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A B S T R A C T   

Gut health is intimately linked to dietary habits and the microbial community (microbiota) that flourishes 
within. The delicate dependency of the latter on nutritional availability is also strongly influenced by interactions 
(such as, parasitic or mutualistic) between the resident microbes, often affecting their growth rate and ability to 
produce key metabolites. Since, cultivating the entire repertoire of gut microbes is a challenging task, metabolic 
models (genome-based metabolic reconstructions) could be employed to predict their growth patterns and in-
teractions. Here, we have used 803 gut microbial metabolic models from the Virtual Metabolic Human re-
pository, and subsequently optimized and simulated them to grow on 13 dietary compositions. The presented 
pairwise interaction data (https://osf.io/ay8bq/) and the associated bacterial growth rates are expected to be 
useful for (a) deducing microbial association patterns, (b) diet-based inference of personalised gut profiles, and 
(c) as a steppingstone for studying multi-species metabolic interactions.   

Introduction 

Metabolism in the host is complemented by the microbial commu-
nity (microbiota) harboured in its gut. The microbiota collectively 
possesses a larger repertoire of enzymes which helps in digestion and 
nutrient uptake from sources such as, complex carbohydrates (Sen and 
Orešič 2019). Microbes also synthesize and make available different key 
nutrients such as, essential amino acids, vitamins and short chain fatty 
acids (Duncan et al., 2003; Shafquat et al., 2014). Consequently, im-
balances (i.e., dysbiosis) in the gut microbiota impacts an individual’s 
health and has been linked to many diseases like inflammatory bowel 
disease, obesity, type II diabetes, etc. (Belenguer et al., 2006; Clemente 
et al., 2012; Heinken et al., 2019; Magnúsdóttir and Thiele 2018; de 
Souza et al., 2017). Microbiome usually evolves as a complex commu-
nity (Venturelli et al., 2018) and it is imperative to investigate metabolic 
interconnection and resultant interactions among them. While many 
microbiome studies derive inferences based on the correlation of 
abundances (or cooccurrences) of gut microbial species, often so in a 
disease or a dietary context (Chen et al., 2020; Kelder et al., 2014), they 
seldom focus on their metabolic interactions. Deducing such metabolic 
communications are often laborious, time consuming and costly; given 
that majority of gut micro-organisms are not cultivable under in-vitro 

conditions (Manor et al., 2014). 
Rapid advancement in genome sequencing in recent years have 

provided new impetus for development of high-quality genome-scale 
metabolic models which can aid in microbial metabolic network anal-
ysis. In addition to the genomic information, these metabolic models can 
also be adapted to use multi-omics data (viz., proteomics, tran-
scriptomics, metabolomics, etc.) to replicate the metabolic behavior of 
an organism under specific environmental conditions, such as nutrient 
availability, stresses, co-culturing, etc. (Kumar et al., 2020; Rizvi et al., 
2019). Although higher-order interactions in a bacterial community 
remains under-explored till date (D’hoe et al., 2018; Sanchez-Gor-
ostiaga et al., 2019), earlier works by independent research groups have 
established pairwise interactions as major drivers of bacterial commu-
nity behavior (Stubbendieck et al., 2016; Venturelli et al., 2018). 
Metabolic exchanges between two species could exemplify the nature of 
interactions that occurs between them (Dai et al., 2019; Magnúsdóttir 
et al., 2017). This is especially pivotal while considering environmental 
factors, such as diet which could strongly drive the microbial composi-
tion and intrinsic metabolic behavior inside the gut (Filippo et al., 
2010). Therefore, a joint genome-scale reconstruction of two different 
organisms, in conjunction with Flux Balance Analysis (FBA) (Ebrahim 
et al., 2013; Magnúsdóttir and Thiele 2018; Magnúsdóttir et al., 2017; 
Orth et al., 2010; Perisin and Sund 2018; Sen and Orešič 2019), could 
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elicit metabolic patterns that would define their innate relationship 
within a dietary/ nutrient regimen (Dai et al., 2019; Heinken et al., 
2019; Perisin and Sund, 2018). This has been famously exemplified by 
Klitgord and Segrè (Klitgord and Segrè 2010), wherein the authors 
examined paired combinations of seven metabolically reconstructed 
microbes (models) to identify nutrient environments that induced 
symbiotic relations, which would otherwise deter growth in isolated 
condition. This involved a combinatorial approach in determining 
media that led to emergent mutualistic dependence through bidirec-
tional exchange of nutrients necessary for growth. It was also surmised 
that environmental/ nutrient fluctuations could have more profound 
effect on microbial symbiosis than their genetic (or reactionary) per-
turbations. Along the same lines, it has been shown that cooperative 
behavior occurs when paired-microbes have fewer common growth 
promoting metabolites (Freilich et al., 2011). Another study on micro-
bial consortia showed that these pairs/ consortia could produce new 
metabolites which were otherwise absent in mono-cultures (Chiu et al., 
2014). Some earlier metabolic modeling efforts in this direction have 
also highlighted the capacity of paired models to produce metabolites 
which were non-existent in their secluded form, as well as presented 
examples of the paired models’ increased potential of producing me-
tabolites as compared to the additive sum of the metabolite fluxes in 
their ‘mono-culture’ simulations (Perisin and Sund 2018). 

