/ml puromycin.

RNA sequencing
Total RNA was extracted using miRNeasy kit (Qiagen) following the
manufacturer’s instructions. RNA-Seq libraries were constructed
using the TruSeq sample Prep Kit V2 (Illumina). Briefly, 1 μg of
purified RNA was poly-A selected and fragmented with fragmenta-
tion enzyme. After first and second strand synthesis from a template
of poly-A selected/fragmented RNA, other procedures from end-
repair to PCR amplification were done according to library
construction steps. Libraries were purified and validated for
appropriate size on a 2100 Bioanalyzer High Sensitivity DNA chip
(Agilent Technologies). The DNA library was quantified using Qubit
and normalised to 4 nM before pooling. Libraries were pooled in an
equimolar fashion and diluted to 10 pM. Library pools were
clustered and run on Nextseq500 platform with paired-end reads
of 75 bases, according to the manufacturer’s recommended protocol
(Illumina). Raw reads passing the Illumina RTA quality filter were pre-
processed using FASTQC for sequencing base quality control.
Sequence reads were mapped to UCSC human genome build using
TopHat and differential gene expression determined using Cufflinks
2.1.1 and Cuffdiff2.1.1 as implemented in BaseSpace. The sequen-
cing data has been submitted GEO dataset and could be accessed
with GSE148589 accession number.

Quantitative real-time PCR
Total RNA was extracted using miRNeasy kit (Qiagen) and 50 ng was
converted to cDNA using Tetro cDNA synthesis kit (Bioline) with
random hexamers. GAPDH was used as an internal control. TaqMan
probes (Thermo-Fisher) were used for quantification in Applied
Biosystems 7300. Fold change was calculated using the ΔΔCt method.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA), for computing overlap, on the
differentially expressed genes upon TS knockdown was performed
with the gene set collections in the Molecular Signatures Database
v6.1 software. For EMT gene set enrichment analysis in the patient
data, normalised gene expression values were downloaded from
GEO database (GSE101929) and cbioportal platform for TCGA
profile (LUAD, PanCaner). For calculation of TS Knockdown (KD)
score, first, z scores of the down- and up-regulated genes upon TS
knockdown were calculated. Then, the sum of z scores of
downregulated genes was subtracted from the sum of z scores of
upregulated genes and KD scores were obtained for each patient.
Patients were grouped for the analysis based on either the median
value of TYMS gene expression or KD score.

Survival analysis
Normalised gene expression profiles of lung cancer samples were
downloaded from GEO (GSE50081, GSE72094, GSE30219) and
mRNA expression values as Z-scores were obtained for TCGA

profiles (LUAD and LUSC) from cbioportal platform. Thirty-five
samples from completely resected NSCLC patients were collected
from the files of San Luigi Hospital, Orbassano, Turin, Italy. None of
the patients received either neo-adjuvant chemotherapy or
radiation therapy and all received adjuvant cisplatin and
pemetrexed. All cases were reviewed and classified using
anonymised samples. Clinical samples were stratified as TYMS-
low and TYMS-high based on the median value of gene
expression as cut-off. Kaplan–Meier estimate was used to generate
survival curves and significance between the two groups were
analysed using log-rank test in R software. Survival graphs from
the KM Plotter database was generated based on TYMS expression
by using the auto select best cut-off option. TS KD score for
survival curve was calculated as described in the previous section.

Western blot analysis
Cells were lysed in RIPA buffer and quantified using Pierce BCA kit
(Thermo-Fisher). Proteins lysates (10–20 μg) were resolved on 10%
SDS–PAGE gels and transferred to PVDF membrane (Thermo-
Fisher). Membranes were blocked in 5% Milk (BioRad) in 1XTBS-T
and incubated overnight in primary antibodies diluted in 5% milk
at 4 °C. anti-TS (EPR4545) and -SPARC (SP205) antibodies were
purchased from Abcam; anti-E- Cadherin (4A2), -Vimentin (D21H3),
-AXL (C89E7), -FOSL1 (D80B4) and -β-Actin (8H10D10) were
purchased from Cell Signaling. After incubation with secondary
antibodies (Southern Biotech), the detection was performed using
ECL (Thermo-Fisher) and developed on X-Ray film (Thermo-Fisher)
using a chemiluminescence imager, AGFA CP100.

