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Abstract

The repeated evolution of herbicide resistance has been cited as an example of genetic par-

allelism, wherein separate species or genetic lineages utilize the same genetic solution in

response to selection. However, most studies that investigate the genetic basis of herbicide

resistance examine the potential for changes in the protein targeted by the herbicide rather

than considering genome-wide changes. We used a population genomics screen and tar-

geted exome re-sequencing to uncover the potential genetic basis of glyphosate resistance

in the common morning glory, Ipomoea purpurea, and to determine if genetic parallelism

underlies the repeated evolution of resistance across replicate resistant populations. We

found no evidence for changes in 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS),

glyphosate’s target protein, that were associated with resistance, and instead identified five

genomic regions that showed evidence of selection. Within these regions, genes involved in

herbicide detoxification—cytochrome P450s, ABC transporters, and glycosyltransferases—

are enriched and exhibit signs of selective sweeps. One region under selection shows paral-

lel changes across all assayed resistant populations whereas other regions exhibit signs of

divergence. Thus, while it appears that the physiological mechanism of resistance in this

species is likely the same among resistant populations, we find patterns of both similar and

divergent selection across separate resistant populations at particular loci.

Author summary

Although there are many examples of herbicide resistance among natural populations of

weeds, it is unknown if the same genetic mechanism underlies its repeated evolution

across the landscape. Using a population genomics screen and exome re-sequencing, we

examined the genetic basis of RoundUp resistance across populations of Ipomoea pur-
purea, a noxious agricultural weed. We identified multiple regions of the genome that

exhibit signs of selection, and found genes involved in herbicide detoxification to be

enriched within these regions. Interestingly, while one genomic region under selection
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exhibited a similar haplotype among resistant populations, other regions of the genome

under selection exhibited signs of divergence. Overall, our results find evidence for both

parallel and nonparallel genetic changes associated with resistance, suggesting there are

more genetic avenues underlying the adaptation to herbicide than previously considered.

Introduction

The evolution of pesticide resistance is a key example of rapid evolution in response to strong,

human-mediated selection [1]. Due to the widespread use of insecticides and herbicides in

agriculture, multiple resistant pest populations often exist across the landscape [2–4]. These

repeated examples of resistance allow for questions about the level at which parallel adaptation

occurs [5–7]—e.g., are parallel resistant phenotypes in separate lineages due to parallel changes

at the developmental, physiological, or genetic level? Herbicide resistant weeds in particular

provide remarkable examples of evolutionary parallelism, since the same nucleotide change

can lead to resistance among separate lineages and even separate species [1,8,9]. Further, these

examples of ‘extreme parallelism’ are often broadly considered as evidence of genomic con-

straint [7,10], which is the idea that parallel phenotypic evolution occurs because there are a

finite number of genetic solutions to the same, often novel, environmental pressure.

Among herbicide resistant plants, the data that support the constraint hypothesis stems

from sequence analysis of genes that are a priori known to produce the protein targeted by the

herbicide (i.e., cases of target site resistance, TSR [9]) rather than genome-wide sequence sur-

veys such as population genomics scans or genetic mapping studies. As a result, we understand

very little about the potential for parallel genetic responses that may occur across the genome

beyond the potential for changes within the (most often) single genes responsible for TSR.

This is problematic as many weed species exhibit non-target-site resistance (NTSR) [11],

which is caused by any physiological mechanism that is not due to TSR. NTSR can include a

range of mechanisms, from herbicide detoxification to transport differences to vacuole seques-

tration [11,12]. Intriguingly, some weed species show multiple NTSR mechanisms within a

single lineage [2,13], and even evidence of both TSR and NTSR [2,14]. Because there are rela-

tively few examples underscoring the genetic basis of NTSR in herbicide resistant plants, it is

currently unclear if cases of herbicide resistance via NTSR support the idea of extreme genetic

parallelism.

Previous research on the genetic basis of resistance to the herbicide glyphosate, the active

ingredient in the widely used herbicide RoundUp, has focused largely on the potential for

changes at the target site, the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)

[9], which is a central component of the shikimate acid pathway in plants [15]. Conforma-

tional changes to the enzyme, due to mutations in the EPSPS locus, lead to target site resistance

(TSR). There are also nontarget site resistance mechanisms responsible for glyphosate resis-

tance in other weeds [11]; however, unlike the cases of resistance controlled by TSR, the geno-

mic basis of NTSR to glyphosate has been characterized in very few species [as in 16]. As a

result, it is unknown if the same genetic basis underlies NTSR mechanisms across separate

resistant populations. Thus, examining the genomic basis of resistance among replicated, resis-

tant weed populations would provide an ideal study system to interrogate the hypothesis that

genomic constraint underlies the parallel, repeated evolution of the resistance phenotype.

Ipomoea purpurea is a common agricultural weed that shows both within- and among-pop-

ulation variation in the level of glyphosate resistance: while some populations of this species

across its range in the southeastern and Midwest United States exhibit high survival following
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herbicide application (high resistance), other populations exhibit low survival (high suscepti-

bility) [4]. The pattern of resistance across populations suggests that resistance has evolved

repeatedly, with highly susceptible populations interdigitated among resistant populations [4],

and no evidence of isolation-by-distance across populations, as would be expected in the sim-

ple scenario wherein resistance evolved once and moved across the landscape via gene flow

[4]. We have recently shown that neutral genetic diversity across these populations is nega-

tively related to the level of resistance [17], suggesting that natural populations have responded

to the strong selection imparted by the herbicide, and we have also demonstrated a response to

herbicide selection within one population using an artificial selection regime [18,19]. Addi-

tionally, there is evidence of a fitness cost associated with glyphosate resistance in the form of

lower seed germination and smaller plant size [20]. Intriguingly, the resistant populations

appear to vary in the expression of this cost—some highly resistant populations exhibit low

germination while others exhibit smaller size, on average, than susceptible populations [20].

These data suggest that perhaps the genetic basis of resistance, or the physiological mechanism

underlying resistance, differs among resistant populations. However, the genetic basis of resis-

tance in any population of this species is currently unknown.

Our overarching goal is to determine if the same genetic basis is responsible for glyphosate

resistance across separate populations of I. purpurea sampled from agricultural fields with a

history of glyphosate exposure. We first evaluate the potential for sequence changes in the

EPSPS locus and find there are no changes that correlate with resistance, providing evidence

that target site resistance is not responsible for the resistance phenotype across the examined

populations. We then perform a population genomics screen to identify loci that exhibit signs

of selection—thus putatively responsible for the resistance phenotype—and to determine if

patterns of relatedness between resistant populations suggest a single or multiple origins of

resistance. We follow up on this screen with exome resequencing of candidate resistance loci,

and determine if populations share a similar haplotype structure, which would suggest that a

similar genetic basis was responsible for resistance across the landscape. We find regions of the

genome that show evidence of selection across resistant populations to contain genes responsi-

ble for herbicide detoxification. Additionally, patterns of haplotype sharing among popula-

tions suggests both parallel and nonparallel genomic responses underlie resistance among

populations. Overall, our results suggest that evolutionary constraints may underlie herbicide

adaptation, but that patterns of selection across the genome indicate the potential for both par-

allel and divergent responses.

Results

No evidence for changes in glyphosate target enzyme (EPSPS)

We sequenced two copies of EPSPS (copy A and B) from geographically separate populations

of I. purpurea (Table 1) to determine if glyphosate resistance is due to a target-site resistance

mechanism in this species as identified in other resistant species [21]. Individuals used for

sequencing were sampled as seed from six highly resistant (R) (N = 20 total assayed, average

survival at 1.7kg a.i./ha: 84%) and five susceptible (S) populations (N = 25, average survival at

1.7kg a.i./ha: 26%; S1 Table) [4]. We found 14 (copy A) and 22 (copy B) variable sites across all

populations but neither copy exhibited SNPs in the region previously shown to cause resis-

tance in other weed species (S1 Fig) [21]. Additionally, resistant and susceptible populations

did not significantly differ in allele frequencies for any of these SNPs (copy A: chi-squared test,

χ2 range 0.02–0.33, min p-value = 0.57; copy B: chi-squared test, χ2 range 0.00–0.18, min p-

value = 0.67; S1 Table) nor were any significantly correlated with population resistance level
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(copy A: Pearson’s correlation, coefficient range 0.25–0.69, min p-value = 0.12; copy B: Pear-

son’s correlation, coefficient range 0.15–0.72, min p-value = 0.17; S1 Table).

