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Suppression of Spry4 enhances cancer 
stem cell properties of human MDA-MB-231 
breast carcinoma cells
Hongyu Jing1,2, Lucy Liaw1, Robert Friesel1, Calvin Vary1, Shucheng Hua2* and Xuehui Yang1* 

Background: Cancer stem cells contribute to tumor initiation, heterogeneity, and recurrence, and are critical targets 
in cancer therapy. Sprouty4 (Spry4) is a potent inhibitor of signal transduction pathways elicited by receptor tyrosine 
kinases, and has roles in regulating cell proliferation, migration and differentiation. Spry4 has been implicated as a 
tumor suppressor and in modulating embryonic stem cells.

Objectives: The purpose of this research was to test the novel idea that Spry4 regulates cancer stem cell properties 
in breast cancer.

Methods: Loss-of function of Spry4 in human MDA-MB-231 cell was used  to test our hypothesis. Spry4 knockdown 
or control cell lines were generated using lentiviral delivery of human Spry4 or non-targeting control shRNAs, and 
then selected with 2 μg/ml puromycin. Cell growth and migratory abilities were determined using growth curve and 
cell cycle flow cytometry analyses and scratch assays, respectively. Xenograft tumor model was used to determine the 
tumorigenic activity and metastasis in vivo. Cancer stem cell related markers were evaluated using immunoblotting 
assays and fluorescence-activated cell sorting. Cancer stem cell phenotype was evaluated using in vitro mammos-
phere formation and drug sensitivity tests, and in vivo limiting dilution tumor formation assay.

Results: Two out of three tested human Spry4 shRNAs significantly suppressed the expression of endogenous Spry4 
in MDA-MB-231 cells. Suppressing Spry4 expression increased MDA-MB-231 cell proliferation and migration. Suppress-
ing Spry4 increased β3-integrin expression, and CD133+CD44+ subpopulation. Suppressing Spry4 increased mam-
mosphere formation, while decreasing the sensitivity of MDA-MB-231 cells to Paclitaxel treatment. Finally, suppressing 
Spry4 increased the potency of MDA-MB-231 cell tumor initiation, a feature attributed to cancer stem cells.

Conclusions: Our findings provide novel evidence that endogenous Spry4 may have tumor suppressive activity in 
breast cancer by suppressing cancer stem cell properties in addition to negative effects on tumor cell proliferation 
and migration.

Keywords: Sprouty4 (Spry4), Cancer stem cells, Beta3- integrin (CD61), CD133, Receptor tyrosine kinases (RTK)

© 2016 Jing et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Breast cancer is the most common cancer among 
women, and despite tremendous advances in diagno-
sis and treatment at an early stage, it is still the second 
leading cause of cancer related deaths among women in 

the United States [1]. Recurrence and metastasis of the 
primary tumor are thought to be key contributors to the 
incurable nature of metastatic breast cancer. Accumulat-
ing evidence suggests that tumor recurrence, metastasis 
and poor clinical outcome of cancer patients is strongly 
influenced by a small subset of stem-like cells, also called 
cancer stem cells (CSCs) [2–4]. CSCs are tumor initiat-
ing cells that evade the effects of systemic therapies. They 
have the capacity to self-renew and differentiate into 
bulk tumor cells, and demonstrate resistance to standard 
chemotherapy [3, 4]. Despite the recognition that CSCs 
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are a critical target for tumor eradication, the molecular 
regulators of CSC phenotype remain poorly understood.

Receptor tyrosine kinases (RTK) play central roles in 
multiple biological processes including proliferation, 
survival, differentiation and migration [5], and are often 
associated with normal and CSC identity mainly through 
activating Ras/ERK and PI3K/Akt signaling pathways [6–
8]. Spry4 is a feedback regulator that is induced by RTK/
MAPK kinase and restrains RTK signaling output. Spry4 
displays tumor suppressor activity by inhibiting tumor 
cell migration and proliferation in human cancers includ-
ing lung [9], prostate [10] and breast cancers [11]. This 
study tests the novel idea that Spry4 regulates properties 
of the CSC in breast carcinoma. We used lentiviral deliv-
ery of human Spry4 shRNAs to suppress endogenous 
Spry4 expression in human MDA-MB-231 cells, and 
found this efficiently altered the phenotype of the CSC 
subpopulation, leading to a more malignant and drug-
resistant phenotype. Our studies suggest that the endoge-
nous activity of Spry4 targets CSCs to promote the tumor 
suppressive phenotype.