Proliferation assay
For proliferation assay cells were seeded in 96-well plates in low
density (5–20% initial confluency). Plates were loaded in IncuCyte-
Zoom (Essen Bioscience) and scanned every 2–4 h. For each scan,
phase contrast image was acquired from every well and was
analysed by IncuCyte Zoom software.

In vitro drug treatment
Pemetrexed was purchased from Sigma. For in vitro treatment
cells were plated in a 96-well plate (4000 cells/well) and incubated
overnight. For cytotoxicity death assay, 2000X Cytotox Green
Reagent (Essen Bioscience) was diluted in RPMI and working
dilutions of pemetrexed was prepared in Cytotox Green supple-
mented media. After treatment, plate was loaded in Incycuyte
Zoom and images were acquired in real-time for phase to quantify
growth. Activity of Cytotox reagent was simultaneously acquired
at the green channel to quantify death. Incycuyte Zoom software
was used for the analysis and data export.

Migration assay
For migration assay cells were plated in 96-well plates so that they
reach 90% confluency overnight. Cells were wounded using
WoundMaker (Essen Biosciences) as per the instruction from the
manufacturer. Plates were loaded in IncuCyte Zoom and were
automatically scanned for programmed time interval. For each scan,
wound width was recorded by the software and the proliferation
inside the wound was normalised to the proliferation outside the
wound, giving relative wound density for each time point.

Tumoursphere culture
In all, 40,000 cells were seeded in triplicates in ultra-low
attachment six-well plates (Corning) in complete Mammocult
medium (Stem Cell Technologies), prepared according to the
manufacturer’s instruction. After formation, spheres were counted
by spinning at 300 g for 5 min and suspending in PBS (Lonza).

siRNA transfection
Reverse transfection was done with Lipofectamine RNAiMAX
Transfection Reagent (Thermo). 50 nM siRNA were mixed with
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1.5 µl transfection reagent in 200 µl Opti-MEM (Thermo) and
incubated for 15 min. After incubation transfection complex was
added to the surface of a 12-well plates and 105 cells, suspended
in 800 µl, were added. Cells were incubated at 37 °C, 5%CO2. Cells
were lysed for western blot after 72 h.

In vivo experiments
C57BL/6 strain were used as experimental model to study effect of
Ts-depletion in syngeneic LL/2 cells to prevent immune rejec-
tion.13 Mice were anaesthetised using isoflurane and euthanised
by cervical dislocation.
For subcutaneous injections, 1 × 106 cells resuspended in 50 µl

0.9% NaCl were mixed with Matrigel (Corning) in a ratio 1:1 (v:v).
Cells were injected in right flanks of 10–15-weeks-old female
C57BL/6, with eight mice per group. Calliper measurements were
taken every 4th day and tumour volume was calculated using the
formula (Length ×Width2 × π)/6.

For tail-vein metastasis assay, 5 × 105 LL/2 pLKO and shTs cells
were resuspended in 100 µl PBS and injected in the tail vein of
female C57BL/6, with 10 mice per group. Lung metastases were
monitored by bioluminescence imaging (BLI) 4 weeks after
injection. Anesthetised mice were intraperitoneally injected
with 150 mg/kg D-luciferin (Kayman Chemicals). Biolumines-
cence images were acquired with Lumina III in vivo Imaging
System (IVIS, Perkin Elmer). For all the mice exposure time
was maintained at 180 s. Raw IVIS images were analysed with
Living Image software and the metastasis was represented as
radiance.