Population structure suggests independent evolution of resistance

We next examined measures of genetic relatedness to determine if separate resistant popula-

tions showed a pattern of high similarity, which would suggest that the resistant populations

share a common lineage. To do so, we used a modified RAD-seq approach (nextRAD) and

genotyped 10 individuals sampled as seed from each of four resistant populations and four sus-

ceptible populations (average survival at 1.7kg a.i./ha: 89% and 16%, respectively [4]; Fig 1A;

Table 1). This resulted in 8,210 high-quality, variable SNP loci from 80 individuals. Population

genetics parameters of the RADSeq SNPs, including expected and observed heterozygosity

across populations are presented in the S2 Table. A neighbor joining tree calculated from pair-

wise relatedness did not show clustering of populations by resistance type (S2 Fig). Addition-

ally, a principal coordinates analysis (PCoA) using allele frequencies (Fig 1B) did not separate

the populations into distinct resistant and susceptible groups, and a genetic structure analyses

showed that resistant and susceptible populations did not segregate into two separate genetic

clusters as would be expected if all resistant populations derived from the same initial popula-

tion (S3 Fig).

Genome-wide scan indicates loci associated with resistance

We next performed a genome-wide outlier screen to identify loci exhibiting signs of selection

and thus potentially involved in glyphosate resistance in I. purpurea. We used two programs

(BayeScan and bayenv2) to do so. BayeScan identified 42 loci that were outliers while bayenv2

identified 83 loci whose allele frequencies were correlated with the level of resistance (Dataset

S1). Using GO assignments (Dataset S1), we found that the top three biological processes for

the resistance outlier loci were proteolysis, protein phosphorylation, and regulation of

Table 1. Population information for each population used in the study. Pop Abbrev (Num) = abbreviation and population number (in parentheses) for each popula-

tion as used in previous studies, Resistance type = classification of resistance in the population R>0.5 prop. survival S<0.5 prop. survival, State = state where seeds were

collected, Proportion survival at 1.7 = proportion of individuals that survived a spray rate of 1.7 kg/ha of glyphosate based on Kuester et al 2015, Latitude and

Longitude = location where seeds were collected, Used for = abbreviation for which part of the study each population was used for E = EPSPS sequencing P = population

genetics.

Pop Abbrev.

(Num)

Resistance type State Proportion survival at 1.7 Latitude Longitude Used for

SH4 (42) S VA 0.1 38.373523 -78.662516 E,P

CR (4) S NC 0.21 34.556672 -79.125602 E

IN12 (36) S IN 0.25 40.565608 -85.503826 E

MA1 (17) S SC 0.25 34.159155 -79.272908 E

SN (23) S TN 0.5 35.067905 -86.62955 E

RB (48) S TN 0.18 35.31653 -87.35373 P

HA (14) S NC 0.15 35.424763 -77.917121 P

FL (12) S SC 0.20 34.145812 -79.865313 P

MC (19) R NC 0.67 34.508193 -78.70899 E

CL1 (5) R SC 0.73 33.859875 -79.909072 E

VA2 (43) R VA 0.82 36.886448 -78.553156 E

WG (32) R TN 0.83 35.099356 -86.225509 E,P

BI (1) R TN 1 35.775237 -85.903419 E,P

DW (10) R NC 1 34.983161 -78.039309 E,P

SPC (51) R TN 0.71 35.533413 -85.951902 P

https://doi.org/10.1371/journal.pgen.1008593.t001
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transcription. Of special note, we identified a glycosyltransferase among the outlier loci, a

member of a gene family shown to be involved in herbicide detoxification in other species

[12,22,23].

The identified resistance outliers showed twice the level of differentiation among the resis-

tant populations (mean pairwise FSTs of outliers = 0.327, 95% CI = 0.293–0.362) compared

to the level of differentiation among susceptible populations (mean pairwise FSTs of outli-

ers = 0.180, 95% CI = 0.146–0.216). This contrasted with genome-wide patterns of FST (i.e.
pairwise FST across all loci: resistant populations FST = 0.198 (0.192–0.203), susceptible popula-

tions FST = 0.133 (0.128–0.137)). Further, the pattern was the same for outliers regardless of

whether they were identified by BayeScan or bayenv2. This increased differentiation of outlier

Fig 1. Population locations and relationships among I. purpurea samples. (A) Populations were sampled from locations in the

southeast and ranged from 10% to 100% survival following glyphosate application (proportion of individuals that survived glyphosate

treatment shown for each population, red = survived, blue = died). Individuals from resistant populations (>50% survival after

treatment; red colored symbols, solid lines) do not group together in a PCoA analysis when using all of the RAD-seq SNP loci (B) but

there is some grouping when only considering the outlier loci (C). Ellipses are normal confidence ellipses.

https://doi.org/10.1371/journal.pgen.1008593.g001
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loci among resistant populations could be a result of drift, or could indicate that a different

genetic basis underlies resistance across populations. Two resistant populations from central

Tennessee (SPC and WG) exhibited substantial overlap in allele frequencies of outlier loci (Fig

1C), suggesting a similar response to selection between these two populations. On the other

hand, the allele frequencies of outliers from BI, another highly resistant population from TN,

clustered between the susceptible and other resistant populations whereas individuals from

DW, a resistant population from North Carolina, exhibited some overlap with BI (Fig 1C).

To determine if our resistance outliers from the RADseq analysis were associated with resis-

tance rather than an environment that might co-vary with the level of resistance, we examined

three other likely environmental variables in a separate bayenv2 analysis: minimum tempera-

ture of the coldest month, precipitation of the driest month, and elevation. We chose these spe-

cific climatic variables as other herbicide resistance studies have identified the influence of

temperature and precipitation on the expression of resistance within a population [24–27].

While this tactic identified loci that were associated with environmental variables, very few of

these loci overlapped with our identified resistance loci, indicating that the loci that are associ-

ated with resistance are not likely the result of selection by these environmental influences (S4

Fig). We found substantially fewer outliers associated with the environmental factors than for

resistance (27–50 vs 83).

Exome re-sequencing identifies genomic regions associated with resistance

We next performed target-capture re-sequencing of the genes located near (or containing)

outlier SNPs identified by the population genomics screen. Using both a de novo genome and

transcriptome assembly [28] (S3 Table), we designed probes to sequence the following: exons

from predicted genes near outlier SNPs (171 genes), genes from a previously sequenced tran-

scriptome to which an outlier SNP contig exhibited a significant blast hit (30 genes), the EPSPS
genes (2), previously reported differentially expressed genes associated with resistance [28] (19

genes), and 214 randomly chosen transcriptome sequences to serve as a control (Dataset S1).

We made target-enriched libraries for 5 individuals in each of the 8 populations (Fig 1A),

which were then sequenced on an Illumina Hi-Seq 2000. Sequencing, filtering, and contig

assembly (see Methods) resulted in 152,636 SNPs (51% from probes, 49% from off-target

sequences). We ran outlier tests to identify SNPs exhibiting signs of selection. Of this set,

BayeScan identified 104 SNP outliers while bayenv2 identified 231 SNP outliers, 98 of which

were shared between programs (Dataset S1). The majority of outliers were from the probes

designed from the population genomics RAD-seq outliers (52%), followed by the non-probe

contigs (i.e. off-target sequences; 37%), and a few from the control probes (11%; the majority

(17/20) of which fell within the outlier enriched regions described below).

We aligned the re-sequenced contigs onto the assembled genome of a close relative, I. nil
[29], and identified five genomic locations that were enriched for outliers (Fig 2A), with 149

(71%) of the outlier SNPs falling within these regions. The five regions ranged from 276 KB to

4 MB in size and together contained 945 predicted genes (based on I. nil gene annotations;

Dataset S1). Some of the five regions contained outliers identified by both bayenv2 and BayeS-

can while other regions had outliers primarily identified by bayenv2 (% of outlier SNPs identi-

fied by both programs, chromosome 1: 6%; chromosome 6: 72%; chromosome 10: 100%;

chromosome 13: 60%; chromosome 15: 36%). The outlier enriched regions were not located

near or within the centromere for any chromosome (centromere indicated by thick vertical

line on the x-axis, Fig 2A). Further, to determine if these regions might be identifying loci

involved in population differentiation not associated with resistance, we randomized group-

ings of populations and performed another genome-wide outlier screen. Randomly grouping
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populations never led to a pattern of five outlier regions (0/100 randomizations), and few ran-

domizations of the populations led to more outliers compared to the original resistance group-

ings (7/100 randomizations). Further, none of the previously identified regions exhibited

greater numbers of outliers (S5 Fig). These results suggest that the number of outlier-enriched

regions identified from the original screen is unusual and the regions are likely to be associated

with herbicide resistance rather than population differentiation.

Fig 2. Regions of the I. purpurea genome enriched with outlier loci. (A) Aligning the target-capture denovo contigs

to the I. nil genome showed 5 regions enriched for outliers (regions in grey; symbol colors denote chromosomes;

symbol shape denotes significance). The majority of the outliers (71%) fall within the five regions. Significant outliers,

noted with triangles, exhibited the most extreme 1% Bayes Factors and the 5% most extreme Spearman correlation

coefficients (left y-axis). The average population structure (GST; right y-axis) was calculated per enriched region and is

indicated by a thin horizontal line for each outlier enriched region (arrow indicates average GST value over all SNPs).

