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Transcriptional inaccuracy 
threshold attenuates differences 
in RNA-dependent DNA synthesis 
fidelity between retroviral reverse 
transcriptases
Alba Sebastián-Martín   1, Verónica Barrioluengo1,2 & Luis Menéndez-Arias 1

In M13mp2 lacZα forward mutation assays measuring intrinsic fidelity of DNA-dependent DNA 
synthesis, wild-type human immunodeficiency virus type 1 (HIV-1) RTs of group M/subtype B previously 
showed >10-fold higher error rates than murine leukaemia virus (MLV) and avian myeloblastosis virus 
(AMV) RTs. An adapted version of the assay was used to obtain error rates of RNA-dependent DNA 
synthesis for several RTs, including wild-type HIV-1BH10, HIV-1ESP49, AMV and MLV RTs, and the high-
fidelity mutants of HIV-1ESP49 RT K65R and K65R/V75I. Our results showed that there were less than 
two-fold differences in fidelity between the studied RTs with error rates ranging within 2.5 × 10−5 and 
3.5 × 10−5. These results were consistent with the existence of a transcriptional inaccuracy threshold, 
generated by the RNA polymerase while synthesizing the RNA template used in the assay. A modest 
but consistent reduction of the inaccuracy threshold was achieved by lowering the pH and Mg2+ 
concentration of the transcription reaction. Despite assay limitations, we conclude that HIV-1BH10 and 
HIV-1ESP49 RTs are less accurate when copying DNA templates than RNA templates. Analysis of the 
RNA-dependent mutational spectra revealed a higher tendency to introduce large deletions at the 
initiation of reverse transcription by all HIV-1 RTs except the double-mutant K65R/V75I.

In retrovirus, the reverse transcriptase (RT) is the DNA polymerase responsible for the replication of the viral 
genome. Retroviral RTs use the (+) single-stranded RNA genome to synthesize a complementary minus-strand 
DNA, while the RNA template is being degraded by the RNase H activity of the RT. The newly synthesized 
complementary DNA (cDNA) is then used as template for the synthesis of plus-strand DNA to obtain a 
double-stranded proviral DNA1,2.

RTs are widely used in biotechnology for their ability to synthesize DNA using RNA templates. Advances 
introduced in the late 1990s such as cDNA microarrays and next-generation sequencing technologies have 
opened new possibilities for the identification of all RNA molecules in one cell or a population of cells, and the 
analysis of their expression levels3–5. RTs play a fundamental role behind these developments, and wild-type 
(WT) and engineered RT variants of avian myeloblastosis virus (AMV), murine leukaemia virus (MLV), human 
immunodeficiency virus type 1 (HIV-1) and Geobacillus stearothermophilus group II introns have been developed 
into more efficient tools to study gene expression by increasing catalytic efficiency, processivity, thermostability 
or fidelity of DNA synthesis6–9.

Unlike eukaryotic replicative polymerases, RTs lack exonuclease activity and are error-prone. Improvements 
in their intrinsic fidelity of DNA synthesis may have a positive impact on the reliability of whole transcriptome 
shotgun sequencing (i.e. RNA-seq) data10. Despite the large amount of research on the fidelity of retroviral RTs, 
most of the available studies have been devoted to the analysis of DNA-dependent DNA synthesis accuracy11,12. 
These studies have shown that oncoretroviral RTs (e.g. AMV and MLV RTs) are more faithful than lentiviral RTs 
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such as the HIV-1 RT. Thus, the intrinsic error rates of HIV-1 RT determined with the M13mp2 lacZα forward 
mutation assay13 were more than 10-fold higher than those obtained with AMV and MLV RTs14–16. However, in 
HIV-1 RTs, antiretroviral drug resistance-associated mutations such as K65R or the combination of K65R and 
V75I were shown to increase fidelity of DNA-dependent DNA synthesis to levels similar to those obtained with 
oncoretroviral RTs17,18.

The fidelity of RNA-dependent DNA synthesis of retroviral RTs has been evaluated in enzymatic assays by 
comparing kinetic parameters for the incorporation of correct and incorrect nucleotides, and the extension of 
matched and mismatched template-primers. Assays carried out under steady-state conditions with AMV, MLV 
and HIV-1 RTs did not reveal large differences when DNA templates were substituted by RNA templates19,20. 
However, using pre-steady-state kinetics, Kerr and Anderson21 showed that misinsertion fidelity was 9–64 
times (with duplex 45/25mer) and 14–23 times (with duplex 45/22mer) higher in RNA-templated than in 
DNA-templated reactions catalyzed by HIV-1 RT. These experiments were performed with synthetic duplexes 
bearing the same nucleotide sequences (except for having U instead of T in the RNA templates). Despite provid-
ing important mechanistic information, nucleotide incorporation assays are restricted to a few template-primers 
and therefore provide limited information on the propensity of RTs to introduce base substitutions.

In contrast, forward mutation assays based on the expression of target genes using phages such as M13 or 
ΦX174 give error rate estimates over a wide range of mutational sites. Attempts to compare the fidelity of ret-
roviral RTs in DNA polymerization reactions carried out with RNA or DNA templates using these methods did 
not provide consistent results. Studies performed with HIV-1 RT and the amber16 reversion assay using phage 
ФX174 showed that two out of the seven specific mismatches analysed had 20- and 7-fold lower mutation fre-
quencies with DNA templates than with RNA templates22. On the other hand, M13-based assays using lacZα or 
the HIV-1 env hypervariable region 1 (V1) as target genes showed little differences in fidelity between reactions 
carried out with HIV-1 RT using RNA or DNA templates. Thus, base substitution error rates determined with 
lacZα were 1.7 × 10−4 and 1.4 × 10−4 for DNA-dependent and RNA-dependent reactions, respectively23. These 
small differences were also found for overall error rates in assays using a fragment of env as a target sequence (i.e. 
1.9 × 10−4 with DNA templates and 2.0 × 10−4 with RNA templates)24. In contrast, and using a modified version 
of the M13mp2 lacZα forward mutation assay, Boyer et al.25 showed that the overall fidelity of HIV-1 RT was 
about two to six-fold higher while copying RNA templates than DNA templates. In these experiments, authors 
suggested the contribution of errors made by the T7 RNA polymerase (RNAP) while preparing the RNA used as 
template in the fidelity assays, acknowledging an undetermined impact on the calculated error rates.

The discrepancies in the fidelity assessments could be explained in part by methodological differences in the 
assays, partly due to the different WT HIV-1 group M/subtype B RTs used in these experiments [i.e., homodimers 
(p66/p66) versus heterodimers (p66/p51), or RT variants derived from different viral strains, such as NL4-3, 
HXB2, BH10 or NY5]. In the present study, we have determined the intrinsic fidelity of RNA-dependent DNA 
synthesis of several RTs that showed diverse error rates in DNA-dependent DNA polymerization assays, ranging 
from around 1.4 × 10−4 in the case of HIV-1BH10 RT26–29 to 1.2 × 10−5 for MLV RT or ~6.3 × 10−6 for HIV-1 group 
O (ESP49 strain) RT mutants K65R (O_K65R) and K65R/V75I (O_K65R/V75I)18. We demonstrate how errors 
made by the T7 RNAP attenuate those differences while hampering an accurate determination of fidelity using 
RNA templates, despite improving the quality of the RNA template by using transcription conditions that could 
increase the accuracy of the RNA synthesis reaction. Despite those limitations, our results show that WT HIV-
1BH10 and HIV-1ESP49 are less accurate when copying DNA than RNA templates.