Statistical analysis
Statistical tests were performed with the GraphPad software v.7
comparing groups of different conditions with replicates. In all
tests, the statistical significance was set at p ≤ 0.05.
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Thymidylate synthase drives the phenotypes of epithelial-to-mesenchymal. . .
MA Siddiqui et al.

283



RESULTS
TS is an essential NSCLC gene with prognostic/predictive power
and correlates with EMT signatures
We evaluated different clinical aspects of TS in NSCLC and assayed
its correlation with EMT. As a rate-limiting de novo pyrimidine
biosynthesis enzyme, TYMS (gene coding TS) has been proposed
as an essential gene, but so far, no functional data have been

shown in NSCLC. To evaluate dependency of NSCLC on TS, a
dataset generated from a genome-wide CRISPR/Cas9 screen of
18,009 genes in 324 cancer cell lines was exploited.14 Based on a
gene fitness score that defined how strongly a cancer is
dependent on a gene for survival and growth, a priority score
was generated to identify the most promising drug targets.
Among all the pan-cancer fitness genes identified, TS ranked 30th
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(top 1%, Fig. 1a, see Supplementary Table 1 for the top 50 genes).
In NSCLC subsets, it ranked 2nd and 19th in squamous cell
carcinoma (SCC) and adenocarcinoma (ADC), respectively (Fig. 1b),
indicating that NSCLC strongly depend on TS for sustained
growth. TS was also found to be 5th among the pan-cancer
priority targets identified (Supplementary Fig. 1A). TS was the only
target of pemetrexed that exclusively appeared as significant in all
the three lists (Supplementary Fig. 1A–C). In concordance, TS
expression has been consistently found increased in NSCLC
compared to adjacent normal tissues15 and correlated with poor
prognosis in different expression datasets analysed (Fig. 1c, d). TS
is targeted by the anti-folate drug pemetrexed, and its over-
expression has been proposed to determine chemoresistance.16

For in vitro validation, we established shRNA-mediated TS
knockdown in two NSCLC cell lines and observed a significant
increase in pemetrexed sensitivity (Fig. 1e, f). To test if in vitro
evidence were also reflected in the outcome of chemotherapy-
treated patients, we retrospectively analysed a small case-series of
NSCLC patients treated with pemetrexed-based chemotherapy
and found that higher TS gene expression significantly associated
with worse prognosis (Fig. 1g). These results emphasise the
importance of TS as a prognostic and predictive marker, in line
with previous literature.10 However, chemoresistance is also an
important hallmark of EMT, and recent pivotal findings from our
lab associated TS expression with EMT markers in cancers from
different origins and suggested a potential direct role.11 To test
this in NSCLC, we analysed cells belonging to the CCLE dataset
and found that lung cancer cell lines with high TS expression have
enrichment in EMT signature genes (Supplementary Fig. 1F, G).
When further categorised as epithelial or mesenchymal based on
ratio of Vimentin (VIM) and E-Cadherin (CDH1) expression,17

(Supplementary Fig. 1H) mesenchymal-like cells expressed higher
TS compared to epithelial-like (Fig. 1h). To further demonstrate its
clinical significance, we investigated multiple datasets and found
that patients with higher TS expression were significantly enriched
for hallmark EMT genes (Fig. 1i, j and Supplementary Fig. 1I, J).
These results indicate that TS is not only an essential proliferation
gene with a strong prognostic and predictive role, but also has a
potential power in EMT in NSCLC.