The position of each chromosome’s centromere is indicated by a thick black vertical line on the x-axis. (B) The five

outlier-containing regions had multiple copies of gene families potentially involved in non-target site resistance.

Numbers in the table indicate the number of genes that fall into each category, whereas Avg genes/mb is the average

number of genes per 1MB. (C) Resampling the I. nil genome 1000 times to generate an empirical distribution of gene

copy number of each type of gene indicates that the outlier enriched regions contain more of the potential herbicide

detoxification genes of interest than expected due to chance. The dashed vertical line indicates the overall number of

each type of gene found within the outlier-enriched regions, which was greater than expected from the empirical

distribution for the cytochrome P450 (P < 0.01), glycosyltransferase (P = 0.01), and ABC transporter genes (P = 0.05).

https://doi.org/10.1371/journal.pgen.1008593.g002
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We identified multiple genes within the outlier enriched regions from four gene families of

interest—the cytochrome P450s, ABC transporters, glycosyltransferases, and glutathione S-

transferases (GST)—which are gene families hypothesized to be involved in non-target site

resistance via herbicide detoxification (Fig 2B). Resampling 1000 times identified a significant

over-representation of glycosyltransferase (P = 0.01), ABC transporter (P = 0.05), and cyto-

chrome P450 (P< 0.01) genes within the five enriched regions (Fig 2C), suggesting that these

loci are potentially responsible for resistance in I. purpurea and were not identified solely due

to their high copy number in plant genomes. In comparison, outlier SNPs that did not fall into

the five outlier enriched regions (29% of SNPs) were less likely to be near genes from these

four families than those within the regions (S6A–S6D Fig).

As expected based on the BayeScan results, the regions of each of the five chromosomes

enriched with outliers exhibited high genetic differentiation between resistant and susceptible

populations (average across genome is indicated by the arrow on Fig 2A; measured as GST,

which is FST generalized to multiple alleles). Although all regions showed an average GST >

0.20, the enriched region on chromosome 10, spanning ~0.28MB, displayed the highest GST

(chr 10 enriched region avg±SD: 0.64±0.12, R vs S populations). Within this region, we found

higher nucleotide diversity among susceptible compared to resistant individuals (πS/πR = 2.04;

a ratio more extreme than that found across 95% of the genome-wide SNP windows, Fig 3A;

S7 Fig). In comparison, across other outlier enriched regions, nucleotide diversity was higher

among resistant compared to susceptible individuals, but the difference between resistant and

susceptible individuals exceeded the background genome-wide ratio only within the enriched

region on chromosome 1 (Fig 3A).

The outlier enriched region on chromosome 10 likewise exhibited evidence of selection

based on estimates of both Tajima’s D (Fig 2B) and Fay and Wu’s H (Fig 2C). Tajima’s D,

which is sensitive to a lack of low-frequency variants [30], exhibited a negative value among

resistant individuals, although the most extreme values within this region ranged from -0.64 to

-0.81 and did not exceed the 95% most extreme genome-wide values (Fig 2B). In comparison,

Fay and Wu’s H, which is sensitive to excess high-frequency derived variants compared to

neutral expectations [31], was significantly more negative than the genome-wide value among

resistant individuals (-8.55; Fig 2C). The difference in both Tajima’s D and Fu and Way’s H

between resistant and susceptible individuals within two 25 SNP windows (positions 3819

83679–382012084) were more extreme than that found across 99% of the genome-wide SNP

windows, potentially narrowing in to a ~28 kb region of strong selection within the outlier

enriched region of chromosome 10. Interestingly, values of Tajima’s D and Fay and Wu’s H

were typically positive and either greater than 2 (2.37, avg Tajima’s D in region) or approach-

ing 2 (1.59, avg Fu and Way’s H in region) among susceptible individuals, suggesting a pattern

of balancing selection across susceptible populations. Finally, the enriched region on chromo-

some 13 exhibited negative values of Fu and Way’s H among resistant individuals (-1.58, avg

Fu and Way’s H within region), with the most extreme negative values ranging from -2.15 to

-3.68 over a contiguous region of 1.49MB.

Given signs of positive selection on the outlier enriched regions of chromosome 10 and (to

a lesser extent) chromosome 13, we examined the genes found within these two regions in

greater detail. Within the outlier-enriched region of chromosome 10, we identified 7 glycosyl-

transferase and 9 cytochrome P450 genes, with the 7 glycosyltransferase genes found tandemly

repeated within a span of 42 kb (Fig 4A). Seventeen non-synonymous SNPs were present

across four of the glycosyltransferase genes (asterisks in Fig 4A). Within an 811 bp segment of

the conserved domain one of the glycosyltransferases, we identified a cluster of seven non-syn-

onymous SNPs with very low π values in resistant compared to susceptible individuals (con-

served domain average πR = 0.18; πS = 0.43). None of the non-synonymous SNPs within this
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region were fixed within the resistant populations, but were very close to fixation (haplotype 1,

resistant freq = 0.1, susceptible freq = 0.7; haplotype 2, resistant freq = 0.9, susceptible

freq = 0.3). Within the outlier-enriched region of chromosome 13, we identified an ABC trans-

porter gene with 6 non-synonymous SNPs (shown with asterisks in Fig 4B), and a shared hap-

lotype among three of the four resistant populations (Fig 4B).

Fig 3. Resistant individuals exhibit evidence of selective sweeps in some outlier-enriched regions of genome. (A)

Nucleotide diversity (shown here as log10 πS/πR) is decreased in resistant individuals within the chr10 region

compared to susceptible individuals, and (B) values of Tajima’s D and (C) Fay and Wu’s H across outlier enriched

regions both suggest marks of positive selection in the chromosome 10 outlier enriched region, with some indication

for positive selection in the outlier enriched region of chromosome 13. Dashed lines show the 95% most extreme

genome-wide values for each metric.

https://doi.org/10.1371/journal.pgen.1008593.g003
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We likewise examined patterns of linkage disequilibrium across the outlier enriched regions

of each of the five chromosomes, since linkage between SNPs would provide another line of

evidence for a potential selective sweep indicating a response to selection. Additionally, we cal-

culated linkage disequilibrium (LD) along the chromosome (for chrs 1, 6, 10, 13 and 15) to

determine an expected background amount of linkage between SNPs and thus an idea of the

efficacy of our RADseq followed by exome-resequencing approach for identifying the genetic

basis of resistance among populations. Across each chromosome, we found the average r2 val-

ues (the correlation coefficient between each SNP pair as our estimate of LD) to be low, rang-

ing from 0.037–0.046 (S4 Table). In comparison to values of linkage across the entire

chromosome, we found evidence of stronger linkage among SNPs within the outlier-enriched

regions of chromosomes 1, 6, 10, 13 and 15 (range of average r2, 0.20–0.88). Notably, the chro-

mosome 10 outlier-enriched region exhibited the highest r2 value (0.88, S5 Table). Because the

outlier-enriched regions varied in length, thus complicating the comparison of LD between

them, we qualitatively examined the length around each outlier enriched region with elevated

LD, or r2 values that were> 0.25. We found that each outlier enriched region exhibited r2 >

0.25 across relatively large sequence lengths, which ranged from 84 kb to 3 MB across chromo-

somes (S5 Table).

Haplotype structure

A goal of the present work was to determine if separate populations have responded in parallel

at the genomic level to selection via herbicide application. Using hierarchical clustering, we

examined the haplotype structure among outlier-enriched regions in more depth with the idea

that a similar haplotype among separate resistant populations would point to a shared genomic

basis underlying at least some of the loci indicated in herbicide resistance and another indica-

tion of selection on those loci. Using each sequenced contig from the outlier-enriched regions

(Chrs 1, 6, 10, 13, and 15), we assigned individuals to one of two haplotype groups based on

genetic distance—either the group that contained the majority of individuals from highly sus-

ceptible populations (hereafter the ‘S’ group) or the other group (hereafter the ‘R’ group). We

found that a consistently high proportion of individuals from the resistant populations had the

Fig 4. Signs of selection across conserved haplotypes of detoxification genes. Haplotypes are shown for each individual for the (A) seven duplicated

glycosyltransferase genes on chromosome 10 (exons above in grey), and (B) an ABC transporter gene on chromosome 13. Blue and yellow indicate homozygotes,

red indicates heterozygotes, white indicates missing data; asterisks indicate a non-synonymous change at that location. Black bar above gene models indicates 1kb.

https://doi.org/10.1371/journal.pgen.1008593.g004
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R group haplotype (>75%) in the chromosome 10 outlier enriched region (Fig 5A). Similarly,

most individuals in the resistant populations had the R group haplotype in the outlier enriched

region on chromosome 6, but only in three of the four resistant populations (SPC, WG, and

DW). In contrast, the enriched regions on chromosomes 1, 13 and 15 exhibited high propor-

tions of the R group haplotypes for SPC and WG, but not BI and DW (Fig 5A).