Methods
Cell culture
MDA-MB-231 breast cancer cell from ATCC were cul-
tured in α-MEM containing 10 % FBS supplemented with 
1 % non-essential amino acids (invitrogen) and penicillin/
streptomycin/amphotericin B. To generate stable Spry4 
knockdown cells, low passage MDA-MB-231 cells (pas-
sage 10–15) were transduced with human Spry4 shRNA 
lentiviruses or non-targeting control lentiviruses (Open 
Biosystems), and selected in medium containing 2 μg/ml 
puromycin.

Western blotting
Cells were lysed in HNTG buffer [20 mM HEPES pH7.4, 
150 mM NaCl, 10 % glycerol, 1 % Triton X-100, 1.5 mM 
MgCl2, 1.0 mM EGTA and proteinase inhibitor cocktail 
(Roche)]. Cell lysates were subjected to SDS-PAGE sepa-
ration. Immunoblotting was performed with antibodies 
against Spry4, EGFR, ERK, β1-integrin, β3-integrin and 
Src (Santa Cruz), phosphor-ERK, phosphor-Akt, Akt, 
pSrc (Cell Signaling), and tubulin (Sigma).

Cell growth curve analysis and anchorage‑independent 
colony forming assay
Spry4 knockdown (S4kd) or non-targeting (NT) control 
stable cell lines were trypsinized and counted. For growth 
curve analysis, 5  ×  103 S4kd or NT stable cells were 
plated in each well of 12 well plates in triplicate, cultured 
in growth media, and counted by Coulter counter (Beck-
man Coulter, Inc.). For anchorage-independent colony 
formation, 1 ×  105 S4kd or NT stable cells were mixed 

with medium containing 0.4 % agar and were spread on 
top of a bottom agar layer (0.8 % agar in growth medium). 
Cells were grown for 2 weeks, and colonies were counted 
and photographed. The diameter of the colonies was 
measured using Image J software (NIH).

Mammosphere assay
Mammosphere assays were performed as described by 
Dontu [12] with modifications. Briefly, 5000 of NT or 
S4kd cells were suspended in serum-free αMEM contain-
ing 20  ng/ml FGF2, 20  ng/ml EGF (R&D Systems) and 
1xB27 serum free supplement (invitrogen) and cultured 
on ultra-low attachment 6-well plates. Mammospheres 
were monitored daily by phase-contrast microscopy 
to ensure that they were derived from a single cell. The 
number of mammospheres was counted at day 10, and 
their size was measured using ImageJ (NIH).

Fluorescence‑activated cell sorting (FACS) analysis
NT and S4kd cells were trypsinized, stained with fluor- 
conjugated antibodies: anti-CD61-APC, anti-CD29-PE, 
anti-CD133-PE, anti-CD24-FITC, anti-CD49f-FITC and 
anti-CD44-APC, and analyzed on FACSCalibur (BD Bio-
sciences). The data were analyzed using FlowJo software.

Scratch assay
NT and S4kd cells were plated in 6 well plates in tripli-
cate at subconfluence and cultured for 24  h. Conflu-
ent cells were treated with 2 μg/ml mitomycin C for 2 h 
prior to cell denudation using a 1  ml pipette tips. Cells 
were washed with growth medium and continually cul-
tured in growth medium containing 1 μg/ml mitomycin 
C for 48 h. The progress of migration was photographed 
in eight regions at 0, 24 and 48  h. Denuded areas were 
measured and quantified with Image J.