Endogenous TS level is an important determinant of EMT
phenotype
TS expression has been shown to be highly varied in clinical
samples stained for immunohistochemistry15,18 and bioinformatic
analysis revealed that, within a tumour, individual cells can have
extremely diversified TS expression (Supplementary Fig. 2A, B).
When mapped to a published gene signature, individual cells with
higher TS expression within a tumour showed a significant
enrichment of EMT (Supplementary Fig. 2C). Hence, we postulated
that intrinsic level of TS could be a strong determinant of EMT. To
functionally validate the hypothesis, Calu-1 (a SCC cell line) was
stably transduced with a promoter reporter construct19 that
expressed mCherry fluorescent protein transcribed from TYMS
promoter (Fig. 2a). After puromycin selection, cells were FACS-
sorted for highest and lowest red fluorescence (indicated further
as TSHIGH and TSLOW, Fig. 2b). TSLOW cells proliferated slower
(Fig. 2c) and showed a distinct epithelial phenotype, whereas
TSHIGH resembled a mesenchymal-like morphology (Fig. 2d). To
confirm differential EMT status at molecular level, expression of E-
CAD and VIM, markers for epithelial-like and mesenchymal-like
cells respectively, was quantified. At mRNA level, even with a
minimal difference in TS expression, there was a striking difference
between the expression of CDH1 (gene coding E-CAD) and VIM
(Fig. 2e). TSLOW cells also expressed more E-CAD and lesser VIM
compared to TSHIGH cells at protein level (Fig. 2f), backed up by E-
CAD changes observed in Calu-1 cells with knockdown and
overexpression of TS (Supplementary Fig. 2D). Also, with the

knockdown of TS, there was proliferation loss in the cells
(Supplementary Fig. 2E) as observed with the cells after sorting.
When assayed in proliferation-normalised wound migration assay,
TSLOW cells migrated slower than TSHIGH cells (Fig. 2g, h). As a
control for the promoter reporter assay, Calu-1 cells were sorted
for GAPDH promoter activity and no difference in EMT markers
and migration was observed in GAPDHHIGH and GAPDHLOW cells
(Fig. 2f–h). TSLOW cells also had reduced self-renewal capacity,
quantified as the number of tumourspheres formed in a low-
adherence culture (Fig. 2i). Further validation came from A549,
that we had previously characterised to have lost stem cell
phenotype after TS knockdown.11 When sorted in TSHIGH and
TSLOW cells (Supplementary Fig. 2F), A549 cells, that exist in partial
EMT state,20 recapitulated the EMT phenotypes observed in Calu-1
(Fig. 2j, k), although change in the self-renewal capacity was not
observed (Supplementary Fig. 2G). We further independently
validated TS-mediated EMT by knocking down TS in NSCLC cell
lines SK-MES-1 (SCC cell line) and NCI-H23 (ADC cell line), where TS
depletion led to upregulation of E-CAD and downregulation of
VIM in SK-MES-1 (Supplementary Fig. 2H) and downregulation of
VIM and ZEB1 (mesenchymal marker) in NCI-H23 (Supplementary
Fig. 2I).
Interestingly, a rapid reversion of EMT phenotype was observed

in the sorted Calu-1 cells, concomitant with the normalisation of
TYMS promoter activity (Supplementary Fig. 2J). This was more
evident in functionally distinct A549 cells, where the sorted cells
showed higher TS levels in TSHIGH a day after sorting, followed by a
complete normalisation of TS and EMT markers after few passages
(Supplementary Fig. 2K). Therefore, the phenotypic alterations
observed between sorted cells were transient and in match with
the differences in TS levels. These data strongly indicate a direct
control of TS on EMT phenotype and hints that TS might have role
to play in epithelial plasticity.