These studies demonstrate the importance of studying interspecies 
relationships delineating their mutualistic or inhibitory tendencies with 
each other in a case dependent manner. Our work finds its basis in the 
above premise, explores the same in context of a human gut habitat, and 
provides an extensive collection of potential interactions for all gut 
microbes for which viable metabolic models were available from the 
VMH (Virtual Metabolic Human) repository (A Noronha et al., 2019). 
The potential interactions are derived from pairwise FBA simulations of 
gut microbes mimicking their growth in 13 different dietary conditions. 
Having access to a dietary “interactome”, could provide contextual 
guidance and justification towards elucidating underlying relations 
amongst gut microbes, especially so while drawing inference from such 
relationships determined through microbial abundance-based correla-
tions. Furthermore, one can also posit an approach for delineating key 
microbial growth deviations within or inter dietary compositions, that 
would be helpful in understanding individual gut microbiome profiles 
during a comparative analysis. The pairwise interaction type (as well as 
growth potential) data for different diet types presented in this work 
essentially represents a semi-exhaustive collection of gut bacterial 
‘dyads’ (the smallest unit of interaction in a social network/ group) and 
lays the foundation for progressively building onto as well as studying 
larger gut bacterial networks/ ecosystems. 

Results 

Metabolic simulations, based on flux balancing principles, were 
performed to gauge the growth potential of gut microbes under varying 
diet conditions. A total of 818 metabolic models resembling human gut 
associated microbes and 13 diet constraints imitating nutrient avail-
ability (to gut microbes) in different dietary habits were used (see MA-
TERIALS AND METHODS). Simulations were performed for single 

organism models as well as paired organism models to mimic growth of 
gut microbes in both mono-culture and co-culture conditions under 
different diet conditions. Further, for each of the diet types, interactions 
between a pair of microbes were determined from the change in growth 
rates of the two organisms under co-culture (paired) and mono-culture 
conditions (see MATERIALS AND METHODS). 

Technical validation against earlier AGORA simulations 

The obtained growth rates of the metabolic models representing the 
gut microbial species, both in mono-culture and co-culture simulations, 
were benchmarked against the results presented by Magnusdottir et al. 
(Magnúsdóttir et al., 2017), who had employed AGORA models (v1.0) in 
their study. Since their simulation outcomes were reported for only two 
diet conditions, viz., High-Fiber (AGORA) and Western (AGORA) diet, 
the evaluation could be performed for these two diets only. For the 768 
microbial species (metabolic models) which were common between 
AGORA (version v1.0) (Magnúsdóttir et al., 2017) and our present work, 
we found strong correlation in their single model (mono-culture) growth 
rates in both High-Fiber (AGORA) as well as Western (AGORA) diets. 
SRC of 0.921 and 0.954 and PCC of 0.926 and 0.952 were observed for 
the microbial growth rates in High-Fiber (AGORA) and Western 
(AGORA) diets respectively. Similarly, comparison of the collective 
growth rates of the pairwise model (co-culture) also showed good cor-
relations for both the diets (considering 283,881 combinatorial pairs 
common to both studies). In the co-cultured simulations, SRC of 0.903 
and 0.933 and PCC of 0.85 and 0.87 were noted for High-Fiber (AGORA) 
and Western (AGORA) diets respectively. The p-values associated with 
SRS and PCC for both the mono-culture as well as the co-culture growth 
rate simulations (mentioned above) were < 0.001. 

Assessment of computed interactions in the context of literature evidences 

Bifidobacterium growth patterns in High Protein and High Fat diets: 
Using single model simulation results in different VMH Diets, the mean 
growth rate of 39 different available models of Bifidobacterium species 
was correlated to the main dietary constituents, namely lipids (%), 
carbohydrates (%), protein (%), dietary fibers (mg), cholesterol (mg) 
and sugar (mg) (as downloaded from nutrition information table pro-
vided in www.vmh.life/#nutrition). Dietary fiber was found to have the 
strongest positive correlation (PCC of 0.53) with the growth rate in 
single (mono-culture) model condition, and conversely, lipids showed 
negative correlation (PCC of -0.49) to the growth rate of Bifidobacterium. 
PCCs obtained for the other factors, viz., carbohydrates, protein, 
cholesterol, and sugar (sucrose) were 0.22, 0.15, -0.19 and 0.24 
respectively. Similar patterns have also been demonstrated in earlier 
studies (R. K. Albracht-Schulte et al., 2020; Singh et al., 2017). While 
high fiber and plant-/ whey-proteins have been shown to benefit Bifi-
dobacterium species, red meat and animal fat have been shown to have a 
negative impact. 