Animal xenograft analysis
Six to eight-week old NOD/SCID female mice (Jack-
son Laboratory) were used for xenograft tumor studies 
according to previous report. NT or S4kd MDA-MB-231 
stable cells were harvested in the exponential growth 
phase using EDTA solution and washed twice with ice 
cold PBS, and resuspended in PBS at the dose of 1 × 106 
per 200  ul. 200  ul of cells were injected into the left 
inguinal mammary fat pad, five mice were used per cell 
line. Tumor length and width was measured with a cali-
per weekly, and tumor volume calculated using the for-
mula W2L/2 (L =  length, W = width) [13]. Nine weeks 
later when tumors were approximately 10–15  mm at 
their largest diameter, tumors and lungs were removed 
and snap frozen or fixed in 10  % formalin for further 
analysis. For in vivo limiting dilution assay (LDA), mice 
were injected with 1  ×  103, 1  ×  104 or 1  ×  105 cells, 
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and monitored daily. Tumor formation was verified at 
end-stage after 4  month after tumor cell injection. All 
procedures involving animals were approved by the Insti-
tutional Animal Care and Use Committee of Maine Med-
ical Center, and conducted in compliance with regulatory 
guidelines involving the use of vertebrate animals in bio-
medical research.

Statistical analysis
The results were presented as mean ± SD and analyzed 
with Student’s t test. P < 0.05 was denoted as statistically 
significant.

Results
Suppression of Spry4 in MDA‑MB‑231 cells promotes cell 
proliferation and migration in vitro
MDA-MB-231 is a human breast cancer cell line that 
endogenously produces Spry4 protein (Fig. 1a). To exam-
ine the role of Spry4 in regulation of the malignant phe-
notype of these cells, we performed shRNA-mediated 
knockdown of human Spry4 compared to a non-targeting 

control. Stable knockdown of Spry4 (S4kd) and non-tar-
geting control (NT) cell lines were obtained by puromy-
cin selection. Three different shRNAs targeting Spry4 
were utilized, and two of them efficiently reduced Spry4 
protein to undetectable levels (S4kd#1 and S4kd#2) 
(Fig. 1a). Growth curve analyses showed that suppression 
of Spry4 led to an increase in cell number over a ten-day 
cell growth period (Fig.  1b). Cell cycle analyses con-
firmed that the increased growth by suppressing Spry4 
associated with the increased cells in S and G2/M phases 
(Additional file  1). We also tested cell migration, since 
highly motile cells are associated with cancer metastasis. 
A scratch assay was used in the presence of mitomycin 
C to suppress cell proliferation. Cell migration into the 
denuded area was quantified at 24 and 48 h. Figure 1c, d 
show that knockdown of Spry4 increased cell migration, 
with closure of the denuded area more quickly than the 
control cells. These data show that loss of Spry4 increases 
both proliferation and migration in MDA-MB-231 cells, 
suggesting that endogenous Spry4 protein acts to sup-
press these activities.

Fig. 1 Suppressing Spry4 expression enhances MDA-MB-231 cell growth and migration. a Immunoblotting assay shows that two out of three 
Spry4 shRNAs effectively decreased Spry4 protein levels compared to NT control. b Growth curve analysis shows that suppressing Spry4 expression 
increased MDA-MB-231 cell growth. c Representative images of scratch assays from three independent experiments show that suppressing Spry4 
expression increased cell migration into the denuded area. d Quantification of cell migration capacity from one of three experiments. *p < 0.05; 
**p < 0.01
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Suppression of Spry4 potentiates MDA‑MB‑231 cell in vitro 
anchorage‑independent growth, and in vivo tumor growth 
and lung metastasis
Anchorage-independent growth is one of the fundamen-
tal features of malignant tumor cells. We examined the 
colony forming capacity of Spry4 knockdown cells in soft 
agar, and found that both Spry4 knockdown populations 
have increased colony number compared to non-target-
ing control, suggesting conversion into a more malignant 
phenotype (Fig. 2a, b).

To test whether the in  vitro features of Spry4 knock-
down cells are maintained in  vivo, we performed ortho-
topic xenograft analysis to test if knockdown of Spry4 
affects the tumor formation by injecting 1 ×  106 NT or 

S4kd#1 cells into the mammary fat pads of immunodefi-
cient NOD/SCID mice. Tumor growth was monitored 
and measured weekly. All injected mice developed pal-
pable tumors within 2  weeks. However, S4kd tumors 
grew to a greater final size compared to control tumors 
(Fig. 2c, d). Furthermore, mice with S4kd tumors had an 
increased rate of spontaneous lung metastases compared 
to mice bearing NT tumors. This was quantified by count-
ing representative metastatic lung foci from H&E stained 
histological sections (Fig. 2e, f ), and by using RT-qPCR to 
identify levels of human HPRT mRNA in the mouse lungs 
(Fig. 2g). Thus, the increased malignant phenotype due to 
loss of Spry4 was maintained in vivo in primary tumors as 
well as secondary, metastatic tumors.