TS regulates EMT genes in NSCLC
Further, to identify the mediators of TS-promoted EMT, RNA was
sequenced from Calu-1 TSHIGH and TSLOW cells in parallel with
A549 cells with TS knockdown. Where Calu-1 sorted cells have
shown growth reduction (Fig. 2c), A549 cells with TS knock-down
proliferated normally (Supplementary Fig. 3A). Hence, two
different cell lines that either have or don’t have a loss in
proliferation, and that are processed by two independent
techniques, were subjected to investigation. Pathway analyses
consistently indicated EMT among the topmost differentially
regulated pathways (Fig. 3a, b), confirming the EMT switch
observed with E-CAD and VIM (Fig. 2f, j). KRT19, SPARC, SPOCK,
LINC00707 (lung cancer promoting lincRNA), FOSL1 and AXL
(identified as downstream targets of TS as they appeared in both
signatures) were qPCR validated in both cell lines (Fig. 3c and
Supplementary Fig. 3B). Of these genes, SPARC, FOSL1 and AXL,
that have an established role in EMT in NSCLC,21–23 were strongly
down-regulated at protein level in A549 cells with TS knockdown
(Fig. 3d). Differentially expressed genes (DEGs) were used to derive
a knockdown score, which predicted a worse survival associated
with lower TS knockdown (higher TS levels, Fig. 3e) and correlated
with published EMT gene signature (Fig. 3f). This indicated that TS-
mediated EMT is empowered with its own prognostic impact, i.e.
contributes to the adverse prognosis of NSCLC with high TS levels
(Fig. 1c, d), suggesting a role for TS beyond proliferation. Several
EMT transcription factors (HMGA2, HOXC6, SNAI2, SOX9, ARNTL2,
SHOX6) were identified from DEGs in endogenously TSHIGH and
TSLOW cells, from which siRNA mediated knock-down of HOXC6
and HMGA2 reduced expression of TS in Calu-1 (Supplementary
Fig. 3C) and was validated in A549 (Fig. 3g). Thus, these results
identified a network of TS mediated EMT, where HOXC6 and
HMGA2 are upstream of TS and AXL, SPARC and FOSL1 are
downstream mediators.
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Depletion of TS mitigates metastasis in vivo
Finally, in vivo approaches were used to confirm the role of TS on
EMT and metastasis. Ts (mouse TS) expression was quantified in
morphologically and functionally distinct mesenchymal-like (Ladi
3.1) and epithelial-like (Ladi 2.1) cells (Supplementary Fig. 4A, B),
isolated from the same mouse model of NSCLC (p53fl/fl-LSL

KRASG12D/+). Ts positively correlated with Vim and negatively
with E-Cad (Supplementary Fig. 4C). Furthermore, to functionally
evaluate in vivo effects of TS alteration on metastatic colonisation,
Tyms gene was knocked down in murine Lewis lung carcinoma
cell line LL/2 using stably transduced shRNA. A moderate Ts
depletion (Fig. 4a) did not affect proliferation (Supplementary
Fig. 4D), as we had previously determined from breast cancer cell
lines, that TS needs to reduce beyond a threshold to diminish
proliferation.12 Furthermore, Ts knockdown also did not hamper
the growth of primary tumours from the cells subcutaneously
injected in flanks of syngeneic mice (Fig. 4b). However, when
injected in the tail vein, knocked down cells showed a highly
significant reduction in lung metastatic colonisation (Fig. 4c, d),
and the mice carrying cells with Ts depletion showed a
significantly prolonged survival (Fig. 4e).

DISCUSSION
TS has been widely used as a chemotherapeutic target24 ascribed
to its role in proliferation. This study experimentally validated this

concept, as TS was one of the highest-ranked target gene
identified based on the CRISPR/Cas9 screen analysed in this
study. However, chemotherapeutic drugs that target TS might
also mitigate other detrimental features associated with cancer.
We confirmed the multifaceted role of TS in proliferation and
chemoresistance and found a strong correlation with EMT gene
signatures and prognosis, highlighting clinical, as well as
biological relevance of TS in NSCLC. Interestingly, presented
results clearly corroborate that different functions of TS can
operate independently, as observed that TS depletion can
mitigate EMT phenotypes without triggering proliferation loss.
This we observed in two independent setups—first in A549,
showing no loss in proliferation but alteration in EMT signature
pathway after TS knockdown, and second in LL/2 cells that
reduced metastatic colonisation after TS knockdown that didn’t
affect proliferation and growth of primary tumour. It strongly
adds to the proliferation-independent loss of differentiation
that we had previously propounded,12,25 providing a strong
rationale to revisit clinical and therapeutic aspects of TS in
tumour biology and explore its therapeutic potential beyond
proliferation.
Pemetrexed is used as a first-line treatment for NSCLC