Results
Fidelity of RNA-dependent DNA synthesis of retroviral RTs.  M13mp2 lacZα forward mutation 
assays provide a broad estimate of the fidelity of RTs, based on a relatively large number of mutational sites and 
sequence contexts, although silent mutations cannot be detected by using this method. We determined mutant 
frequencies and error rates of RNA-dependent DNA synthesis for WT MLV, AMV, HIV-1BH10 and HIV-1ESP49 RTs, 
as well as mutant RTs O_K65R and O_K65R/V75I. For this purpose, a commercial T7 RNA polymerase (RNAP) 
was used to synthesize a lacZα RNA template that was then reverse transcribed by retroviral RTs (the method is 
outlined in the Supplementary Fig. S1). The cDNA product was hybridised with a gapped M13mp2 DNA lacking 
the lacZα gene in one of the two strands of the molecule. Errors made by RTs during reverse transcription result 
in a decrease in α-complementation and could be detected by the altered colour phenotype of the mutant plaques 
(pale blue or colourless) when phages are grown on an appropriated indicator strain. Mutant frequencies obtained 
with the six studied RTs, and calculated as the ratio of mutant to total plaques, are given in Table 1. These assays 
showed less than two-fold differences in fidelity between the most accurate and the least faithful RTs.

The mutational specificity of the studied RTs was determined after sequencing the lacZα mutants generated 
with the M13mp2-based mutation assays (Supplementary Figs S2–S7). All mutational spectra had insertions of 
one thymidine at the homopolymeric sequence located at positions +137/+139. In addition, U-to-C transitions 
at positions −36/−35 and U-to-A transversions at position +73 were observed in the spectra of five RTs. On the 
other hand, we also found large deletions in all mutational spectra, except in the one generated with the AMV RT. 
In the case of HIV-1BH10, HIV-1ESP49 and the O_K65R RTs, the large deletions clustered at positions +172/+173 
(Supplementary Figs S2–S4), corresponding to the first two nucleotides incorporated during reverse transcrip-
tion. These deletions could derive from misalignment errors occurring while extending the DNA primer.

Despite the similarities found among the mutational spectra, there were also remarkable differences. Thus, 
for example, AMV RT generated one-nucleotide insertions of A in the homopolymeric region located at posi-
tions +91/+94 (Supplementary Fig. S7), whereas MLV RT showed one hotspot at position +144, including 
various deletions and transversions (A-to-C and A-to-T) (Supplementary Fig. S6). In our analyses, hotspots 
were defined as those positions where at least four mutations were found. The statistical differences in hotspot 
distribution between different RTs were determined by using a two-tailed Fisher’s exact test, and are shown in 



www.nature.com/scientificreports/

3SCIentIfIC ReporTs |  (2018) 8:627  | DOI:10.1038/s41598-017-18974-8

the Supplementary Table S1. Interestingly, the spectrum of the O_K65R/V75I RT showed an important hot-
spot at position +147 (U-to-C substitutions) (Supplementary Fig. S5). This hotspot is absent in the mutational 
spectra of the other analysed RTs (P < 0.005, for all five comparisons) (Supplementary Table S1). On the other 
hand, mutations induced by HIV-1ESP49 RT seemed to be scattered throughout the whole lacZα sequence 
(Supplementary Fig. S3). The spectrum induced by the single-mutant O_K65R had one hotspot at position +109 
(Supplementary Fig. S4), while in the one obtained with HIV-1BH10 RT, G-to-T changes accumulated at position 
+149 (Supplementary Fig. S2).

Error rates for all RTs are summarized in Table 2. The highest error rates were obtained with WT HIV-1BH10 
RT, while one of the most faithful enzymes was the double-mutant O_K65R/V75I that showed 1.4-fold increased 
accuracy relative to the HIV-1BH10 RT. Mutant O_K65R/V75I RT had a low tendency to introduce frameshifts, 
although it had a relatively high base substitution error rate. This enzyme was prone to generate transitions (81%), 
which accumulated at two major hotspots (at positions −36 and +147) and three minor hotspots (located at 
nucleotides −35, −7 and +87). Unlike in the case of O_K65R/V75I, this strong bias towards the generation of 
transitions was not observed with the other RTs studied. On the other hand, compared with the other RTs, the 
HIV-1BH10 polymerase was prone to introduce frameshift errors, which were predominantly deletions.

By using the forward mutation assay we cannot determine whether the errors were made by the T7 RNAP 
during the synthesis of the RNA template (transcription) or by RTs during cDNA synthesis (reverse transcrip-
tion). The overall error rates obtained with the RTs used in this study were in the range of 2.5 × 10−5 to 3.5 × 10−5. 
These values are relatively close to reported estimates of transcription error rates obtained in different organ-
isms30–33, and suggest the existence of an inaccuracy threshold imposed by the T7 RNAP while synthesizing the 
RNA template.

Fidelity of promoter-dependent transcription by T7 RNA polymerase.  In order to reduce the pos-
sible inaccuracy threshold imposed by the T7 RNAP in M13mp2-based assays, we analysed its fidelity under 
different reaction conditions. A linearized pTRI-β-actin-Mouse plasmid containing a T7 promoter sequence was 
used as template for in vitro transcription using T7 RNAP (Ambion) in the presence of [α-32P]CTP. Reactions 
were carried out at different pH and Mg2+ concentrations, either in the presence of all four NTPs or with biased 
NTP pools (i.e. lacking or with a very low concentration of one ribonucleotide) (Supplementary Fig. S8). In this 
assay, when all NTPs were present (lanes marked with an asterisk), the polymerase synthesized an RNA of 53 
nucleotides. When using biased pools, the amount of full-length RNA was reduced, since the insertion of incor-
rect nucleotides would be needed to complete the synthesis reaction.

Relative amounts of full-length products in reactions carried out with biased NTP mixtures and in the pres-
ence of all NTPs provided a rough estimate of the accuracy of T7 RNAP in different assay conditions. It should be 
noted that G is required to initiate transcription, and therefore T7 RNAP cannot synthesize RNA in the absence 
of this nucleotide (lanes 3 in Supplementary Fig. S8). Inefficient RNA synthesis was also observed in the absence 
of A or U (lanes 1 and 6). When ATP was supplied at 1 µM while maintaining the three other NTPs at 100 µM 
(lanes 2), a small but significant amount of full-length RNA was observed at higher magnesium concentrations, 
as well as above pH 7.0. Similar findings were obtained in reactions with NTP mixtures having low concentra-
tions of GTP (10–20 µM) (lanes 4 and 5). The amount of full-length products in biased reactions was greater at 
6 mM MgCl2 and at pH 7.5, suggesting a lower accuracy in those conditions. At pH 5.5–6.0 we did not detect any 
transcription products. In addition, the efficiency of the reaction was very low in the presence of 0.5 mM MgCl2. 
Taken together, our data indicate that T7 RNAP showed good activity and improved accuracy at pH 6.5–7.0, and 
in the presence of Mg2+ at 1–3 mM.