Additionally, we examined patterns of pairwise genetic differentiation among resistant and

susceptible populations of the outlier-enriched regions of each chromosome, with the general

expectation that a higher pairwise FST between resistant populations, compared to susceptible

populations, might indicate lack of gene flow and/or greater genetic differences between resis-

tant populations within these regions. We calculated pairwise FST estimates [32] among the

resistant populations and the susceptible populations separately for each SNP, and then com-

pared the average pairwise FST of the resistant populations versus the susceptible populations

within the 5 outlier enriched regions. Across chromosomes 1, 6, 13, and 15, we found higher

pairwise FST among resistant populations compared to susceptible populations, indicating that

resistant populations were more differentiated in these regions. On chromosome 10, in com-

parison, we found no evidence of genetic differentiation among resistant populations, suggest-

ing either strong selection on young standing genetic variation within this region among

populations, or the potential that gene flow has recently occurred between them followed by

subsequent recombination (Fig 5B).

Formal test of convergence

We next performed tests to examine the nature of convergence within outlier enriched

regions. We sought to determine the most likely model for genomic convergence by determin-

ing whether potential selected alleles within regions exhibited multiple independent origins,

were spread among populations via gene flow, or were shared among populations due to

ancestral standing variation. To do so, we applied the inference method of Lee and Coop [33]

which builds on coalescent theory to show how shared hitchhiking events influence the covari-

ance structure of allele frequencies between populations at loci near the selected site. We first

focused our formal tests of convergence on the enriched region of chromosome 10 given that

it exhibited the strongest signature of differentiation between resistant and susceptible popula-

tions, and that the same haplotype was shared with the majority of individuals from resistant

populations. We then performed tests of convergence on the other four regions where the lev-

els of differentiation between resistant and susceptible populations were elevated but patterns

of haplotype sharing were less clear.

From the analysis of chromosome 10 we find the migration and standing variation models

to show similarly high log-likelihood ratios (Fig 6A). All three models peak at position

381,993,922 (based on the I. nil genome), indicating the most likely selected site. Notably, this

position is within the two SNP windows that exhibited signs of selection from estimates of

Tajima’s D and Fu and Way’s H. Further examination of the standing variant model at this

position shows the parameters that result in the highest likelihood are very low standing allele

frequency (g = 10−6) and very high selection (s = 1), with the amount of time that the beneficial

allele has been standing in the populations prior to selection, or t, estimated to be 5 generations

(Fig 6B and 6C). Because this standing time is much smaller than the population split times

(289K generations ago), we assume migration in the model (i.e. gene flow between popula-

tions) and the five generations are interpreted as the time between gene flow between popula-

tions and the onset of selection. We ran the model with a denser grid of t (0–10 generations)

and found that the likelihood value was highest when t was equal to 0, indicating that the bene-

ficial allele was immediately advantageous after introgressing and began sweeping rapidly
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within populations. In comparison, for the migration model, the parameters that result in the

highest likelihood are a migration rate of 1 and high selection (s = 0.65). Overall, our analyses

of this region strongly supports a model where gene flow introduced the beneficial allele(s)

Fig 5. Genetic similarity of haplotypes among resistant populations. (A) The proportion of each population that exhibited the

resistant haplotype are shown for each population. Pairwise genetic distance between each individual was calculated using all

SNPs from each I. purpurea contig from the outlier-enriched regions (length of region used shown for each chromosome), and

multidimensional scaling was used to reduce the resultant genetic distance matrix to two dimensions. Populations were then

hierarchically clustered into two groups, with the group containing less than half of the individuals from the susceptible

populations considered the ‘resistant’ group. (B) The average pairwise genetic differentiation for resistant (red) and susceptible

(blue) populations. Pairwise FST values were calculated separately for resistant and susceptible populations using contigs from

each outlier enriched region of each chromosome.

https://doi.org/10.1371/journal.pgen.1008593.g005

Fig 6. Test of convergence for the enriched region of chromosome 10. (A) Likelihood ratio of the following models relative to a neutral model with no selection:

standing variant model (blue), migration (green) or independent mutation (red). (B) Likelihood surface for minimum frequency of the standing variant and the strength

of selection holding the age of the standing variant constant; the point indicates the highest likelihood; color denotes likelihood (white (high) to yellow to red (low)). (C)

Likelihood for the minimum age of standing variant maximizing over the other parameters. Convergence tests across enriched regions on chromosomes 1, 6, 13, and 15

are presented in S8 Fig.

https://doi.org/10.1371/journal.pgen.1008593.g006
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into populations, which then began sweeping quickly and immediately. A rapid sweep like that

proposed here would not allow for recombination to break down the haplotype introgressing

along with the selected allele. This fits our expectations from the haplotype patterns above

since there is high similarity between resistant populations over long stretches of this region.

As with the region on chromosome 10, the migration and standing variation models exhib-

ited similarly high log-likelihood ratios for the enriched region on chromosome 6. A very

short standing time (t = 5) was predicted by the standing variant model for this region along

with strong selection (s = 1) on a low-frequency variant (S8 Fig; S8 Table). Further, the stand-

ing variant model exhibited the highest log-likelihood ratio for the enriched region on chro-

mosome 1 (S8 Fig; S8 Table); the parameters resulting in the highest likelihood were strong

selection (s = 0.4) on a low frequency variant (S8A Fig; S8 Table), with an estimated t of 5 gen-

erations. These three regions (i.e. chrs 10, 6, and 1) were consistent with the idea that a benefi-

cial allele(s) was introduced via gene flow and then began sweeping rather quickly, but at

various rates depending on the strength of selection.

We found a different pattern when examining the outlier enriched regions of chromosomes

13 and 15 (S8 Fig). For the region on chromosome 13, the likelihoods of the three models peak

at a position 541,532,763 (based on the I. nil genome) with the standing variant model display-

ing the highest log-likelihood value. Unlike the other chromosomes, the standing variant

model had the highest likelihood where the minimum amount of time the beneficial allele was

standing prior to selection was large (t > 3000 generations) and the initial frequency of the

standing variant was very small (10−6). These results suggest that there is little similarity in this

region between resistant populations, but high similarity within a population due to the very

high selection coefficient estimate (s = 1). There are two scenarios that could explain this pat-

tern: either the selected allele may have been present as standing genetic variation well before

the use of the herbicide (and maintained via balancing selection) or there were independent

mutations across the resistant populations. Independent mutations would leave a similar geno-

mic signature as the standing variation model and these two models overlap in the parameter

space where the standing variant is very old (see [33] for more information). Given that these

two models overlap, we hypothesize the resistant populations experienced independent muta-

tions in this region as the alternative—standing variation—requires strong balancing selection

to maintain the allele at frequency 10−6 for at least 3000 generations, which while not impossi-

ble seems unlikely. The region on chromosome 15, in comparison, did not exhibit a single

peak across the three different models, but exhibited high likelihood values for the migration

model at position 644,244,852 and the standing variant model at position 645,900,000. Similar

to chromosome 13, the standing variant model had the highest likelihood where the minimum

amount of time the beneficial allele was standing prior to selection was large (t> 3000 genera-

tions) and the initial frequency of the standing variant was small (10−5). Interpreting the results

from this chromosome is less straight-forward than the others, and future work with a higher

density of SNPs will be required to differentiate between models within this region.

Discussion

In this work, we examined the evolution of glyphosate resistance across geographically sepa-

rate populations of the common morning glory, Ipomoea purpurea. We set out to identify can-

didate loci involved in glyphosate resistance in this species and to determine if the pattern of

selection on putative resistance loci was similar across highly resistant populations, which

would indicate that populations responded in parallel to herbicide selection. Our results pro-

vide evidence that adaptation to glyphosate in I. purpurea is not due to a single gene, target-

site resistance mechanism (TSR) in the populations tested as there are no nucleotide sequence
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differences in the target locus, EPSPS, that correlate with resistance. Additionally, we previ-

ously reported that transcripts of EPSPS are not overexpressed in I. purpurea [28], suggesting

that resistance in this species is not due to EPSPS overexpression (another type of TSR mecha-

nism), as has been shown in a variety of resistant species [34–38]. We demonstrate here that at

least five regions of the genome show evidence of selection and that these regions are signifi-

cantly enriched for genes involved in herbicide detoxification. Further, we found evidence for

a shared pattern of strong selection on one region of the genome among the four highly resis-

tant populations (chromosome 10) whereas other regions under selection exhibited greater

divergence between the resistant populations. These findings suggest that resistance in this

species is due to a non-target genetic mechanism (NTSR), components of which exhibit signs

of both parallel and non-parallel responses to selection among populations.