Fig. 2 Suppressing Spry4 expression promotes MDA-MB-231 tumor growth and lung metastasis. a Representative images of soft-agar colony 
formation assays show that S4kd cells formed more colonies compared to NT cells. b Quantification of soft-agar colony formation assay. c Repre-
sentative images of tumors harvested at 9 weeks after fat pad inoculation of 1 × 106 NT or S4kd#1 cells. d Tumor growth curve was present with 
average tumor volume from five animals in each group. e Representative H&E staining of lungs from 1 × 106 dosage xenograft mice showing more 
and larger metastasis lesions in S4kd injected mice compared to NT injected mice. f Quantification of lung metastasis. g RT-qPCR analysis of human 
HRPT transcript versus total 18S rRNA transcripts in lungs from S4kd and NT cells injected mice, the relative mRNA level of human HRPT in S4kd 
tumors compare to NT tumors is presented. *p < 0.05, **p < 0.01
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Suppression of Spry4 increases β3‑intergin expression 
of MDA‑MB‑231 cells
Integrins are the cell surface receptors that interact with 
ligands in the extracellular matrix (ECM), and play criti-
cal role in tumor growth and metastasis [14, 15]. We 
have previously shown that Spry4 regulates β3-integrin 
expression in endothelial cells [16]. Therefore, we tested 
whether suppressing Spry4 modulates β3-integrin 
expression in MDA-MB-231 cells. Immunoblotting 
analysis shows that knockdown of Spry4 increased 
β3-integrin protein level compared to control cells 
(Fig. 3a, b). FACS analyses using fluorescence-conjugated 
β1 (CD29) and β3-integrin (CD61) antibodies showed 
that suppressing Spry4 increased the CD61 positive cell 
population (Fig.  3c, d). It is noteworthy that almost all 

MDA-MB-231 cells are β1-integrin (CD29) positive cells 
(>85 %), and suppression of Spry4 had minimal effect on 
β1-integrin expression levels (Fig.  3c). Spry4 is a well-
known inhibitor of RTK mediated MEK/ERK and PI3 K/
Akt signaling pathways in multiple cell types [17–19], we 
examined the pERK, pAkt, as well as the pSrc expression 
in S4kd MDA-MB-231 cells cultured in growth medium. 
Suppressing Spry4 had significant increase of pAkt, mild 
but significant increase of pERK, but no effect on pSrc 
level. However, neither inhibition of MEK/ERK nor PI3K/
Akt signaling reversed this up-regulation of β3-integrin, 
but further enhanced this effect (Fig.  3e, f ). Thus, sup-
pressing Spry4 increases β3-integrin protein independent 
of its regulation on RTK mediated MEK/MAPK or PI3 K/
Akt signaling pathways in MDA-MB-231 cells.

Fig. 3 Suppressing Spry4 expression increases β3-integrin protein level in MDA-MB-231 cells. a Immunoblotting assay shows that S4kd cells had 
increased β3-integrin levels. b Quantification of β3-integrin protein levels from three independent experiments. c Representative FACS analysis 
shows that suppressing Spry4 expression increased CD61 positive cells. d Quantification of CD61 positive cell percentages from three independent 
experiments. e Immunoblotting assay shows that suppressing Spry4 had no effect on pERK and pSrc expression, but increased pAkt expression. 
Inhibition of MEK/ERK signaling by U0126 or PI3 K/Akt by Ly294002 did not reverse Spry4 knockdown mediated increase of β3-integrin but further 
increased β3-integrin expression. f Quantification of pERK, pAkt and b3-integrin from three independent immunoblotting assays in E. *p < 0.05; 
**p < 0.01