Nucleotide incorporation kinetics and template-primer binding affinity of T7 RNA polymer-
ase.  RNA templates used in forward mutation assays were synthesized under optimal conditions for tran-
scription by T7 RNAP34. These reactions were carried out in 40 mM Tris-HCl buffer pH 7.9, containing 6 mM 
MgCl2. However, promoter-dependent transcription assays revealed qualitative differences in fidelity when RNA 
was synthesized at lower pH and in the presence of reduced amounts of magnesium. These observations indicated 

RTs
Mutant 
plaques

Total 
plaques Mutant frequencya

HIV-1BH10 52 12,836 0.00405

HIV-1ESP49 46 13,347 0.00345 (1.18)

O_K65R 54 18,284 0.00295 (1.37)

O_K65R/V75I 69 23,512 0.00293 (1.38)

MLV 36 13,569 0.00265 (1.53)

AMV 28 11,250 0.00249 (1.63)

Table 1.  RNA-dependent DNA synthesis fidelity of WT and mutant RTs in M13mp2 lacZα forward mutation 
assays. For each enzyme, mutant plaques were obtained after transfection of gapped DNA hybridised with 
the cDNA product of ten synthesis reactions. The RNA used as template in the reverse transcription reaction 
was synthesized by the T7 RNAP (Promega) in a transcription buffer containing 40 mM Tris-HCl pH 7.9 and 
6 mM MgCl2 (full composition given in Materials and Methods). aBackground frequencies in these assays were 
estimated to be less than one in 20,000 plaques18. Numbers between parentheses indicate the fold-increase in 
fidelity relative to the WT HIV-1BH10 RT.
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that transcriptions could be more accurate when carried out in buffers containing 40 mM Bis-Tris pH 6.75 and 
1.5 mM MgCl2.

The efficiency and nucleotide specificity of the T7 RNAP was determined in single-nucleotide incorpora-
tion assays using a VSR10 hybrid containing a dsDNA and a 10-nucleotide RNA primer (Fig. 1). Due to the 
requirement of relatively large amounts of enzyme, these assays were carried out with purified recombinant T7 
RNAP. Nucleotide incorporation rates were determined at different concentrations of correct (UTP) or incor-
rect ribonucleotides (ATP, CTP and GTP) in standard buffer conditions (40 mM Tris-HCl pH 7.9, containing 
6 mM MgCl2), as well as in conditions enhancing T7 RNAP fidelity (40 mM Bis-Tris buffer pH 6.75 and 1.5 mM 
MgCl2). Kinetic constants for UTP incorporation could not be obtained due to the high efficiency of the polym-
erization reaction. Thus, at nucleotide concentrations above 300 µM, the T7 RNAP showed UTP incorporation 
rates (kobs) above 150 s−1 in both assay conditions. At low concentrations of UTP, the polymerase showed dif-
ferent kinetic behaviours at pH 7.9/6 mM Mg2+ and pH 6.75/1.5 mM Mg2+ (Fig. 1A). The relationship between 
kobs and [UTP] was linear at pH 7.9/6 mM Mg2+ but hyperbolic at pH 6.75/1.5 mM Mg2+. Similar kinetics were 
observed in CTP incorporation reactions, although nucleotide incorporation efficiencies were much lower at 
pH 6.75/1.5 mM Mg2+ than in reactions carried out in 40 mM Tris-HCl buffer pH 7.9, containing 6 mM MgCl2. 
These data revealed that relative incorporation rates of CTP (incorrect) versus UTP (correct) were lower at pH 
6.75/1.5 mM Mg2+ than at pH 7.9/6 mM Mg2+. However, reliable estimates of kinetic constants were obtained 
only for the misincorporation of C at pH 6.75/1.5 mM Mg2+ (Fig. 1B).

Unlike in the case of pyrimidines, the efficiency of ATP and GTP misincorporation by T7 RNAP was 
much lower. Kinetic parameters, given in the Supplementary Table S2, showed that T7 RNAP incorpo-
rated non-complementary purines with 2.6- to 3.0-fold higher efficiencies at pH 7.9/6 mM Mg2+ than at pH 
6.75/1.5 mM Mg2+. ATP was incorporated more efficiently than GTP in both reaction conditions. The catalytic 
efficiency of ATP incorporation was 29.15 ± 15.17 M−1s−1 at pH 7.9/6 mM Mg2+ and 11.05 ± 1.53 M−1s−1 at pH 
6.75/1.5 mM Mg2+. Similar differences were obtained for GTP, although at pH 6.75/1.5 mM the kpol/Kd of the 
T7 RNAP was only 6.60 ± 1.16 M−1s−1. Taken together, these data provide further support to the notion that 
at pH 6.75 and 1.5 mM Mg2+ the T7 RNAP showed a modest but consistent improvement in its fidelity of RNA 
synthesis.

Interestingly, in addition to its effects on fidelity, the assay conditions had a strong influence on 
template-primer binding. At pH 7.9 and 6 mM Mg2+, the dissociation equilibrium constant (Kd) for T7 RNAP 
and the VSR10 heteroduplex was about 30 times higher than at pH 6.75 and 1.5 mM MgCl2 (Fig. 2). The higher 
affinity for VSR10 of the T7 RNAP at lower pH and Mg2+ concentration could represent an additional advantage 
towards increasing the efficiency of RNA synthesis in the presence of limiting amounts of template.

Estimates of RNA-dependent DNA synthesis fidelity of HIV-1 RTs using more faithful RNA 
templates.  Although the biochemical studies reveal that it is possible to increase transcription fidelity by 
reducing the pH and magnesium concentration of the reaction, it is not clear whether this would affect esti-
mates of fidelity of RNA-dependent DNA synthesis of retroviral RTs. As shown in Tables 1 and 2, the highest 
mutant frequency and error rate obtained with RNA templates synthesized at pH 7.9 and in the presence of 
6 mM MgCl2 were found in assays carried out with the HIV-1BH10 RT. We used this enzyme to test the impact of 
the RNA template on mutant frequencies obtained with M13mp2 lacZα forward mutation assays. Theoretically, 
more faithful RNAs (i.e. those carrying less transcription errors) would reduce the mutational threshold of the 
assay. RNAs containing the lacZα sequence were synthesized using recombinant T7 RNAP in the two different 
conditions (i.e. pH 7.9/6 mM Mg2+ and pH 6.75/1.5 mM Mg2+). Lower mutant frequencies were obtained with 
HIV-1BH10 RT using RNA templates synthesized at lower pH and Mg2+ concentrations, although the differences 
were not large (Table 3). The analysis of the mutational spectra showed similar distributions of transitions and 
transversions using both RNAs, but at the lower pH and Mg2+ concentration, we observed an increased tendency 

Mutation type

HIV-1BH10 RT AMV RT MLV RT HIV-1ESP49 RT O_K65R RT O_K65R/V75I RT

No. of errors Error rate No. of errors Error rate No. of errors Error rate No. of errors Error rate No. of errors Error rate No. of errors Error rate