Genetic basis of glyphosate resistance in I. purpurea
Ipomoea purpurea is a noxious crop weed found in disturbed agricultural sites in the South-

eastern and Midwest US. Our previous work examining the level of resistance among 47 popu-

lations showed that resistance appeared on the landscape in a mosaic fashion, with highly

resistant populations interdigitated among highly susceptible populations. This phenotypic

pattern suggested resistance was independently evolving across populations [4]. Coalescent

modelling using SSR marker variation supported a scenario of migration among populations

prior to onset of glyphosate use (before 1974, when glyphosate was released commercially),

rather than a scenario of migration after the introduction of the herbicide [4]. We thus hypoth-

esized that resistance independently evolved among populations, and was most likely due to

selection on standing and shared genetic variation [4]. However, we also found genetic differ-

entiation among populations to be low (FST = 0.127; [4]), and a more recent fine-scale analyses

of their connectivity showed that although the majority of individuals were sired from within

populations, three of the resistant populations included in this work (WG, SPC, and BI) shared

recent migrants [39]. These findings support the idea that migration between populations

could allow for the sharing of resistance alleles. Both of these scenarios—migration prior to the

widespread use of the herbicide, or very recent migration—suggest that resistance is likely to

be controlled by the same genetic basis across populations. Intriguingly however, we also pre-

viously showed that fitness costs were different among resistant populations, suggesting that

the genetic basis of resistance could potentially be different [20]. Thus, we used a sequencing

approach across highly resistant but broadly separated populations to investigate the genetic

basis of resistance and to determine if patterns of selection and haplotype sharing indicated

that the same genomic features were responding to herbicide selection among populations.

Given the lack of structural or expression-related changes to the target-site locus, EPSPS,

we combined a population genomics screen and exome resequencing to identify potential can-

didate loci underlying resistance. This strategy identified five candidate regions of the genome

that were enriched with loci exhibiting signs of selection. The pattern of genomic differentia-

tion within these five regions was greater than that of genome-wide, background differentia-

tion—suggesting a response to herbicide selection. None of these regions were physically

located near the centromere, which has been shown in other species to be areas of reduced

recombination and thus high differentiation [40–43]. We identified the strongest evidence for

positive selection associated with resistance within the outlier-enriched region on chromo-

some 10. In this region, we found reduced nucleotide diversity and a significant and negative

Fu and Way’s H, which is sensitive to a high frequency of derived variants. These patterns—

high differentiation, reduced diversity, as well as the same haplotype among individuals from

resistant populations—indicates that a selective sweep of this region occurred across the four
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resistant populations. It also strongly suggests that this region contains at least some of the loci

underlying glyphosate resistance in I. purpurea.

Intriguingly, we identified balancing selection among susceptible populations for this

region on chromosome 10 (i.e.>2 Tajima’s D and Fu and Way’s H), which in this system

would most likely be driven by crop rotations leading to herbicide on and off years, i.e., a pat-

tern of alternating selection [44]. Further, and opposite our expectations, we found higher

nucleotide diversity among resistant individuals for the outlier enriched regions on chromo-

somes 1 and (to a lesser extent) 13. We suspect that this pattern is likely due to the BI popula-

tion, which appeared to show more variation than other resistant populations, and exhibited

outlier allele frequencies similar to susceptible populations (Fig 1C). Unlike the dynamics we

uncovered on chromosome 10, which suggest a hard selective sweep across resistant popula-

tions, the pattern of selection on the other chromosomes (especially 13 and 15) are more

aligned with a soft sweep model of evolution [44,45].

Within the five genomic regions enriched with outlier loci, we identified genes involved in

the herbicide detoxification pathway, suggesting that glyphosate resistance is caused by herbi-

cide metabolism in I. purpurea. The herbicide detoxification pathway is hypothesized to occur

in three phases [11,46]: 1) activation, which is generally performed by cytochrome P450s, 2)

conjugation, which is performed by glycosyltransferases, and 3) transport into the vacuole,

often by ABC transporters, which leads to the subsequent degradation of the herbicide. Multi-

ple copies of each of these genes were present within the five outlier enriched regions. Within

a 42.3 kb segment on chromosome 10, for example, we found seven duplicated, successive gly-

cosyltransferase genes, with multiple non-synonymous SNPs present within the 1st, 4th, 5th

and 7th glycosyltransferase genes. In addition to being present on the enriched region of chro-

mosome 10, glycosyltransferases were also present within each of the other four outlier

enriched regions. We likewise identified copies of ABC transporter and cytochrome P450

genes in two and three regions exhibiting selection, respectively. Although detoxification

genes have yet to be functionally verified for glyphosate resistance in any weed species, tran-

scriptomic surveys have shown that at least some of the genes involved in herbicide detoxifica-

tion are associated with glyphosate resistance [28,47–49]. Additionally, we have previously

shown that a cytochrome P450 transcript was up-regulated in artificially selected glyphosate

resistant lineages of I. purpurea [28], supporting the conclusion that detoxification is a likely

mechanism underlying glyphosate resistance in this species. Importantly, we note that

although our current data is suggestive of an herbicide detoxification mechanism, further

work on this system will be necessary to verify both that this species is detoxifying the herbi-

cide and the specific loci that are responsible for increased resistance.

While our reduced representation population genomics and exome resequencing strategy

has identified strong potential candidate genes associated with glyphosate resistance in I. pur-
purea, it is important to note that we found low levels of linkage disequilibrium between SNP

markers (on average, r2 ~0.04 across chromosomes). This suggests our initial reduced repre-

sentation screen, which influenced the target exons we chose for exome resequencing, likely

missed portions of the genome responding to selection from the herbicide. It also suggests,

however, that the positive associations we did uncover (especially with our exome resequen-

cing data) are likely to be loci that are involved in resistance, or very tightly linked to loci

involved with resistance. Importantly, linkage was strongly elevated across outlier enriched

regions compared to background levels of linkage for each of the chromosomes. These areas of

increased linkage (defined as r2 > 0.25) in each outlier enriched region ranged between 84 kb

to 3 MB in length, and support our findings of a genomic response to herbicide selection.
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Patterns of haplotype sharing across resistant populations suggests parallel

and non-parallel responses to selection

Our initial population genomics screen across a genome-wide panel of ~8K SNPs showed that

resistant populations were not more related to one another than they were to susceptible popu-

lations, as would be expected under the simple scenario where resistance evolved once and

moved via migration to new locations. This, in addition to the ‘mosaic’ appearance of resis-

tance among populations suggested that selection on standing variation was responsible for

the repeated appearance of resistance in this species across the landscape. Another likely sce-

nario, however, is one where migration introduced beneficial allele(s) that introgressed into

the local background and then rapidly increased in frequency when exposed to very strong

selection. The region under selection on chromosome 10 appears to follow this pattern. We

found an identical haplotype within this region in high frequency across the resistant popula-

tions (>75% of individuals within populations with the same haplotype), and our formal test

of convergence identified a very short standing time of the variant within this region (t = 0).

Thus, the most likely model is one in which gene flow shared beneficial allele(s) between popu-

lations which then started sweeping quickly and immediately, or within a few generations.

This is likewise supported by our finding of low genome-wide patterns of linkage between

SNPs, and evidence of a selective sweep, as indicated by low nucleotide diversity in this region

and marks of positive selection indicating a high frequency of derived variants. Because this

species employs a mixed mating system (i.e., multilocus outcrossing rate (tm) = 0.5; [50]), it is

plausible that resistance alleles, once introduced into the population, could quickly spread via
outcrossing and then increase in frequency given strong selection.

Haplotypes from the other four outlier enriched regions were less consistently shared

among the four highly resistant populations. The ‘resistant’ haplotype of the five outlier

enriched regions were similar and in high frequency (>50%) in populations WG and SPC,

and the genome-wide patterns of allele frequencies were also very similar between these two

resistant populations (Fig 1C). This suggests that a highly similar resistant lineage is shared via
migration between the WG and SPC populations. The haplotypes of the other outlier enriched

regions are in lower frequency among the other two resistant populations, BI and DW; further,

pairwise FST values between resistant populations for the outlier enriched regions of chromo-

somes 1, 6, 13, and 15 were higher than the values among susceptible populations. Although

the formal tests of convergence estimated very high selection across all regions (s = 0.4–1), the

enriched regions on chromosomes 1, 6, 13, and 15 exhibited somewhat different evolutionary

histories, perhaps reflected in the lower frequency of shared haplotypes among populations

compared to that of the enriched region on chromosome 10. The enriched regions on chromo-

somes 1 and 6 both exhibited very short standing times of the allele(s) within the enriched

regions, similar to chromosome 10, suggesting that beneficial alleles within these regions

began sweeping quickly after introduction to the populations via gene flow. In comparison,

the standing time of the variants under selection prior to the onset of selection in the enriched

regions of chromosomes 13 and 15 was much longer (t� 3000), indicating that the selected

allele(s) likely arose independently or were present and maintained at low frequencies within

these populations well before the widespread use of the herbicide in nature.