Complementarity between Bacteroides thetaiotaomicron and Methano-
brevibacter smithii: Two gut inhabiting organisms, Methanobrevibacter 
smithii and Bacteroides thetaiotaomicron, are known to exhibit mutualistic 
(syntrophic) behavior when grown in polysaccharide (dietary fiber) 
based diets (Samuel and Gordon 2006; Samuel et al., 2007). We inves-
tigated if their syntrophic behavior (in fiber rich diets), could also be 
replicated in our in-silico results. M. smithii (model name Methano-
brevibacter_smithii_ATCC_35,061) was found to have higher growth rate 
when co-cultured (paired) with B. thetaiotaomicron (model name Bac-
teroides_thetaiotaomicron_VPI_5482) in fiber rich diets (Supplementary 
Table 1). Its growth rate was seen to increase by 4.51 folds in High-Fiber 
(AGORA) diet and by 1.44 folds in High-Fiber (VMH) diet. For diets with 
poor fiber content (like Unhealthy diet and High-Fat with Low-Carb 
diet), a reverse relationship of amensalism was observed wherein the 
growth rate of M. smithii dropped to almost negligible levels during 
‘simulated’ co-culturing with B. thetaiotaomicron. Interestingly, the 

Abbreviations 

FBA Flux Balance Analysis 
VMH Virtual Metabolic Human 
AGORA Assembly of Gut Organisms through Reconstruction and 

Analysis 
SRC Spearman’s Rank Correlation Test scores 
PCC Pearson Correlation Coefficients  
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growth rate of M. smithii in the ‘simulated’ co-culturing was noted to be 
significantly higher in High-Protein, Gluten Free, DACH and Type-2 
Diabetes diets, even higher than in High-Fiber (AGORA) and 
High-Fiber (VMH) diets. The positive interaction (commensalism) can 
be attributed to the cross-feeding of B. thetaiotaomicron derived CO2 (and 
H2 to some extent) by M. smithii for its growth and methane production 
(Fig. 1). Further, acetate produced by B. thetaiotaomicron also appeared 
to promote the growth of M. smithii (data not shown). Notably, all the 
diets which showed commensal behavior contained moderate to high 
amounts of dietary fiber. However, potential contribution of other fac-
tors favouring the growth of M. smithii in these diets cannot be ruled out. 

Complementarity between Bifidobacterium adolescentis and Eubacterium 
hallii: In yet another instance, our simulation results could mimic the 
commensal behavior between Eubacterium hallii (model name Eubac-
terium_hallii_DSM_3353), a prominent butyate-producing bacterium 
(Tap et al., 2009) and Bifidobacterium adolescentis (model name Bifido-
bacterium_adolescentis_ATCC_15703), in diets which are rich in starch. 
Notably, it has been reported that E. hallii by itself is not able to sustain 
in a starch rich diet and require assistance from B. adolescentis for its 
survival (Belenguer et al., 2006). In the data presented in Table 1 and 
Supplementary Figure 1 this pair exhibited commensalism in seven out 
of 13 diets, all of which feature higher starch content. Three of the 
remaining diets (viz., Unhealthy, High-Fiber and Vegan) also had higher 

starch content but did not lead to any appreciable increase in the growth 
of E. hallii (i.e. ≥10% of growth rate) and their overall interaction was 
thus interpreted as neutralism for those diets. Diets with poor starch 
content yielded negative interactions for this pair. In the diets, wherein a 
commensal behavior was noted, we observed a cross-feeding wherein 
E. hallii was seen to benefit from the maltose produced by B. adolescentis 
while utilizing starch (Supplementary Figure 1). 

Discussion 

Genome scale metabolic reconstruction is one of the prime examples 
of genomics aiding metabolomic research. Continuous growth in this 
field has propelled the gaining of metabolic insights into complex 
problems like estimating the growth capacity of a microbe in a nutri-
tional environment (Heinken et al., 2019; Klitgord and Segrè 2010) or 
cross feeding in a microbial community (Dai et al., 2019; Perisin and 
Sund 2018). Hence, a collection of such genome scale metabolic 
reconstructed models (like VMH repository - www.vmh.life) along with 
several pre-determined dietary compositions provides an opportunity to 
compile and build a vast resource of individual and/or symbiotic growth 
capacity of gut microbes, tailored to these available diets. This, other-
wise, via conventional experimental procedures would be cumbersome, 
time consuming and costly if not infeasible. Here in our study, we have 

Fig. 1. Production and consumption of key metabolites simulated co-culturing of Bacteroides thetaiotaomicron (BT) and Methanobrevibacter smithii (MS) in 13 different 
diets(fluxes presented in mmol/gDW/hr units). Positive flux indicates metabolite production and negative flux indicates metabolite consumption. Diets marked in 
green (x-axis labels) indicate cases where the growth rate of MS increased by >10% in co-culturing with BT over its mono-culture growth. Diets marked in pink (x- 
axis labels) indicate cases where the growth rate of MS reduced by >10%. 