All classes 54 1/28524 43 1/31395 46 1/35397 44a 1/36401 58 1/37829 71 1/39739

Base substitutions 26 1/36434 25 1/33210 29 1/34531 19 1/51843 29 1/46530 53 1/32739

  Transitions 11 (42%) 10 (40%) 12 (41%) 10 (53%) 19 (66%) 43 (81%)

  Transversions 15 (58%) 15 (60%) 17 (59%) 9 (47%) 10 (34%) 10 (19%)

Frameshifts 28 1/48960 18 1/66750 17 1/85245 25 1/57018 29 1/67336 18 1/139505

  Insertions 7 (25%) 14 (78%) 9 (53%) 13 (52%) 10 (34%) 9 (50%)

  Deletions 21 (75%) 4 (22%) 8 (47%) 12 (48%) 19 (66%) 9 (50%)

  At runsb 10 (36%) 1/29266 10 (56%) 1/25650 7 (41%) 1/44196 12 (48%) 1/25359 13 (45%) 1/32067 12 (67%) 1/44673

  At non-runs 18 (64%) 1/59901 8 (44%) 1/118125 10 (59%) 1/113980 13 (52%) 1/86242 16 (55%) 1/95991 6 (33%) 1/329168

Table 2.  Summary of error rates for WT and mutant RTs, for various classes of mutations in M13mp2 lacZα 
forward mutation assays. The RNA used as template in the reverse transcription reaction was synthesized by the 
T7 RNAP (Promega) in a transcription buffer containing 40 mM Tris-HCl pH 7.9 and 6 mM MgCl2. aThe total 
number of errors with this RT was smaller than the number of mutant plaques (Table 1), because five of those 
mutant plaques were either recombinants or had complex arrays of mutations, and were not included in the 
analysis of error rates. bA run is considered when there is a row of three or more identical nucleotides.
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Figure 1.  Nucleotide incorporation kinetics for UTP and CTP into VSR10 template-primer by recombinant T7 
RNA polymerase. Nucleotide sequences of the VSR10 complex56 are shown above. VSR10 is made of a double-
stranded DNA (black) annealed to a 10-nt RNA primer (red). The RNA is labelled at its 5′ end with [γ-32P]
ATP. The arrow indicates the nucleotide incorporation site. (A) UTP and CTP incorporation rates at different 
nucleotide concentrations, obtained at pH 7.9 and 6 mM MgCl2 (black circles), and at pH 6.75 and 1.5 mM 
MgCl2 (grey circles). (B) Pre-steady-state kinetics of CTP incorporation on VSR10 by T7 RNAP, at pH 6.75 (Bis-
Tris buffer) and 1.5 mM MgCl2. In the left panel, continuous lines represent the best fit of the data to the single-
exponential equation, obtained at different nucleotide concentrations. The right panel shows the nucleotide 
concentration dependence of CTP incorporation. The continuous line represents the best fit of the kobs data to 
the Michaelis-Menten equation. The obtained polymerization rates (kpol) and apparent equilibrium dissociation 
constant (Kd) of CTP were 4.98 ± 0.71 s−1 and 2.23 ± 0.61 mM, respectively. Results were obtained from three 
independent experiments.

Figure 2.  Dissociation equilibrium constants (Kd) for T7 RNA polymerase and the VSR10 dsDNA/RNA 
heteroduplex. Data shown were obtained from representative assays carried out at pH 7.9 and 6 mM MgCl2 
(panel A) and at pH 6.75 and 1.5 mM MgCl2 (panel B). The solid line represents the best fit of the data to the 
quadratic equation relating the template-primer bound to the T7 RNAP and the total concentration of the 
VSR10 heteroduplex. Reported Kd values represent averages ± standard deviations obtained from at least three 
independent experiments.
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to introduce frameshift errors in homopolymeric versus heteropolymeric sequences (Supplementary Figs S9 and 
S10). In any case, base substitution and frameshift error rates were about 49–58% lower in assays carried out with 
RNA obtained using the pH 6.75/1.5 mM Mg2+ conditions (Table 4).

In previous studies, we found that the mutant O_K65R/V75I RT was >15-fold more accurate than the HIV-
1BH10 RT in forward mutation assays measuring fidelity of DNA-dependent DNA synthesis18,29. Although mutant 
frequencies obtained with the double-mutant RT using RNAs synthesized at pH 6.75 and in the presence of 
1.5 mM MgCl2 were lower than those obtained with HIV-1BH10 RT (Table 3), the effects were not large. Error rates 
of 3.3 × 10−5 were estimated for the O_K65R/V75I RT under those conditions (Table 4). Interestingly, the analysis 
of mutational spectra revealed that major hotspots obtained with O_K65R/V75I RT while reverse transcribing an 
RNA template synthesized at pH 7.9/6 mM Mg2+ (Supplementary Fig. S5) were absent from the spectra obtained 
with the RNA made at pH 6.75/1.5 mM Mg2+ (Supplementary Fig. S11). Examples of hotspots that seemed to be 
lost with RNAs obtained at lower pH and Mg2+ concentration included clusters of U-to-C transitions found at 
positions −36, −35 and +147.

The analysis of data shown in Tables 1–4 also revealed that RNA synthesized by recombinant T7 RNAP had 
lower quality than the RNA made with commercial preparations of the enzyme that rendered lower mutant 
frequencies in M13mp2-based assays, even at pH 7.9 and high Mg2+ concentration. Thus, error rates obtained 
with the HIV-1BH10 RT using RNA synthesized at pH 7.9/6 mM Mg2+ were estimated to be 8.4 × 10−5 with the 
recombinant T7 RNAP and 3.5 × 10−5 with the commercial enzyme. Similar experiments with O_K65R/V75I RT 
and RNAs transcribed at pH 6.75/1.5 mM Mg2+ showed error rates of 3.3 × 10−5 and 2.3 × 10−5 for recombinant 
and commercial T7 RNAPs, respectively.

The smaller differences observed with the O_K65R/V75I RT relative to the HIV-1BH10 RT can be attributed 
to the existence of a transcriptional threshold that has a bigger influence on more faithful RTs. This limit seems 
to be achieved with RNAs obtained at pH 6.75/1.5 mM Mg2+ with the commercial T7 RNAP. However, when 
the commercial enzyme is used, the pH and Mg2+ concentration had a relatively small influence in the error rate 
(2.5 × 10−5, with RNAs obtained at pH 7.9/6 mM Mg2+) while differences may not be significant. Interestingly, 
and in agreement with our proposal, the error rate of HIV-1BH10 RT was reduced by 1.6-fold when the RNAs 
were synthesized by recombinant T7 RNAP at pH 6.75/1.5 mM Mg2+, as compared with those obtained at pH 
7.9/6 mM Mg2+. Meanwhile, the smaller reduction in the error rate (1.1-fold) observed with O_K65R/V75I RT 
when changing transcription conditions might be attributed to the use of commercial T7 RNAP to synthesize the 
RNA templates.