Overall, these findings suggest several non-mutually exclusive possibilities. One is that resis-

tance in this species is mostly attributable to the region on chromosome 10 that is shared and

highly similar among resistant populations, with signs of selection from the other regions

attributable to other factors, such as selection for reducing the cost of resistance, or selection

for other factors associated with local adaptation. In support of the cost reduction hypothesis,

individuals from the resistant BI population from TN share only the haplotype found on
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chromosome 10 in common with the other resistant populations and yet also exhibit a higher

cost of resistance than SPC and WG (26.9% germination vs 45.9% and 39.6%, respectively;

[20]). This may indicate that loci specific to SPC and WG are important for ameliorating nega-

tive fitness costs of the changes in the chromosome 10 region. Alternatively, it is possible that

action of the genes within each of the enriched regions are together required for resistance,

and the evolutionary patterns uncovered here are explained by both ongoing hard and soft

sweeps. The region on chromosome 10 (and possibly 1 and 6) exhibits signs of a hard sweep

among resistant populations, whereas the presence of multiple haplotypes and high differentia-

tion among resistant populations in the other enriched areas of the genome (chromosomes 13

and 15) suggest a soft sweep model of evolution.

In support of the hypothesis that one region is largely responsible for resistance, and under

the assumption that the candidate detoxification loci are responsible for resistance in I. pur-
purea, studies from other species have suggested that changes to a single step in the detoxifica-

tion pathway are enough to provide some level of herbicide resistance [16]. However,

coordinated upregulation of all of the genes from the detoxification pathway has been observed

in grass species resistant to graminicide herbicides [51,52], suggesting that multiple compo-

nents of this pathway are required for resistance. Unfortunately, there are few examples in

which the genetic basis of NTSR resistance is known, making it difficult to draw conclusions

on the importance of one gene versus the efforts of multiple genes. With regards to an herbi-

cide detoxification mechanism, it is hypothesized that rather than detoxify the herbicides per
se, these detoxification genes could enable the plant to survive the resulting oxidative stress

after being exposed to herbicide, a mechanism that may allow for resistance to several different

herbicides [11]. This explanation—i.e. the ability to handle oxidative stress—could potentially

underlie glyphosate resistance in I. purpurea. Further studies will be required to first verify

that detoxification underlies glyphosate resistance in this species, and second to differentiate

between the direct detoxification of glyphosate or an adaptive ability to respond to oxidative

stress.

Conclusions

While there is strong evidence in support of genetic parallelism from cases of target-site resis-

tance in other species [9,53], the genetic basis of non-target site resistance remains uncharac-

terized in most weeds [53,54]. Thus, we do not have a clear idea of the genetic mechanisms

responsible for non-target site resistance, nor do we know how often the same mechanism is

responsible for non-target site resistance across resistant lineages of the same weed. Our

approach of using genome-wide scans and exome resequencing is an important step in under-

standing which broad-scale genetic changes may be responsible for resistance in I. purpurea,

and whether or not the same genomic features respond to selection among populations.

Overall, our results suggest that genes responsible for herbicide detoxification are likely

responsible for resistance in this species, with the important caveats that at this point we have

yet to functionally verify any candidate loci, and that further, we cannot determine if direct

detoxification of the herbicide is occurring or if the species is able to respond to subsequent

oxidative damage caused by the herbicide. While we previously hypothesized that resistance

across populations was due to selection on standing and shared genetic variation [4], the

results we present here (stemming mostly from the region on chromosome 10) support a sce-

nario where gene flow between the resistant populations introduced the beneficial allele(s), fol-

lowed by a hard selective sweep within a few generations. Finally, that we uncovered areas of

genomic divergence among resistant populations within the regions showing signs of selection

on chromosomes 1, 6, 13, and 15 suggests either different mutations/loci are involved with
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resistance across populations, or that multiple haplotypes carrying the same adaptive alleles

are responding to herbicide selection.

Materials and methods

Study species

Ipomoea purpurea is a weedy annual vine that is native to the central highlands of Mexico and

was introduced to the United States prior to the arrival of Columbus [4]. It is a diploid species

with a genome size of 980 MB [55] and employs a mixed mating system, with some popula-

tions showing a high selfing rate and other populations exhibiting high levels of outcrossing

[50]. It is consistently listed as one of the ‘worst weeds of agriculture’ in the Southeast and mid-

western part of the United States [summarized in [4, 17–20].

Seed collection and resistance phenotyping

Seeds were collected from populations across the range of I. purpurea (Table 1). In each popu-

lation, seeds were sampled from maternal individuals separated by at least 2 m to ensure sam-

pling of different plants. These seeds were used in a previously reported resistance assay to

determine survival at field suggested rates of glyphosate [4], which was used to estimate

resistance.

EPSPS sequencing

From the populations collected, we chose six high resistance (Avg. survival rate of populations,

84%) and five low resistance populations (Avg. survival rate of populations, 26%) that spanned

the range of the collection in the U.S [4]. For each population we grew 2–5 (Avg. 4.1) plants

from different maternal families in the greenhouse. Leaf tissue from each individual was col-

lected and immediately frozen in liquid nitrogen. mRNA was extracted using the Qiagen

RNeasy Plant kit and cDNA was created using Roche’s Transcriptor First Strand cDNA Syn-

thesis Kit. Primers were designed based on Convolvulus arvensis EPSPS (GenBank: EU6980

30.1; primer sequences can be found in Dataset S1). Primers were used in a PCR to amplify the

EPSPS coding regions using Qiagen’s Taq PCR Master Mix kit, followed by cleaning using

GE’s Superfine Sephadex. Samples were then Sanger sequenced by the sequencing core at the

University of Michigan. We identified two copies of EPSPS in I. purpurea (notated here as cop-

ies A and B); each individual had two distinct copies of the locus and some individuals exhib-

ited allelic forms of one of the copies. Bases were scored using PHRED [56] followed by visual

confirmation of heterozygous sites. Each of the copies of the EPSPS were aligned across all

individuals using MafftWS [57] via Jalviewer [58] (Genbank: MK421977-MK422097). Variable

sites were identified and used to obtain allele frequencies for the pool of resistant and suscepti-

ble populations separately. We used a χ2 test to determine if allele frequencies varied between

resistant and susceptible populations, and likewise determined if allele frequencies were

correlated with population-level resistance values using Pearson’s correlation. P-values were

adjusted for multiple tests using the Benjamini and Hochberg [59] correction. We also calcu-

lated observed and expected heterozygosity using adegenet [60] and tested for Hardy-Wein-

berg equilibrium using 1000 bootstraps in pegas [61]. To compare to other known EPSPS, we

downloaded several protein sequences from GenBank and aligned them to our translated

amino acid sequences using tCoffee [62] in Jalview [58] (GenBank accession numbers and

alignment in S1 Fig).
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SNP genotyping

Eight populations were chosen to investigate non-target site resistance: 4 low resistance

(Avg. survival rate, 16%) and 4 high resistance populations (Avg. survival rate, 89%) (Fig 1A;

Table 1, data from [4]). Seeds from up to 10 maternal families per population were germinated

and leaves were collected and frozen for DNA extractions. A total of 80 individuals were used

for SNP genotyping.

DNA was extracted using a Qiagen Plant DNeasy kit. Genomic DNA was converted to

nextRAD sequencing libraries (SNPsaurus). The nextRAD method for GBS (genotyping-by-

sequencing) uses a selective PCR primer to amplify genomic loci consistently between samples;

nextRAD sequences the DNA downstream of a short selective priming site. Genomic DNA (7

ng) from each sample was first fragmented using a partial Nextera reaction (Illumina, Inc),

which also ligates short adapter sequences to the ends of the fragments. Fragmented DNA was

then amplified using PhusionÂ Hot Start Flex DNA Polymerase (NEB), with one of the Nex-

tera primers modified to extend eight nucleotides into the genomic DNA with the selective

sequence TGCAGGAG. Thus, only fragments starting with a sequence that can be hybridized

by the selective sequence of the primer were amplified by PCR. The 80 dual-indexed PCR-

amplified samples were pooled and the resulting libraries were purified using Agencourt

AMPure XP beads at 0.7x. The purified library was then size selected to 350–800 base pairs.

Sequencing was performed using two runs of an Illumina NextSeq500 (Genomics Core Facil-

ity, University of Oregon). This resulted in 552 million 75 bp reads total, with an average of 6.9

m reads per individual (Genbank: PRJNA515629).

To control for repetitive genomic material or off-target or error reads, coverage per locus

was determined using reads from 16 individuals and loci with overly high or low read counts

were removed (i.e. above 20,000 or below 100). The remaining reads were aligned to each

other using BBMap [63] with minid = 0.93 to identify alleles, with a single read instance chosen

to represent the locus in a pseudo-reference. This resulted in 263,658 loci. All reads from each

sample were then aligned to the pseudo-reference with BBMap and converted to a vcf geno-

type table using Samtools.mpileup (filtering for nucleotides with a quality of 10 or better), and

bcftools call [64]. The resulting vcf file was filtered using vcftools [65]. SNPs were removed if

there was a minimum allele frequency less than 0.02, a read depth of 5 or less, an average of

less than 20 high quality base calls or more than 20% of individuals exhibited missing data.