Page 6 of 9Jing et al. Cancer Cell Int  (2016) 16:19 

Suppression of Spry4 increases the CD133+ subpopulation 
and enhances tumorigenic potential of MDA‑MB‑231 cells
Integrin-β3 is a known mammary stem/progenitor cell 
marker, and also serves as a CSC marker [20]. There-
fore, we hypothesized that MDA-MB-231 cells with 
suppressed Spry4 acquired more CSC features. Using 
a mammosphere forming assay, we observed that S4kd 
cells formed more and larger mammospheres compared 
with NT (Fig.  4a–c). CSCs in breast cancer have been 
characterized as CD44+/CD24−, and/or positive for 
aldehyde dehydrogenase 1 (ALDH1) [21, 22]. However, 

MDA-MB-231 cells are mesenchymal-like breast cancer 
cells, and majority of them express high levels of CD44 
protein and are CD24 negative. Instead, we performed 
FACS to examine the expression of CD44 combined with 
CD133, another stem cell marker for normal or cancer-
ous cell types [23, 24]. The results show that knockdown 
of Spry4 increased the number of CD133+CD44+ cells 
(Fig.  4d, e). One fundamental role of CSC is to initiate 
tumors in  vivo. Therefore, we used a limiting dilution 
assay to examined whether suppressing Spry4 enhances 
the ability of MDA-MB-231 cells to form tumors in vivo. 

Fig. 4 Suppressing Spry4 expression enhances cancer stem cell subpopulation and cancer stem cell features of MDA-MB-231 cells. a Representa-
tive images from mammosphere assays show S4kd cells formed more and larger mammospheres. b Quantification of mammosphere assays. 
c Allocation of different sized mammoshperes. d Representative results of FACS analysis of CD44 and CD133 expression. e Quantification of 
CD133+CD44+ population from three independent experiments. f In vivo LDA of tumor initiating capacity shows that S4kd MDA-MB-231 cells had 
higher chance to form palpable tumor compared to NT cells in vivo. h Representative images of clonogenic analysis of NT and S4kd MDA-MB-231 
cell upon single high dosage Paclitaxel treatment. i Quantification of colonies formed from three independent experiments. j NT and S4kd cells 
were treated with Paclitaxel at an increasing dosage from 0 to 5 μM, survival cells were estimated with MTT measurement. The Paclitaxel killing 
curve shows that suppressing Spry4 decreased the sensitivity of MDA-MB-231 cell to Paclitaxel treatment. *p < 0.05
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Eight-week old NOD/SCID females were injected with 
1 × 103, 1 × 104 or 1 × 105 non-targeting or S4kd MDA-
MB-231 cells, and monitored for palpable tumor for-
mation every 2  days. Within a 4-month experimental 
period, no mice injected with 1 ×  103 cells formed pal-
pable tumors. However, at dosages of 1 × 104 or 1 × 105, 
mice injected with S4kd MDA-MB-231 cells had higher 
incidence of tumor formation than those injected with 
the same number of non-targeting cells (Fig.  4f ). These 
data indicate that suppressing Spry4 increases tumor ini-
tiating potential of MDA-MB-231 cells. Collectively, our 
results indicate suppressing Spry4 expression may enrich 
the CSC subpopulation in MDA-MB-231 cells.

Suppressing Spry4 expression decreases the sensitivity 
of MDA‑MB‑231 cells to Paclitaxel treatment
Drug resistance is a feature attributed to CSCs, and is a 
serious obstacle to cancer therapy [3, 4]. Since suppres-
sion of Spry4 enhances the CSC phenotype, we tested 
cell sensitivity to Paclitaxel, a common therapy for breast 
cancer treatment. In clonogenic assays, S4kd cells formed 
more and larger colonies following a single high dosage 
of Paclitaxel treatment compared to NT cells (Fig. 4h, i). 
Measurement of cell viability using the MTT assay also 
showed that suppressing Spry4 decreased the sensitivity 
of MDA-MB-231 to Paclitaxel treatment in a range from 
0.001–5 μM and increased cell survival after 24 h of treat-
ment. Paclitaxel had higher killing potential against NT 
than S4kd cells (Fig. 4j). These results suggest that endog-
enous Spry4 in human breast cancer MDA-MB-231 cells 
contributes to drug sensitivity.