Table 1 
Pairwise relationship between Eubacterium hallii and Bifidobacterium adolescentis under different dietary simulations. The nutrient availability, uptake rates and 
metabolite release rates have been provided in mmol gDW− 1h− 1 units.  

Interaction % change in 
growth rate 
(E. hallii) 

% change in growth rate 
(B. adolescentis) 

Diet Starch 
available in 
Diet 

Starch uptake by 
B. adolescentis 

Maltose released by 
B. adolescentis 

Maltose uptake 
by E. halii 

Amensalism -61.93 0.00 High-Fat Low- 
Carb 

0.005 -0.01 0.01 -0.01 

Neutralism -1.59 0.00 Unhealthy 3.176 -0.55 0.55 -1.80 
Neutralism 0.00 0.00 High-Fiber 3.572 -0.33 0.33 -0.4 
Neutralism 8.27 0.00 Vegan 2.444 -0.99 0.99 -1.03 
Commensalism 33.31 0.00 Vegetarian 3.273 -0.50 0.50 -0.52 
Commensalism 47.32 0.00 EU Average 2.616 -0.70 0.7 -1.36 
Commensalism 54.08 0.00 High-Protein 2.145 -0.77 0.77 -1.44 
Commensalism 66.65 0.00 Type-2 Diabetes 2.010 -1.23 1.23 -1.46 
Commensalism 83.11 0.00 Gluten Free 5.295 -0.56 0.59 -0.59 
Commensalism 96.92 0.00 Mediterranean 3.248 -2.26 2.26 -2.60 
Commensalism 168.93 0.00 DACH 2.969 0.00 2.17 -2.22 
Parasitism 314.82 -45.55 Western (Agora) 0.257 -0.26 0.26 -0.34 
Parasitism 385.40 -58.07 High-Fiber 

(Agora) 
0.068 -0.70 0.2 -0.22  
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computed the growth rates and the interactions for 4,182,618 combi-
nations of available microbial pairs, and attempted validation of simu-
lated growth rates and derived inter-species relationships to existing 
literature. 

The ideal validations for the single model (mono-culture) and pair-
wise model (co-culture) simulation results would be to compare the in- 
silico results with the experimental growth rates under different diet 
types. However, given a multitude of factors, including difficulties to 
replicate the diets in culture media, and the challenges in growing most 
gut microbes in the laboratory, the availability of experimental data to 
benchmark in-silico findings are limited. Consequently, the publication 
presenting the original AGORA models (v1.0) (Magnúsdóttir et al., 
2017) evaluated simulation results using growth rates of only a single 
pair of gut microbes under a specialized nutrient environment. This 
being a seminal publication on the topic, the results presented therein 
were considered as a benchmark while performing the technical vali-
dations for our current study. In brief, the mono-culture and co-culture 
growth rates of the 773 gut microbial models (from AGORA v1.0), 
simulated under the two AGORA diets, viz., High-Fiber (AGORA) and 
Western (AGORA) were used for this comparison. Subsequently, we 
have also evaluated some of our predicted growth rates and derived 
inter-species relationships against experimentally observed diet-linked 
microbial growths and interaction patterns available from literature. 

It may be noted that the current version of AGORA models (v1.03), 
that has been used for simulations performed in the current study, have 
been updated and refined since the original publication (Magnúsdóttir 
et al., 2017). The changes include rectification of false positive pre-
dictions of nutrient uptakes within the model, implementation of 
improved gap-filing protocols on a new refined growth media (Tra-
montano et al., 2018), and introduction of new pathway reactions from 
several studies like aromatic amino acid degradation (Dodd et al., 2017), 
putrefaction pathways in the gut (Kaur et al., 2017), bile-acid biosyn-
thesis (Heinken et al., 2019), etc. Given these differences in the models 
used as well as certain differences in the methodology when compared 
to Magnusdottir et al. (Magnúsdóttir et al., 2017), some deviations 
pertaining to the computed growth values, and the interactions derived, 
could be anticipated. The methodological differences included usage of 
some revised reaction constraints (see Diet Construction sub-section of 
MATERIALS AND METHODS), usage of COBRApy library (python) in 
place of COBRA toolbox (MATLAB), usage of glpk solver (publicly 
available) instead of the proprietary CPLEX solver (IBM, Inc.), using an 
adapted version of Mminte (a python package) for paired model 
reconstruction (Mendes-Soares et al., 2016) (see Code Usage in Sup-
plementary File 1), and employment of auxiliary flux coupling con-
straints, all of which were implemented within python (see MATERIALS 
AND METHODS section and Code Usage in Supplementary File 1). 
Despite the technical and methodological differences, the two studies 
displayed similar results in terms of growth rates for the individual and 
paired organisms (See RESULTS section). 