RTs T7 RNAP source

Transcription 
conditions

Mutant 
plaques

Total 
plaques

Mutant 
frequencypH

[Mg2+] 
(mM)

HIV-1BH10 Recombinant 7.9 6 45 4,650 0.00968

HIV-1BH10 Recombinant 6.75 1.5 70 11,226 0.00624

O_K65R/V75I Recombinant 6.75 1.5 56 14,735 0.00380

O_K65R/V75I Commercial 6.75a 1.5 51 19,466 0.00262

Table 3.  RNA-dependent DNA synthesis fidelity of HIV-1 RTs in M13mp2 lacZα forward mutation assays. 
Template RNA used in these assays was obtained in T7 RNAP-catalyzed reactions carried out at different pH 
and [Mg2+], as indicated. aThis assay was carried out with the T7 RNAP from Promega in PIPES buffer (pH 
6.75), and results were obtained after pooling the products of six reverse transcription reactions.

Mutation type

HIV-1BH10 RT O_K65R/V75I RT

Recombinant T7 RNAP 
(pH 7.9; 6 mM MgCl2)

Recombinant T7 RNAP 
(pH 6.75; 1.5 mM MgCl2)

Recombinant T7 RNAP 
(pH 6.75; 1.5 mM MgCl2)

Commercial T7 RNAP a 
(pH 6.75; 1.5 mM MgCl2)

No. of errors Error rate No. of errors Error rate No. of errors Error rate No. of errors Error rate

All classes 47 1/11872 74b 1/18204 59 1/29969 53 1/44074

Base substitutions 26 1/13199 42 1/19726 40 1/27186 32 1/44893

  Transitions 14 (54%) 25 (60%) 30 (75%) 19 (59%)

  Transversions 12 (46%) 17 (40%) 10 (25%) 13 (41%)

Frameshifts 21 1/23649 32 1/37467 19 1/82826 21 1/98999

  Insertions 10 (48%) 19 (59%) 16 (84%) 9 (43%)

  Deletions 11 (52%) 13 (41%) 3 (16%) 12 (57%)

  At runs c 10 (48%) 1/10602 21 (66%) 1/12188 15 (79%) 1/22397 11 (52%) 1/40348

  At non-runs 11 (52%) 1/35509 11 (34%) 1/85726 4 (21%) 1/309435 10 (48%) 1/163514

Table 4.  Summary of error rates for RNA-dependent DNA synthesis catalyzed by HIV-1 RTs, and obtained 
with RNAs synthesized by the T7 RNAP under different assay conditions. aThe T7 RNAP used in these assays 
was obtained from Promega, and buffers for the corresponding RNA synthesis reactions were prepared with 
PIPES. bRecombinant mutants are excluded from the analysis. cA run is considered when there is a row of three 
or more identical nucleotides.
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The origin of the T7 RNAP had a minor effect on hotspot distribution in the O_K65R/V75I spectra when the 
template RNA was synthesized at lower pH and magnesium concentration (Supplementary Figs S11 and S12). 
Thus, major hotspots at positions +87 and +139 were found with RNAs synthesized at pH 6.75/1.5 mM Mg2+, 
with recombinant or commercial T7 RNAP. Differences in hotspot distribution along the lacZα sequence between 
both assays were not significant statistically.

Discussion
Previous studies showed large variations in estimates of fidelity of retroviral RTs while synthesizing DNA 
using DNA templates (reviews12,35). The results obtained in the present study show that the intrinsic fidelity of 
RNA-dependent DNA synthesis varies within the range of 2.3 × 10−5 to 5.5 × 10−5, in assays carried out with 
RNA transcribed by T7 RNAP at pH 6.75 and in the presence of 1.5 mM Mg2+. This narrow window of variation 
was also observed with RNA templates obtained in conditions where the T7 RNAP was found to be less faithful 
(i.e. pH 7.9/6 mM Mg2+), rendering overall error rates of 2.5 × 10−5 to 8.4 × 10−5. The comparison of mutant fre-
quencies obtained with M13mp2 lacZα forward mutation assays using DNA or RNA templates (Fig. 3) illustrates 
these differences. While HIV-1BH10 RT is >15-fold less accurate than HIV-1ESP49 mutant RTs K65R and K65R/
V75I in DNA-dependent DNA synthesis reactions, differences between the most and least faithful RTs fall within 
less than two-fold in assays carried out with RNA templates (Table 1). Nonetheless, HIV-1BH10 RT remains as the 
least faithful enzyme in both types of assays. All the results reported in Fig. 3 were obtained in our lab following 
the same experimental procedures, except in the case of mutation frequencies determined for AMV RT with 
DNA-dependent DNA synthesis fidelity assays. Our previous studies measuring the fidelity of DNA-dependent 
DNA synthesis have shown that the mutant frequency variability obtained in forward mutation assays was under 
30% for HIV-1BH10 and HIV-1ESP49 RTs28,29,36, in agreement with values reported by other laboratories using 
mutant and WT RTs37,38.

Intrinsic error rates of RTs in DNA-dependent DNA synthesis can be as low as 6.3 × 10−6 (e.g. for O_K65R 
and O_K65R/V75I RTs)18, with RNA templates we obtained error rates that were more than three-fold higher 
with all tested enzymes. Structural studies with HIV-1 RT bound to RNA/DNA template-primers39–41 have shown 
that the RT adopts a similar conformation than in complexes containing DNA/DNA hybrids. However, in the 
structures containing RNA/DNA complexes, there are additional contacts involving residues of the p51 subunit 
as well as 2′-OH groups of the RNA template. These interactions contribute to the higher affinity of RT for RNA/
DNA hybrids reported in biochemical studies42. Although differences in the interaction with RNA/DNA com-
plexes versus DNA/DNA template-primers could be potentially responsible for the different error rates obtained 
in assays measuring fidelity of RNA- and DNA-dependent DNA synthesis, a more likely possibility is that those 
differences are due to transcription errors affecting the quality of the RNA template used in the assays.

Transcription errors in prokaryotic and eukaryotic cells are very difficult to quantify and large differences in 
error rates have been reported by several groups. Nonetheless, rough estimates of around 10−5 per nucleotide 
have been reported30–32,43. Moreover, in a recent study, Traverse and Ochman33 found conserved transcription 
error rates (ranging from 2.3 × 10−5 to 5.2 × 10−5 per nucleotide) across different species of bacteria, determined 
under different growth conditions and by considering either messenger or ribosomal RNA sequences. Those val-
ues were consistent with error rates obtained in our study, suggesting that T7 RNAP might be responsible for the 
inaccuracy threshold observed in our assays. Unfortunately, we are not aware of any reliable estimates of fidelity 
for T7 RNAP, although misincorporation rates have been estimated around 5 × 10−5 44, in good agreement with 
average base substitution error rates of 3 × 10−5 determined by Remington et al.45 with a codon reversion assay.