This left 8,210 SNPs.

RAD-seq analysis

Basic population genetic statistics (He, Ho, and FIS) were calculated via poppr [66] and hierf-

stat [67] packages and can be found in S2 Table. fastStructure [68] was used to detect popula-

tion structure (S2 Fig). A PCA analysis on individual allele frequencies was used to investigate

structure using the dudi.pca function in the adegenet package [60] in R. Tassel was used to

construct a neighbor-joining tree from pairwise relatedness [69]. Bootstraps of loci were con-

ducted using a custom script, with 500 replications.

We used two outlier-based programs to identify potential loci under selection. We first

used BayeScan (version 2.1) [70], which assumes an ancestral population from which each

sampled population differs by a given genetic distance. Pairwise FST values are calculated

between each sampled population and the ancestral population, thus correcting for differences

in population structure. These FST values are then used in a logistic regression that includes a

population specific factor (the structure across all loci) and a locus specific factor. If the locus-

specific factor significantly improved the model, it implies that something abnormal is occur-

ring, which is assumed to be natural selection. We used the default settings (false discovery
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rate of 0.05) to identify loci that showed evidence of high FST between the resistant and suscep-

tible populations.

The second program, bayenv2, identifies correlations between locus specific allele frequen-

cies and an environmental variable [71,72]; in our work, the “environment” is the level of resis-

tance per population. This program uses “neutral” loci to create a genetic correlation matrix

against which each SNP is tested for a correlation between its frequency and the environment.

In essence, the allele frequencies are modeled based on solely the neutral correlation matrix

and with the addition of the environmental variable. Loci potentially under selection are then

identified using the Bayes Factor (the support for the model with the environmental variable

added) and the Spearman’s correlation coefficient. To estimate the "neutral" population struc-

ture, we removed any SNPs from sequences that aligned (via bowtie) with either the I. pur-
purea or Lycium sp. transcriptome [73] (from 1kp data; only 35% of SNPs aligned to either)

and then used the final matrix outputted from the correlation matrix estimation after 100,000

iterations. All SNPs were then run with the environment being either -1 for the susceptible

populations or 1 for the resistant populations, and a burn-in of 500,000 with a total of 5 runs

was performed (correlation between runs was>0.80). Following Gunter & Coop [71], we

identified outlier loci with the highest 1% of Bayes Factors and the 5% most extreme Spearman

correlation coefficients averaged over the 5 runs.

We compared pairwise FSTs for the resistant and susceptible populations using the full data

set and the outlier data set using 4P [74]. We calculated Weir and Cockerham [32] pairwise

FST values for each data set (overall SNPs and outlier SNPs) for each pair of populations to cal-

culate the average FST among resistant populations and susceptible populations. To obtain

95% confidence intervals around these estimates, we performed the same steps on 1000 ran-

domly selected sets of loci (sampled with replacement).

De novo genome assembly for exome resequencing

We annotated RAD-seq outliers by using a BLASTN analysis to align their contigs to a draft

genome sequence from highly homozygous I. purpurea individual. To generate the draft

genome sequence, DNA from a single individual was sequenced using PacBio (11 SMRT cells)

and Illumina (2 lanes of 100 bp, paired end) sequencing (Genbank: VALG00000000). PacBio

reads were filtered for adaptors and to remove low quality (<0.8) and short read lengths

(<500 bp). Illumina reads were trimmed of low quality sequences using trimmomatic [75].

Illumina reads were assembled using ABYSS-PE k = 64 [76]. This resulted in 1,933,851 contigs

with lengths ranging from 64–94,907 bp (N50 = 6,790) for a total of 631,125,096 bp. LoRDEC

[77] was used to error correct the PacBio sequences using the raw Illumina reads followed by

trimming of weak regions as determined by the program based on k-mer frequency. This

resulted in 4,621,037 reads and 1,823,002,799 bp. These sequences were then combined with

the Illumina assembled contigs using DBG2OLC (k = 17, kmer coverage threshold = 2, min

overlap = 10, adaptive threshold = 0.001, LD1 = 0) [78]. This resulted in 17,897 scaffolds with

lengths ranging from 231–162047 bp (N50 = 15,425) for a total of 194,708,849 bp. This PacBio

+Illumina assembly as well as the Illumina-alone assembly were used in a BLASTN analysis

with each of the RAD-seq outlier contigs. For those with genomic hits, putative genes on the

contig were determined using AUGUSTUS [79], FGenesH [80], SNAP [81] and tRNAScan

[82], which were used to design some of the target capture probes.

Target capture exome re-sequencing

We next designed probes for exome sequencing of loci that were either identified from our

population genomics RAD-seq screen or loci have been shown to correlate with resistance in
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other species. We used a variety of methods to select possible capture probe sequences. First,

we used a BLASTN [83] analysis to select transcripts matching our RAD-seq outliers—we

BLASTed the 75 bp of the RAD-seq tags that contained outlier SNPs from either the BayeScan

or bayenv2 analyses against transcripts in an I. purpurea transcriptome (GenBank PRJNA

216984) [28] and selected the top hit for each (30 transcripts, min e-value = 3e-7). Second, we

selected transcripts that were previously identified as differentially expressed in an RNAseq

experiment [28] which compared artificially selected resistant and susceptible lines following

herbicide application (19 sequences). Third, we used the two EPSPS mRNA sequences (2

sequences). Fourth, we used a BLASTN analysis to select the putative genes on genomic con-

tigs that matched our outlier SNP contigs. We BLASTed 75 bp of the RAD-seq tags that con-

tained outlier SNPs to the two draft I. purpurea genomes described above and then selected

the resulting coding sequences from the putative genes (171 sequences, min e-value = 7e-14).

Additionally, we randomly chose an even number of transcripts from the transcriptome [28]

to serve as our controls (214 sequences).

These 436 sequences were then used to design the capture probe candidates. Candidate bait

sequences were 120 nt long, with a 4x tilling density. Each bait candidate was BLASTed against

the I. trifida genome [84], and a hybridization melting temperature (Tm)� was estimated for

each hit. Non-specific baits were filtered out (Additional candidates pass if they have at most

10 hits 62.5–65˚C and 2 hits above 65˚C, and fewer than 2 passing baits on each flank.) This

led to 16,078 baits, with a total length of 580,421 nt.

To generate material for sequencing, five seeds from each of the 8 populations used in the

previous population genomics screen (Fig 1A, Table 1) were grown in the greenhouse, leaves

were collected, and DNA was extracted from young leaf tissue using a Qiagen DNeasy Plant

Mini kit. Genomic DNA was sent to MYcroarray for library preparation and target enrichment

using the MYbaits (R) system. Genomic DNA was sonicated and bead-size-selected to roughly

300nt fragments, which was then used to create libraries using the Illumina (R) Truseq kit. A

total of 6 cycles of library amplification using dual-indexing primers was applied, and index

combinations were chosen to avoid potential sample misidentification due to jumping PCR

during pooled post-capture amplification [85]. Pools of 3 or 4 libraries each were made, com-

bining 200 or 150 nanograms of each library, respectively. These pools were then enriched with

their custom MYbaits (R) panel (following the version 3.0 manual). After capture cleanup, the

bead-bound library was amplified for 12 cycles using recommended parameters, and then puri-

fied with SPRI beads. These amplified, enriched library pools were combined in proportions

approximating equimolar representation of each original library and sequenced on 2 lanes of

Illumina 4k 150 PE. Our coverage goal was>30x depth per individual per locus. The resulting

sequences were trimmed of adaptor sequences and low quality bases using cutadapt (q<10

removed). On average we sequenced 11.6 million reads (min = 5.9 million, max = 13.8 million)

for each individual (Genbank: PRJNA515629).

We next assembled the sequenced reads into contigs to perform SNP calls. We used trimmed

sequences from one individual and default settings in Megahit [86] to assemble reference contigs

(24,524,768 reads assembled into 67,266 contigs; N50 = 458 bp; range 200–16167 bp; S3 Table).