patients26,27 albeit response to the drug is remarkably varied. TS
expression is an important determinant of sensitivity to
pemetrexed16,28 and marks the worse clinical outcomes of
pemetrexed treatment in NSCLC patients.29 In agreement to this,
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SCC generally respond poorly to pemetrexed as compared to
ADC,30 partly attributed to higher TS expression in SCC compared to
other histological subtypes.15,31 However, there is also a consider-
able variability to pemetrexed response within a given histological
subtype.32,33 EMT could be an additional source of variability, as it is
a key driver of chemoresistance against pemetrexed in NSCLC.34 In
this study we have linked higher TS expression not only to
pemetrexed outcome but also to EMT, indicating that TS has an
important role in establishing a connection between EMT and
pemetrexed resistance. This connection could also be extrapolated
to genes that constitute the TS regulatory network, such as FOSL1,
which regulates pemetrexed resistance in coordination with EMT-TF
ZEB1.22 Therefore, a more inclusive biomarker signature needs to
incorporate EMT genes and downstream genes like FOSL1, in
addition to TS, for robust prediction of response to pemetrexed in
NSCLC.35

TS expression has been previously shown to be stimulated by
chemotherapy, as a cellular defence mechanism,36 and these data
add the notion that chemotherapy-induced TS could lead to the
adjustment of EMT phenotypes in patients, that, in turn, might
influence the efficacy of treatment. This aspect could be taken into
consideration for the implementation of therapeutic strategies
combining EMT-suppressing drugs and chemotherapy, or for the
future design of the next generation of TS-inhibitors, which should
not enhance TS levels.
In NSCLC, EMT enhances the inflammatory tumour microenvir-

onment leading to activation of multiple immune checkpoint
proteins, including PD-L1.37 A recent clinical trial has demon-
strated a better outcome in NSCLC when pemetrexed is
administered in combination with a PD-L1 inhibitor, pembrolizu-
mab.38 Since, TS drives EMT and EMT has been shown to modulate
response to immune therapy, a functional correlation between TS
expression and susceptibility to immunotherapy could be
deduced in NSCLC. In fact, we identified interleukins such IL-6,
IL-7 and IL-32 in our TS signatures, which have been previously
linked with poor prognosis and metastasis in NSCLC.39–41 Hence, a
follow-up study is needed to validate this correlation, as the two
drugs are frequently combined.
The present study also underscores the plasticity of cancer cells

with mixed EMT population, as was reported in cells sorted for
high and low TS expression (Supplementary Fig. 2J, K). It could be
interesting to understand how TS mechanistically drives plasticity
by molecular profiling of cells at several time points between the
sorting and phenotype reversal.
We furthermore establish the role of TS in metastasis, where TS

knock-down abrogated the metastatic colonisation and improves

mice survival without affecting proliferation and growth of
primary tumour. This observation indicates that TS strongly
influences the success against selection pressure at the metastatic
site. Further retrospective validation in patients can establish TS as
a metastasis marker in NSCLC.
Finally, this study provides a perspective for a network that

could integrate different signalling pathways to effectuate various
aspects of cancer progression that are mediated by TS (Supple-
mentary Fig. 4E), worth further investigation. Different transcrip-
tional regulators and effector proteins identified in this study
have an established role in EMT in NSCLC and connect with
master EMT-TFs. HMGA2, for instance, affects proliferation and
metastasis by regulating TWIST,42 FOSL1 regulates chemotherapy,
exogenous SPARC promotes invasion and metastasis by activating
SNAI121,42 and AXL activates TWIST to affect cell cycle.23 A follow-
up study could further substantiate TS as an integration point for
these pathways resulting in a cumulative readout in terms of
metastasis.
Thus, this study provides strong evidence that TS, apart from

proliferation enzyme, also regulates EMT in NSCLC. Targeting EMT-
related processes could represent a promising therapeutic strategy
to suppress the aggressiveness of TS-overexpressing NSCLC.
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