Additional validations were subsequently performed to check if the 
interaction patterns (and the simulated growth rates) among a pair of 
microbes, as reported in this work, could replicate the biologically 
observed phenomenon under different diet conditions. The three case 
studies (as shown in RESULTS section) highlight the potential use in this 
context. 

Numerous studies have focussed attention to Bifidobacterium, an 
eminent gut inhabiting species, which is particularly known for its 
probiotic interplay within host and with other gut microbial species 
(O’Callaghan and van Sinderen 2016; Ruas-Madiedo et al., 2008). 
Studies suggest that Bifidobacterium species grows poorly in diet com-
positions made with high protein (Hwang et al., 2017), and with high-fat 
and low-carbohydrate (Cani et al., 2007). Our simulation data gives 
similar indications for this species as shown by moderately negative 
correlation to lipid content (See RESULTS section). It may be mentioned 
in this context that Hwang and his co-workers (Hwang et al., 2017) also 
evaluated the growth patterns of Sutterella, another gut bacterium, in 

addition to Bifidobacterium and reported contrasting growth trends. 
Unfortunately, the two models of Sutterella which have so far been 
reconstructed, were part of a subset of 27 gut bacterial models (out of 
803 used in this study) exhibiting no appreciable change in growth rates 
across diet types and often demonstrated very poor growth in 
mono-cultures (Supplementary Table 3). Therefore, growth patterns of 
Sutterella in response to different dietary constituents could not be 
assessed in course of technical validation for this work. While the 
diet-invariant very low growth rates, possibly due to the inability of 
these organisms to survive in isolation in the human gut, may be 
construed as a limitation of this work, it may be noted that the growth 
rates of these organisms (including Sutterella) showed significant vari-
ations in the co-culture simulations across different diet types. 

Literature evidence also substantiates the simulation results i.e. 
growth rate derived interaction paradigms, obtained in our study. For 
instance, Bacteroides thetaiotaomicron, one of the most common gut 
species, and Methanobrevibacter smithii, a pre-dominant gut microbe of 
Archaea domain, have been notably shown to have a syntrophic rela-
tionship, wherein B. thetaiotaomicron assists M. smithii to grow in poly-
saccharide (dietary fiber) based diets (Samuel and Gordon 2006; 
Samuel et al., 2007). Aligned with the experimental evidences, we 
observed commensalism in our paired-model simulations between these 
two species in diets with higher fiber content. M. smithii was seen to 
grow (and generate methane) by utilizing the CO2 (and H2) produced by 
B. thetaiotaomicron in ‘simulated’ co-cultures in diets with high fiber 
content (Fig. 1 and Supplementary Table 1). On a similar note, our 
derived interactions between gut microbes could also be validated 
against another prominent experimental observation (Belenguer et al., 
2006), which included Bifidobacterium adolescentis and Eubacterium 
hallii. From the data presented in Table 1 and Supplementary Figure 1, 
the above interaction phenomenon could be observed in diets which had 
higher starch contents, wherein the co-cultured pair tend to display 
commensalism in favor of E. hallii. This behavior was based on the ex-
change of maltose between the two organisms. E. hallii, which is 
otherwise unable to thrive in a starch-rich nutrient medium, grew on the 
maltose produced by B. adolescentis in a co-culture. 

A bacterial community is a complex ecosystem involving high de-
grees of interactions among the participating entities. Given the chal-
lenges associated with culturing such complex communities, there are a 
very few studies targeted towards understanding higher-order in-
teractions in a bacterial community (D’hoe et al., 2018; Sanchez-Gor-
ostiaga et al., 2019). Instead, pairwise interactions have been used as 
steppingstones for elucidating the expected behavior of a microbe in 
presence of multiple co-habiting species (Stubbendieck et al., 2016; 
Venturelli et al., 2018). It may be possible to estimate the behavior of a 
microbe in the presence of multiple co-habiting species by borrowing 
insights from their pairwise interactions with neighbours. For example, 
one may consider a small community comprising of B. adolescentis, 
Ruminococcus bromii, and E. hallii, wherein B. adolescentis and R. bromii 
are well known for their starch utilization capabilities, while E. hallii 
mono-cultures grow poorly on starch (Belenguer et al., 2006; Ze et al., 
2012). In the ‘simulated’ co-culture experiments involving 
B. adolescentis and R. bromii, R. bromii showed a decline in growth rate 
compared to its mono-culture growth rate, while that of B. adolescentis 
remained unaltered (Supplementary Figure 2). R. bromii was also found 
to demonstrate a slower growth rate in co-cultures with E. hallii when 
compared to its mono-culture growth rate (Supplementary Figure 2). 
This, in conjunction with our finding that B. adolescentis could promote 
the growth of E. halii through the generation of maltose leads us to infer 
that the community would be dominated by the metabolic co-operation 
favouring B. adolescentis and E. halii, while R. bromii would demonstrate 
a diminished growth. 