Our results also show that the accuracy of the T7 RNAP can be manipulated to some extent by changing tran-
scription conditions, although reductions of the inaccuracy threshold were modest. T7 RNAP synthesizes more 
faithful RNA at lower pH (6.75 vs. 7.9) and Mg2+ concentration (1.5 mM vs. 6 mM). This increase in fidelity at 
lower pH conditions has also been previously reported for several DNA polymerases (e.g Taq DNA polymerase, 
exonuclease-deficient Klenow fragment of E. coli DNA polymerase I, human DNA polymerase α and HIV-1 
RT)46–48. Thus, increases of fidelity of up to 50-fold have been reported at pH 6.2 compared to pH 9.8 for base 
substitutions using the Klenow fragment of E. coli DNA polymerase I47. Authors attributed these effects to altered 

Figure 3.  Comparison of RNA- and DNA-dependent DNA synthesis fidelities of retroviral RTs. Estimates of 
fidelity of RNA-dependent DNA synthesis are based on mutant frequencies obtained with the adapted M13mp2 
lacZα forward mutation assay, reported in this paper (orange bars). Blue bars represent previously reported 
values, obtained using M13mp2-based assays measuring the accuracy of DNA-dependent DNA synthesis of 
HIV-1BH10

29, HIV-1ESP49
36, AMV14, and MLV, O_K65R/V75I and O_K65R RTs18.
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template binding properties of the enzyme at a lower pH. In the case of T7 RNAP, nucleotide incorporation stud-
ies with nonpolar thymidine analogues have shown that hydrogen bonds are important for polymerization effi-
ciency due to their role in stabilizing the closed ternary complex of the polymerase, but electrostatic interactions 
with the minor groove of the substrate were critical for fidelity49. On the other hand, it has been shown that HIV-1 
RT and Taq DNA polymerase display higher fidelity at low concentrations of Mg2+ (e.g. 0.25 mM), although this 
property was not observed in experiments carried out with the MLV RT46,50. Despite improvements in fidelity 
obtained by reducing pH and Mg2+ concentrations, there are obvious limitations to this approach due to the loss 
of catalytic activity of the enzymes when departing from the optimal conditions for their polymerization activity.

By analysing the mutational spectra induced by the studied RTs we also obtained relevant information on 
preferred hotspots and types of errors on different templates (i.e. RNA versus DNA), and the contribution of 
specific errors likely made by T7 RNAP and found in RNA templates used in the assays. The mutational spectra 
of the six RTs studied (gathered in Fig. 4) show that RTs are prone to introduce errors when copying RNA or 
DNA templates at positions −36/−34 (mostly, U-to-C or T-to-C transitions), +139/+149, and within nucleotides 
+165 and +171. In the latter case, transversions are largely predominant with the DNA template, while transi-
tions, frameshift errors and large deletions dominated the RNA-dependent mutational spectra. In addition, we 
observed a different distribution of hotspots when comparing spectra obtained with RNA or DNA templates. The 
DNA-dependent mutational spectra showed scattered hotpots at positions −66, +108, +118, +136 and clustered 
at nucleotides +87 to +92. In contrast, the RNA-dependent spectra contained hotspots at positions −7, +73, 
+87, +109 and +121. Among them, the hotspot at position +73 was represented mainly by U-to-A transversions 
and one-nucleotide frameshifts.

The mutational spectra induced by RTs during RNA-dependent DNA synthesis contain a prominent hotspot 
at the homopolymeric region located at +137/+139. Errors at this position consist of insertions of one T in a 
run of three thymidines. These errors were previously detected by Boyer et al.25 in spectra obtained with HIV-1 
and AMV RTs, and attributed to errors made by the T7 RNAP and therefore, found in the RNA template used by 
retroviral RTs in the cDNA synthesis reaction. Our results are consistent with that proposal, since we also found 
one-nucleotide insertions at this site in all of the analysed mutational spectra, without statistically significant 
differences between them (Supplementary Table S1). Interestingly, the insertions were not detected in the muta-
tional spectrum induced by HIV-1 RT using lacZα RNA templates synthesized with the T3 RNAP23, supporting 
the notion that this type of errors are specifically made by the T7 RNAP. Another important hotspot represented 
by many large deletions occurs at positions +167/+ 173, at the 3′ end of the primer used for cDNA synthesis by 
the retroviral RTs. Deletions were more frequent at positions that correspond to the incorporation of the first and 
second nucleotides (i.e. +172 and +173), and probably result from either inefficient extension of the primer dur-
ing DNA synthesis or aberrant RT/template-primer interactions. Interestingly, frameshift errors near the 3′ end 
of the primer used in cDNA synthesis had been previously reported by Boyer et al.25, although in that study the 
hotspot induced by HIV-1 RT appeared at position +158. Interestingly, the authors also noted that this hotspot 
was absent from the mutational spectra generated with AMV RT. In our experiments, the large deletions at the 3′ 
end of the primer were found only in the mutational spectra induced by HIV-1BH10, HIV-1ESP49 and the O_K65R 
RT, but not with oncoretroviral RTs such as MLV or AMV RTs and the HIV-1ESP49 mutant K65R/V75I. The pres-
ence of this particular hotspot could be partly explained by the relatively high template-primer dissociation rate 
of HIV-1 RT during the first nucleotide incorporation events51.

In summary, our study further demonstrates that retroviral RTs such as HIV-1BH10 (group M subtype B) and 
HIV-1ESP49 (group O) are more faithful when copying RNA than when copying DNA templates. For enzymes 
showing higher accuracy such as AMV RT, MLV RT and the mutant HIV-1ESP49 RTs O_K65R and O_K65R/
V75I, differences in accuracy cannot be determined in a reliable manner due to the sequence heterogeneity of the 
RNA used as template. Transcription errors, and specifically in our assays those made by the T7 RNAP, hamper 
a correct assessment of fidelity in RNA-dependent DNA synthesis reactions, even after changing the reaction 
conditions to improve the quality of the RNA template. Further methodological developments including a better 
assessment of RNA-dependent DNA synthesis fidelity of retroviral RTs are expected to be helpful for improving 
next-generation sequence platforms that require reverse transcription for RNA sequencing.

Experimental Procedures
Enzymes.  Heterodimeric (p66/p51) wild-type (WT) RTs of HIV-1 group M strain BH10 (HIV-1BH10), HIV-1 
group O strain ESP49 (HIV-1ESP49) and HIV-1ESP49 mutants K65R and K65R/V75I (O_K65R and O_K65R/V75I, 
respectively) were obtained as previously described18,36,52. RT p66 subunits with His6 tags at their C-terminus 
were co-expressed with HIV-1 protease in Escherichia coli XL1 Blue. RT heterodimers were purified to homoge-
neity by ionic exchange on cellulose phosphate P11 (Whatman), followed by affinity chromatography on Ni2+-
nitriloacetic-agarose (ProBondTM resin, Invitrogen)53. Purity of the enzymes was assessed by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RT concentrations were determined spectrophotomet-
rically using a molar extinction coefficient of 2.6 × 105 M−1 cm−1 at 280 nm, and RTs were titrated to determine 
their active site concentration54. MLV and AMV RTs were obtained from Promega (catalogue #M170A and 
#M5101, respectively).