Discussion
CSCs play critical roles in cancer progression and metas-
tasis. Spry4 has been shown to function as tumor sup-
pressor [9–11]. The objective of this study was to test 
whether the suppressive role of Spry4 in tumorigenesis 
involves modulation of CSCs. Using the MDA-MB-231 
model, we demonstrate that suppressing endogenous 
Spry4 increased cell growth and migration in vitro, xen-
ograft tumor growth and metastasis in  vivo, and these 
effects were accompanied by an increase in β3-integrin 
expression. We demonstrate that Spry4 knockdown 
MDA-MB-231 cells led to enhancement of CSC features, 
including increased CD133+CD44+ subpopulation and 
mammosphere formation, decreased sensitivity to Pacli-
taxel treatment in vitro, and increased capacity for xen-
ograft tumor initiation in vivo. Thus, our results for the 
first time demonstrate a role of Spry4 in modulating CSC 
phenotype in the MDA-MB-231 breast cancer cell model.

RTK signaling not only regulates normal embryonic 
stem cells, but also plays important roles in acquisition 
and maintenance of CSCs in many cancers including 

glioblastoma, breast, head and neck squamous cell car-
cinomas [6, 8, 25–27]. The MAPK/ERK and PI3K/Akt 
signaling pathways play important roles in maintaining 
the “stemness” of normal and CSCs. Spry family proteins 
function as RTK signaling modulators and regulate stem 
cell self-renewal, survival and differentiation [28–31]. 
Our findings suggest that Spry4 also regulates CSCs, and 
this effect may not be restrained to MDA-MB-231 cells 
because MAPK/ERK and PI3 K/Akt pathways are shared 
in different cell types. In fact, we performed a similar 
Spry4 knockdown analysis in HTB-126, another breast 
cancer cell line, and found a similar increase of CSC prop-
erties in those cells (Additional file 1: Figure S2). Further 
study is warranted to evaluate whether this function of 
Spry4 is broadly conserved in multiple cancer types and 
stages of progression.

The mechanism of Spry4 in regulating tumor cell 
migration remains unclear. Expression of integrins is cor-
related with disease progression and metastasis in vari-
ous tumor types including lung, melanoma and breast 
[10, 15, 32–36]. In MDA-MB-231 cell overexpression of 
β3-integrin promotes cell migration and invasion in vitro, 
and xenograft tumor cell lung metastasis in  vivo [37]. 
Expression of β3-integrin has also been reported to pro-
mote spontaneous metastasis of breast tumors to bone 
[15, 38–40], and serves as a marker of CSCs in some 
murine [20] and human [41] breast tumors. The expres-
sion of integrins is also critical for mammary stem cell/
progenitor behavior [42, 43] and breast carcinogenesis 
[44]. Studies have shown that sustained activation of 
the Raf-MEK-ERK signaling pathway induced expres-
sion of β3-integrin is associated with transformed cell 
[45]. PI3K/Akt signaling has also been shown to medi-
ate IL-8 induced αvβ3 expression and motility in human 
chondrosarcoma cells [46]. MDA-MB-231 cells harbor an 
activating mutation in Ras, suppressing Spry4 expression 
had mild but significant increase on pERK activation, and 
chemical inhibition of MEK/MAPK signaling did not 
eliminate the increase of β3-integrin due to suppressing 
Spry4. We also observe an increase of pAkt with loss of 
Spry4 expression in MDA-MB-231 cells, however chemi-
cal inhibition of PI3K/pAkt signaling by PI3 K inhibitor 
did not normalize the expression of β3-integrin in S4kd 
cells. We have shown that Spry4 regulates β3-integrin 
degradation in endothelial cell by inhibiting VEGFR 
mediated Src activation [16], however, suppressing Spry4 
in MDA-MB-231 cells appears to have no effect on Src 
activation when cells are cultured in growth medium. 
Additional study of how Spry4 regulates β3-integrin 
expression, and further examination whether acquisition 
of β3-integrin is necessary for the enhanced CSC pheno-
type of Spry4 knockdown cells is importance for better 
understanding CSC biology.
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