The Altered Schaedler Flora (ASF) (Bayer et al., 2021) can be 
considered to be a small model community allowing further in-
vestigations into multi-species metabolic cooperation. When simulated 
under contrasting dietary conditions, the emergent community behavior 
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of ASF was seen to depend on the nature of the available nutrients 
(Supplementary Figure 3). The list of organisms used for our study has 
been provided in Supplementary Table 2. It may be noted that since the 
genome-scale metabolic models for some of the members of ASF were 
not available, their phylogenetic neighbours were considered instead 
(chosen from a neighbor-joining tree constructed with 16S rRNA genes 
listed under the respective genera available in RDP database (Cole et al., 
2014) with filters applied - Type strains only; Isolates; >1200 bp; Good 
quality). Looking deeper into the interactions amongst these community 
members representing the ASF, while a large proportion of interactions 
in both High-Fat Low-Carb as well as High-fiber diets were found to be 
negative, Lactobacillus amylolyticus was seen to benefit from the presence 
of Clostridium sp. in High-fiber diet. The faster growth of L. amylolyticus 
was fueled by the acetaldehyde produced by Clostridum sp. (data not 
shown). This contrasted with the competition between the two bacterial 
groups in a High-Fat Low-Carb diet. Further, the impact of Lactobacillus 
crispatus on Pseudoflavonifractor was observed to change from ‘para-
sitism’ in High-Fat Low-Carb diet to ‘competition’ in High-fiber diet. 
Overall, based on the nature of pairwise interactions, it appears that ASF 
in a High-fiber diet would be dominated by the Lactobacillus species. 

We believe that the resource provided in this work would be useful in 
drawing inferences from putative interactions between different gut 
organisms or from their overall growth patterns across diverse set of pre- 
determined nutritional compositions. Our simulation data could aid in 
providing clues (from metabolic perspective) to microbial in-
terrelationships derived solely from abundance-based correlations. And 
with a wider choice of dietary compositions available to the users, there 
is an added propensity to mimic the diet of the samples from which those 
correlations were derived, which makes the inferences/ justifications 
more meaningful. 

Conclusions 

The datasets generated in our study allows analysis/ data-inferences 
at intra/ inter diet level, both of which enables investigation of diet 
induced growth patterns of an organism, a taxonomic group or at the 
gross level for the entire microbiome samples. This could be useful for 
investigation/ validation of any inter-species interactions and growth 
deviations observed for an organism of interest across single or several 
diets from experimental or in-silico studies. Users can also utilize the 
pairwise growth values and deploy different growth cut-off parameters 
for customizing definitions of inter-species relationships and mining for 
such interactions in a dataset of interest. In addition, users can make use 
of the organism’s growth rates/ interaction information for pruning 
microbial association networks derived from abundance-based studies, 
as shown in an earlier study (Dai et al., 2019). This data makes it 
possible to filter or validate the edges of interaction networks of gut 
microbes from abundance-based correlations and justify those connec-
tions from metabolic perspective. Furthermore, the scripts provided in 
the repository allows for the extension of the framework to microbes 
residing in any ecosystem and is thus expected to be beneficial for mi-
crobiologists, ecological experts and other researchers working in allied 
areas. 

Materials and methods 

Mono-culture (single model) simulation 

A total of 818 models representing the metabolic potential of human 
gut associated microbes were retrieved from AGORA (assembly of gut 
organisms through reconstruction and analysis) v1.03 (version dated 
25-Feb-2019) hosted at www.vmh.life (Alberto Noronha et al., 2019) 
(see Supplementary Table 4). While the current version of AGORA 
metabolic models has been reported to be curated and refined based on 
experimental evidences in recent scientific publications, for the purpose 
of the current study, each of the downloaded metabolic models were 

further modified in the following manner:  

a) The reactions and metabolite identifiers within the models were 
converted to BiGG identifier notation style so as to make it 
compatible and convenient for its use in with COBRApy package 
(Ebrahim et al., 2013).  

b) The lower bounds of the exchange reactions were modified to mimic 
the appropriate diet constraints (see Diet Construction sub-section of 

Table 2 
List of the diets used in this study along with the number of their reactionary 
constraints and the literature where they were first defined.  