T7 RNA polymerase (RNAP) was obtained from commercial sources (Promega catalogue #P2075 and 
Ambion catalogue #AM1312), or purified after expression in E. coli BL21 (pREP4), using the plasmid pQE9T7 
encoding the full-length enzyme with a His6 N-terminal extension55. The plasmid pQE9T7 was kindly provided 
by Ralf Ehricht (Alere Technologies Gmbh, Jena, Germany). Recombinant T7 RNAP was purified by affinity 
chromatography on Ni2+-nitriloacetic-agarose, as previously reported55. The purity of the enzyme was assessed 
by SDS-PAGE and its concentration was calculated from its absorbance at 280 nm and using a molar extinction 
coefficient of 1.4 × 105 M−1 cm−1.
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Figure 4.  Comparison of mutational spectra induced by retroviral RTs during RNA- and DNA-dependent 
DNA synthesis. (Up) Combined mutational spectra derived from RNA-dependent DNA synthesis reactions 
including all RTs analysed in this study (Supplementary Figs S2 to S7). RTs included are those of WT HIV-1BH10 
(pink), HIV-1ESP49 (purple), AMV (red), and MLV (green), and mutants O_K65R/V75I (blue) and O_K65R 
(brown). (Bottom) Combined mutational spectra induced during DNA-dependent DNA synthesis reactions, 
and taken from previously published reports15,18,36. RT colour codes are the same as above. For all RTs and 
mutational spectra, single-nucleotide substitutions are indicated by the letter corresponding to the new base 
above the template sequence of the lacZα target. Open upright triangles represent insertions and inverted 
triangles indicate deletions. The triangles are positioned at the 3′ end of the frameshift, with the number 
of inserted/deleted nucleotides indicated between parentheses. If not specified, one-nucleotide insertions 
correspond to the duplication of the base where the triangle is positioned.
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Promoter-dependent transcription assays.  The plasmid pTRI-β-actin-Mouse (included in the Ambion 
MAXIscript® T7 Transcription Kit) was used by T7 RNAP as the promoter-dependent template in transcrip-
tion assays. These assays were used to assess nucleotide misincorporation efficiencies in the absence of one NTP 
or with unbalanced mixtures of NTPs under different transcription conditions. First, the plasmid was digested 
for 90 min at 37 °C with EcoRI (New England Biolabs) in 50 µl of 100 mM Tris-HCl buffer pH 7.5, containing 
50 mM NaCl, 10 mM MgCl2, 0.025% Triton X-100 and 3 units of the enzyme per µg of plasmid. The resulting 
linearized plasmid was analysed in 1% agarose gels and purified with the NucleoSpin® Gel and PCR Clean-up Kit 
(Macherey-Nagel) according to the manufacturer’s instructions.

Transcription assays were carried out at 37 °C for 0–30 min in different buffers depending on the desired pH 
(i.e. MES, PIPES, Bis-Tris and Tris-HCl). Reactions were done in 20 µl of 40 mM buffer (pH 5.5–7.5), containing 
10 mM NaCl, 0.5–6 mM MgCl2, 2 mM spermidine, 10 mM dithiothreitol (DTT), 5 units of RNasin® Plus RNase 
inhibitor (Promega), 15 units of T7 RNAP (Ambion) and 0.5 µg of the linearized pTRI-β-actin-Mouse plasmid. 
Reactions were initiated by the addition of different combinations of NTPs at 100 µM each [e.g. * (ATP, GTP, 
CTP, UTP); −A (GTP, CTP, UTP); −G (ATP, CTP, UTP); and −U (ATP, GTP, CTP)], as well as with unbal-
anced mixtures of the four NTPs, including one that is added in a low concentration [e.g. −A+ (GTP, CTP and 
UTP at 100 µM each, plus 1 µM ATP); or −G++ (ATP, CTP and UTP at 100 µM each, plus 20 µM GTP)], always 
in presence of 0.2 µCi of [α-32P]CTP (Perkin Elmer). High-purity ribonucleotides were from GE Healthcare 
(cat. no. 27-2025-01). Reactions were quenched at appropriate times by adding the stop solution [10 mM eth-
ylenediaminetetraacetic acid (EDTA) in 90% formamide, containing 3 mg/ml xylene cyanol FF and 3 mg/ml 
bromophenol blue]. The RNA products were resolved on denaturing polyacrylamide gel electrophoresis (20% 
polyacrylamide and 8 M urea). Then, gels were exposed to a phosphor screen and scanned with a BAS1500 phos-
phorimager instrument (Fuji).

Single-nucleotide incorporation assays.  The transcription (DNA-dependent RNA synthesis) fidelity of 
T7 RNAP was studied by single-nucleotide incorporation assays with correct and incorrect nucleotides at pH 7.9 
in the presence of 6 mM MgCl2, and at pH 6.75 in the presence of 1.5 mM MgCl2. Assays were carried out with 
the VSR10 template-primer56, a hybrid containing double-stranded DNA and a short RNA oligonucleotide, but 
lacking the T7 RNAP promoter (Fig. 1). Template DNA, non-template DNA and primer RNA were mixed at a 
1:1.5:1 ratio, heated at 95 °C for 20 min, and then progressively cooled at 75, 55, 45, 20 and 4 °C for 20 min each. 
The 10-nt primer RNA was previously labelled at its 5′ end with [γ-32P]ATP (Perkin Elmer) and T4 polynucleo-
tide kinase (New England Biolabs) in 70 mM Tris-HCl buffer pH 7.6, containing 10 mM MgCl2 and 5 mM DTT. 
Before annealing, the labelled RNA primer was purified with a Micro bio-SpinTM column (BioRad) loaded with 
Sephadex G-25 (GE Healthcare) to eliminate the excess of labelled ATP that could interfere with the transcription 
reaction.

Kinetic parameters for UTP and CTP incorporation were determined at 37 °C using a rapid quench-flow 
instrument (model QFM-400, Bio-Logic Science Instruments, Claix, France), upgraded with a mixer cross and 
a special mixer (Bio-Logic). Assays were carried out in 24 µl of 40 mM Tris-HCl buffer pH 7.9, containing 6 mM 
MgCl2 (or Bis-Tris buffer pH 6.75 with 1.5 mM MgCl2), 10 mM NaCl and 10 mM DTT, in the presence of increas-
ing concentrations of NTP. The concentration of VSR10 was 240 nM and the recombinant T7 RNAP was added 
to a final concentration of 1 µM. Reactions were stopped with EDTA (0.3 M final concentration). Pre-steady-state 
kinetic data were fit to a burst equation: [P] = A × [1 − exp(−kobs × t)] + kss × t, where [P] is the product concen-
tration, A is the amplitude of the burst, kobs is the apparent kinetic constant of formation of the phosphodiester 
bond and kss is the kinetic constant of the steady-state linear phase. The dependence of kobs on the NTP concentra-
tion is described by the equation: kobs = kpol × [dNTP]/(Kd + [dNTP]), where Kd is the equilibrium constant and 
kpol is the catalytic rate constant of the nucleotide incorporation reaction. Kinetic parameters were determined 
using curve-fitting tools provided by the SigmaPlot software (Systat Software Inc.).