Diet Type Description Source Total 
Reactions 

DACH A recommended diet 
composition made by the 
society for Nutrition in 
Switzerland Germany and 
Austria, to guarantee healthy 
nutrition for an adult human 
being. 

(A Noronha 
et al. 2019) 

162 

EU Average A diet derived from a large 
nutrient based survey done 
where the participants are 
from many European nations 
different age groups 

162 

Gluten Free A diet devoid of gluten for 
individuals with gluten 
intolerance 

162 

High-Fat Low- 
Carb 

The high fat diet should 
imitate a ketogenic diet (as 
recommended for epileptic 
patients), which is composed 
of 1,7% of energy of 
carbohydrates, 70% of energy 
of lipids and 24% of energy of 
proteins. 

162 

High-Protein A composition typically 
representing a sports-based 
diet for athletes. 

162 

High-Fiber This diet composing of high 
amounts of fibers than a 
plant-based diet (i.e. vegan 
diet) and includes animal 
derived products in it 

162 

Mediterranean This diet is consumption of 
fresh plant foods, dairy 
products, poultry, and fish, 
but minimizes on 
consumption of processed 
food, red meat, and olive oil 
(as fat source) 

162 

Type-2 
Diabetes 

A diet for type 2 diabetes 
patient is which constitutes 
high content of vitamins (eg. 
Vitamin C & E) and minerals, 
but is low in kcal 

162 

Vegan A plant-based diet with no 
consumption of animal 
derived products 

162 

Vegetarian An ovo-lacto-vegetarian diet 
which constitutes 
consumption of dairy, egg 
products, fruits and 
vegetables 

162 

Unhealthy It contains very low amount of 
dietary fibers, but high kcal 
amount, simple sugars, 
saturated fatty acids, and 
cholesterol 

(Magnúsdóttir 
et al., 2017) 

162 

High-Fiber 
(AGORA) 

A diet with higher fiber 
content but lower in simple 
sugars and fat content 

177 

Western 
(AGORA) 

A diet with high amounts of 
simple sugars and fat content 
and but low in fiber content 

175  
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Fig. 2. Schematic representation of the process followed for determining pairwise metabolic relationship between gut microbial species. The ‘>’ and ‘<’ symbols 
denote that the growth of an organism in paired simulations [Gorg]P (mimicking co-cultures) deviates at least by 10% or more when compared to its growth when 
simulated independently [Gorg]I (mimicking monoculture). 
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MATERIALS AND METHODS). If an exchange reaction of the model 
was absent in a diet’s constraints list, then the lower bound for that 
reaction was set to 0. 

Finally, FBA was performed on each of the modified metabolic 
models under different diet constraints (see Diet Construction sub- 
section of MATERIALS AND METHODS) using glpk solver and COBR-
Apy package in python (Ebrahim et al., 2013). The objective of the 
simulations was to predict maximum possible growth of each of the 
bacteria (represented by their metabolic models), when grown as 
anaerobic mono-culture under different diet conditions. 

Co-culture (paired model) simulation 

In order to replicate metabolic interactions among a pair of gut mi-
crobes, pairwise simulations were carried out for 13 different diets 
(Table 2). Notably, the metabolic models representing 15 gut microbes 
showed infeasible FBA solution for growth optimization in at least one of 
the diets under mono-culture condition and were excluded from the 
pairwise simulation experiments. All combinations of the remaining 803 
models were considered which totalled to 322,003 pairs. The Mminte 
package (Mendes-Soares et al., 2016) in python was employed to 
reconstruct the paired models (representing a pair of gut microbes) 
using earlier suggested strategies (Magnúsdóttir et al., 2017; Mendes--
Soares et al., 2016). In brief, the models were joined into a common 
lumen compartment which acted as an extracellular interface for the 
exchange of metabolites. Additionally, to avoid scenarios where an or-
ganism (metabolic model) benefits the other without producing any 
biomass (i.e. the objective function), flux coupling constraints were 
introduced which stoichiometrically coupled every reaction to the 
biomass objective function, as per the strategy suggested in earlier 
literature (Heinken et al., 2019; Magnúsdóttir et al., 2017). After 
introducing dietary constraints to the extracellular compartment of the 
model (as followed for single model simulations), FBA was run to 
simultaneously maximize growth of both organisms. Out of all the 322, 
003 model pairs, 331 model pairs could not be solved for either one or 
more VMH diets using glpk solver that was used in this study. The output 
of each solvable pair, i.e. growth of each organism in paired condition, 
single condition, percentage growth change between the conditions and 
finally the interaction type was computed and saved for each diet. Thus, 
output from 321,692 pairs for each VMH diet and 322,003 pairs for each 
AGORA diet were tabulated and uploaded to the OSF Home repository. 
The pairwise metabolic fluxes were computed using parsimonious FBA 
(pFBA) from the COBRApy package. 

Determination of interaction 

Interaction types, between each pair of organisms, were evaluated 
from the simulated growth rates of the organisms under co-culture 
(paired) and mono-culture conditions (Fig. 2). In line with previous 
studies (Magnúsdóttir et al., 2017; Mendes-Soares et al., 2016; Perisin 
and Sund 2018), whenever the growth rate of an organism changed by 
≥10% during co-culture ([Gorg]P), when compared to its growth rate in 
isolation ([Gorg]I), a discernible interaction amounting to an 
inter-species relationship was considered (Table 3). Positive influence 
(+) was denoted for increased growth rate, negative influence (-) for a 
decrease in growth rate, and no effect (0) if the growth rate did not 
change by at least 10%. For every given pair of organisms (in a given diet 
type), one of the six different interactions were assigned based on 
possible pairwise growth profile outcomes depicted in Table 3. 

Diet construction 

Human societies around the world have different diet preferences 
which differ widely in nutrient composition. Gut microbes are known to 
exhibit alternate metabolic behavior, and consequently varying growth 
rates, in response to different diet types (Belenguer et al., 2006; Filippo 
et al., 2010; Jang et al., 2019). To mimic this, the metabolic models of 
the gut microbes were simulated to grow on 13 different diet types 
(Table 2), as mono- and bi-cultures (paired). Of the total 13 diets used in 
this study, metabolic exchange constraints representing two diets 
(High-Fiber and Western) were obtained from Magnusdottir et al. 
(Magnúsdóttir et al., 2017). These two diets were then edited to incor-
porate modified flux constraints for certain exchange reactions (such as 
setting lower bounds of exchanges of acetaldehyde, 2-oxoglutarate, 
L-lactate, L-malate, succinate to 0 mmol/gDW/hr), as mentioned in 
AGORA v1.01 update (from www.vmh.life). The remaining 11 diets 
were retrieved from “Nutrition” section of VMH (from www.vmh.life). 
Since these set of constraints defining the diet types by itself could not 
support growth for majority of AGORA models, an adaptation protocol 
was additionally followed (as described in Heinken et al., 2019). This 
protocol was adapted from “adaptVMHDietToAGORA” functionality of 
Microbiome Modeling Toolbox (Baldini et al., 2019) and was imple-
mented in python for our study (see Code Usage in Supplementary File 
1). 

Data availability 

All data pertaining to this work has been tabulated and archived in 
OSF Home Data Repository (R. Singh et al., 2020) and can be down-
loaded from https://osf.io/ay8bq/ . Details of the data records along 
with the format for each of the data files are provided in Supplementary 
File 1 (see Data Record Information and Supplementary Tables 5,6). 
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the simulation experiments and created the data repository. R.S., A.D. 
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the final manuscript. 

Data availability statement 

The simulation results obtained in this study has been deposited to 
‘OSF Home’ repository (R. Singh et al., 2020). The data deposited to 
‘OSF Home’ further comprise of the mono-culture and co-culture 
simulation growth rates of 803 gut microbial species in 13 different 
diet types and the derived inter-species relationships between the gut 
microbial species. Description of the file formats for these data records 
have been provided in Supplementary Tables 5 and 6. In addition, a 

Table 3 
Pairwise interaction patterns based on the growth profile outcomes of the two 
organisms constituting a (paired) co-culture simulation experiment.  

Type of 
PairedInteraction 

Description Abbreviation 

Amensalism One organism deteriorates in growth while 
the other organism remains unaffected 

(0, -) or (-, 0) 

Commensalism One organism increases in growth while 
the other organism remains unaffected 

(0, +) or (+, 
0) 

Competition Both organisms suffer from drop in their 
individual growths under paired condition 

(-, -) 

Mutualism Both organisms have augmentation in 
their individual growths under paired 
condition 

(+, +) 

Neutralism Growths of both organisms remain 
unchanged under paired condition 

(0, 0) 

Parasitism Growth of one organism diminishes while 
the same increases in the other organism 

(-, +) or (+, -) 

Abbreviation keys - 0: Unaffected; +: positive change; -: negative change. 
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stand-alone program used for obtaining the co-culture simulation results 
is also provided. This program accepts, as argument, a pair of genome 
scale metabolic model files (in json or xml format) and a diet file (in json 
format) to generates co-culture growth rates of the two microbes as well 
as infer the type of interaction among them. All these resources are 
freely accessible for academic use. 
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