The incorporation of non-complementary nucleotides GTP and ATP was performed manually with 
template-primer VSR10 (240 nM). Reactions were carried out in 20 µl of 40 mM Tris-HCl buffer pH 7.9 (or 
Bis-Tris buffer pH 6.75), containing 6 mM MgCl2 (or 1.5 mM MgCl2), 10 mM NaCl, 10 mM DTT, 2 mM sper-
midine and 24 units of RNasin® Plus RNase inhibitor. The T7 RNAP was supplied at 1 µM. Samples were pre-
incubated at 37 °C for 10 min, and the reaction was then initiated by adding increasing concentrations of NTP. 
Reactions were stopped at different times (0–30 s) by mixing an aliquot of 4 µl with an equal volume of stop 
solution. Samples were incubated at 90 °C for 10 min before loading in polyacrylamide-urea gels. Results were 
analysed by phosphorimaging and nucleotide incorporation data were fitted to the Michaelis-Menten equation, 
as described above.

Binding affinity of T7 RNAP for template-primer VSR10.  The equilibrium dissociation constant 
(Kd) for T7 RNAP binding to the template-primer VSR10 was determined after pre-incubating the enzyme with 
increasing concentrations of the 5′-32P-labelled VSR10 (60 nM-2.3 µM) at 37 °C for 10 min and then initiating 
the incorporation reaction by adding UTP to a final concentration of 5 µM. Reactions were carried out in 20 µl of 
40 mM Tris-HCl buffer pH 7.9 containing 6 mM MgCl2 (or Bis-Tris buffer pH 6.75 containing 1.5 mM MgCl2), 
and 10 mM NaCl, 10 mM DTT, 2 mM spermidine and 24 units of RNasin® Plus RNase inhibitor. The T7 RNAP 
was supplied at 0.75–1 µM in reactions carried out at pH 7.9 with 6 mM MgCl2. At pH 6.75 and 1.5 mM MgCl2, 
the T7 RNAP concentration was 120–250 nM. Aliquots of 4 µl were taken at 10, 20, 30 and 40 s, quenched with 
stop solution and analysed by denaturing polyacrylamide gel electrophoresis and phosphorimaging, as described 
above. The burst amplitudes (RT bound to template-primer at time zero) were plotted as a function of the 
template-primer concentration, and the data were fitted to the following quadratic equation:
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where ET and T/P are the total active enzyme and template-primer concentration used in the assay, respectively, 
and Kd is the equilibrium dissociation constant for T7 RNAP binding to the template-primer.

M13mp2-based forward mutation assays.  The fidelity of RNA-dependent DNA synthesis of retrovi-
ral RTs was determined using M13mp2-based forward mutation assays (Supplementary Fig. S1)57. Briefly, the 
dsDNA genome of the M13mp2 bacteriophage containing the promoter for T7 RNAP upstream the lacZα gene 
(T7-M13mp2) was digested with FspI (New England Biolabs). Five or six µg of linearized T7-M13mp2 were 
used as template for transcription by T7 RNAP (either the recombinant enzyme or the commercially available 
polymerase from Promega). Reactions were carried out in a total volume of 50 µl. Two different transcription 
conditions were used: (i) 40 mM Tris-HCl buffer (pH 7.9), containing 6 mM MgCl2 and 0.5 mM of each NTP; and 
(ii) 40 mM Bis-Tris or PIPES buffer (pH 6.75), containing 1.5 mM MgCl2 and 0.2 mM of each NTP. In both cases, 
reactions also contained 10 mM NaCl, 10 mM DTT, 2 mM spermidine and 50–60 units of RNasin® Plus RNase 
inhibitor. Samples were incubated at 37 °C for 2 hours to obtain a 313-nucleotide RNA product. The T7-M13mp2 
dsDNA template was then digested with 5–6 units of RQ1 RNase-free DNase (Promega) at 37 °C during 15 min, 
and the RNA product was purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1, by volume), 
followed by ethanol precipitation in the presence of sodium acetate.

The purified RNA was used as template in reverse transcription reactions carried out with WT AMV, MLV, 
HIV-1BH10 and HIV-1ESP49 RTs, and mutant O_K65R and O_K65R/V75I RTs. The cDNA synthesis reactions were 
carried out at 37 °C for 2 hours in 50 μl of 25 mM Tris-HCl buffer pH 8.0, containing 100 mM KCl, 2 mM DTT, 
4 mM MgCl2, 250 μM of each dNTP and 100 nM RT (active site concentration). Each reaction contained 2 pmol 
of RNA, previously heated to 65–70 °C for 5 min, and primed with a two-fold molar excess of the Rtr174/18 oligo-
nucleotide (5′-CTGTTGGGAAGGGCGATC-3′). The reactions were stopped by adding EDTA at a final concen-
tration of 15 mM and incubated at 80 °C for 5 min. Six to ten reverse transcription reactions were performed for 
each enzyme. The RNA template used in reverse transcription was digested at 37 °C for 1 hour, after adding 1 µl of 
RNase CocktailTM containing RNase A and RNase T1 (Ambion). The obtained cDNA products were then purified 
by phenol extraction as described above. The cDNA was then phosphorylated with T4 polynucleotide kinase and 
1 mM of ATP at 37 °C for 1 hour. The reaction was stopped after incubation at 65 °C for 5 min.

Finally, the cDNA was hybridised with gapped DNA (M13mp2 dsDNA lacking the lacZα gene in one of the two 
strands of DNA) in a solution containing 300 mM NaCl and 30 mM sodium citrate. Gapped DNA was obtained as 
previously described13. The cDNA was added in excess over gapped DNA and the mixture was heated to 70–75 °C 
for 5 min and slowly cooled at room temperature. The annealed products were analysed by electrophoresis in 
0.8% agarose gels. These hybrid products were electroporated into E. coli MC1061 cells, and the transformed 
cells were plated onto M9 medium-containing plates with 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
(X-Gal) and isopropyl-β-D-galactopyranoside (IPTG) with E. coli CSH50 lawn cells. In E. coli, the phosphoryla-
tion of the cDNA facilitates its ligation to the gapped DNA while repairing the nick occurring between positions 
+191 and +192 of the lacZα gene. Mutant frequencies were calculated as the ratio of mutant (light blue or 
colourless) plaques to the total number of plaques screened. Mutant phenotypes were confirmed by nucleotide 
sequencing of the phage replicative-form DNA using primer 5′ -GCTTGCTGCAACTCTCTCAG-3′ (Macrogen 
Inc., Seoul, South Korea).

Specific error rates were calculated as previously described57, but taking into account that the primer used 
for reverse transcription hybridised at positions +174 to +191 of the lacZα nucleotide sequence. Errors were 
detected at 123 template positions for base substitutions and 178 for frameshifts (38 at runs, and 140 at non-runs). 
Despite the different target size for base substitutions and frameshifts, we determined overall error rates to facil-
itate the comparison of different retroviral RTs by considering the 200 template positions where any pheno-
typic change could be detected. It should be noted that silent mutations and mutations that do not affect the 
β-galactosidase activity may not be detected in these assays. It has been estimated that this limitation results in 
a 2- to 3-fold underestimation of the actual mutation rates58. Statistical analysis about the differences in the pro-
portion of mutations at specific sites in the spectra of different RTs was determined by using a two-tailed Fisher’s 
exact test, using the GraphPad software.
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