For each individual, trimmed sequences were aligned to the assembled contigs using bwa [87],

and SNPs were called and then filtered using the GATK pipeline ([88–90]; overview of process:

variants were initially called, individuals jointly genotyped, bases recalibrated based on filtered

initial variants, and variants were recalled and jointly genotyped; specific commands: QD<2.0,

FS>60, MQ<40, MQRankSum<12.5, RedPosRankSum<-8, minimum allele frequency>0.02,

min mean depth> 5, max missing<0.8, min Q>20). After examining coverage per site, we

found several contigs to have extremely high coverage and nearly 100% heterozygosity, suggest-

ing multiple sequences were collapsed into 1 variant. Thus, we eliminated sites that had greater
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than 80% heterozygosity across individuals, or had more than twice the average coverage. This

left 152,636 SNPs on 26,988 contigs for downstream analyses (N50 = 530; range 200–16167 bp),

which is about 1marker every 10 kb. Bwa [87] was used with the default settings to align the de
novo contigs to the probes to estimate the percentage of SNPs that were from target capture

probes. Fifty-one percent of the SNPs mapped to the original probe sequences. As a control, we

compared the per site nucleotide diversity (π) between Sanger sequenced EPSPS and that of the

exome resequencing. We found π to be similar between the two (Sanger sequence: EPSPS

A = 0.236, EPSPS B = 0.324; exome re-sequenced EPSPS: R pooled = 0.259, S pooled = 0.278)

suggesting that our exome re-sequencing data is similar in quality. In addition to analyzing these

contigs, we also examined the contigs that did not map to the probe sequences (hereafter non-

probe contigs). The coverage for non-probe contigs was lower than that for probe contigs (23x

average vs 33x), however because 13x coverage is sufficient to call heterozygous SNPs in a diploid

[91] we chose to use both to increase our sampling of the genome. To annotate the contigs, we

used a local TBLASTX analysis against Arabidopsis cDNA (from TAIR: [92]; e-value 0.001, and

chose the sequence with the highest e-value for identification).

Outlier analysis of targeted exome re-sequencing

We used BayeScan and bayenv2 as above to identify putative adaptive loci from the targeted

exome re-sequencing. To reduce the effect of linkage among loci, we randomly chose 1 SNP

per 1000 bp using vcftools (27,225 SNPs retained). BayeScan and bayenv2 were used as before

to identify outliers. To estimate the neutral population structure for bayenv2, 2000 contigs

were randomly selected from contigs that did not map to the probes designed for the outliers.

To determine whether the outliers we identified were due to other selective forces and not her-

bicide resistance, we determined outliers for random groups of populations. We randomly

assigned populations to 2 groups, with the provision that the groups were not the same as the

herbicide resistance grouping. These new groupings were then used in BayeScan to identify

outliers using the target capture genetic data. This procedure was repeated for a total of 100

times, and outliers were determined using a 0.05 FDR cutoff.

We placed the SNPs into a genomic context by aligning them to the I. nil [29] genome

using BLAT [93] and liftover [94]. A total of 124,149 SNPs aligned to the genome. By visual

analysis we identified five regions with a large majority of significant outliers (i.e. 71% of outly-

ing SNPs). We delimited each of these ‘enriched regions’ by the first and last outlier of each

region, and searched the regions for genes involved in non-target site resistance using the fol-

lowing GO terms and gene names: GO:0009635, GO:0006979, GO:0055114, glycosyltransfer-

ase, glutathione s-transferase, ABC transporters and cytochrome P450s. We randomly selected

5 regions of the same size from the I. nil genome and counted the number of genes from the

above gene families to determine if outlier enriched regions contained more of these genes of

interest than expected due to chance. We repeated this 1000 times to create an empirical distri-

bution, which was then used to determine the percentile of the observed data. As a caveat,

while this randomization method does simulate the region sizes, it does not account well for

variation in gene density across the genome. We next determined if outliers outside of the

enriched regions were more, less, or equally likely to be located near a gene family of interest

(i.e., glycosyltransferase, ABC transporter, etc). To do so, we counted the number of genes of

each family within ~4MB (the largest of the 5 regions) from outliers found outside the five

enriched regions and then compared the distributions of these outliers to those found within

the enriched regions. We used CooVar [95] with the I. nil gene models to predict the protein

level changes for each SNP that aligned to the I. nil genome and to determine if SNPs were

from nonsynonymous or synonymous sites.
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For estimates of genetic differentiation and diversity, we calculated GST [96], nucleotide

diversity (as the ratio of susceptible to resistant individuals; πS/πR), Tajima’s D [30], and Fu

and Way’s H [31] over 25 SNPs windows using customized scripts from [97]. For these mea-

sures we choose to pool populations within resistance level to increase the sample size.

Although this violates the assumptions of the analyses, simulation studies have shown that

they are relatively insensitive to population substructure unless it is very strong [98, 99]. Addi-

tionally, we used vcftools to calculate pairwise FST estimates [32] among the resistant and sus-

ceptible populations separately for each SNP. Negative FST values will occur when there is little

genetic variation, and thus we set any negative value to zero. We then compared the average

pairwise FST of the resistant populations versus the susceptible populations within the 5 outlier

enriched regions.

We used hierarchical modeling to determine if the resistant populations had similar haplo-

type structure in outlier containing regions of the genome, which would potentially indicate

that resistance is controlled by the same genetic basis across populations. We grouped

sequenced individuals into either those that exhibited the putative susceptible allele (‘S’ group)

or the putative resistant allele (‘R group’) for each contig. To do so, the pairwise genetic dis-

tance between each individual was calculated based on all SNPs in each contig using the dist.

gene command from the ape package (vers 5.0; [100]) in R [101]. This genetic distance matrix

was reduced to 2 dimensions by multidimensional scaling using the cmdscale and eclust com-

mands [102]. These two dimensions were then used to hierarchically cluster the populations

into 2 groups using kmeans clustering. The group that contained less than half of the individu-

als from the susceptible populations was deemed the ‘R’ group (i.e. those that are genetically

different from the majority of the susceptible individuals and presumably have the allele that

aids in resistance).

Linkage

We used the exome resequencing data to examine patterns of linkage across the genome and

within the outlier-enriched regions. We estimated LD as the correlation coefficient (r2)

between each SNP pair across each chromosome using the program GUS-LD (genotyping

uncertainty with sequencing data-linkage disequilibrium; [103]), a likelihood method devel-

oped to estimate pairwise LD using low-coverage sequencing data. GUS-LD controls for

under-called heterozygous genotypes and sequencing errors, which are a known problem with

reduced representation sequencing. We estimated LD for each chromosome that exhibited an

outlier enriched region (chr1, chr6, chr10, chr13, chr15) using the SNPs identified across all

individuals using the exome resequencing dataset. We used only biallelic SNPs of at least 5%

frequency and with<20% missing genotype calls since rare alleles can influence the variance

of LD estimates. Only SNPs that could be aligned to the I. nil genome were used in the analysis.

The number of SNPs used per chromosome ranged from 1189 to 3191 and are presented in S5

Table. Linkage decay was not estimated due to the granular nature of the data; instead, we

report r2 values averaged over the entire chromosome as a background estimate of LD, along

with the 3rd quartile of r2 values.

Test of convergence

Given evidence that the outlier-containing region on chromosome 10 showed the strongest

sign of differentiation between the resistant and susceptible populations (see Results), we

applied the inference method of Lee and Coop [33] to examine the most likely mode of adapta-

tion within this region. This composite likelihood based approach, explained in full in [33]

both identifies loci involved in convergence and distinguishes between alternate modes of
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adaptation—whether adaptation is due to multiple independent origins, if adaptive loci were

spread among populations via gene flow, or were shared among populations due to selection

on standing ancestral variation. We first estimated an F matrix to account for population

structure using SNPs from scaffolds on Chr 3, 7, and 14 that showed no evidence of selection

from our outlier analyses (S6 Table). We then used all SNPs (N = 2248) on a scaffold from the

I. purpurea assembly (that aligned to I. nil scaffold BDFN01001043) to apply the inference

framework to the region on chromosome 10 that exhibited signs of selection. We estimated

the maximum composite likelihood over a grid of parameters used to specify these models (S7

Table). We allowed two of the resistant populations (WG and SPC) to be sources of the variant

in the migration model. Additionally, and following [33], we used an Ne = 7.5 X 105. WG and

SPC were chosen as possible source populations because FastStructure suggested they were a

mix of subpopulations. Other source populations and other Ne estimates were used, with no

resulting qualitative changes in the results. The remaining regions were similarly tested.

Accession numbers

EPSPS sequencing data (MK421977-MK422097), NextRAD sequencing data (Genbank:

PRJNA515629), genome assembly (Genbank: VALG00000000) and Exome resequencing data

(Genbank: PRJNA515629) are available in GenBank.

Supporting information

S1 Fig. No sequence differences in EPSPS. Comparison of amino acid sequences of Ipomoea
purpurea EPSPS protein sequence (bottom two sequences) with other reported EPSPS proteins

in the NCBI database (gi|170783792, gi|76782198, gi|15225450, gi|257228989, gi|16751569, gi|

460388790, gi|225454012, gi|374923051, gi|46095337, gi|189170087) shows no sequence varia-

tion within the region known to affect herbicide resistance (inside red outline). Non-synony-

mous changes (red and blue arrows) outside of this region likewise do not correlate with

resistance (S1 Table).

(DOCX)

S2 Fig. Neighbor joining tree using all of the RAD-seq SNP loci. On the tree, populations

are denoted by color and tip labels; values at nodes are percent bootstrap support; population

level resistance is denoted by the color in the column (red = resistant, blue = susceptible).

(DOCX)

S3 Fig. Population structure analyses. At K = 2 FastStructure results for the RADseq data do

not show the resistant populations (first four populations on the left) segregating into a distinct

group, suggesting they are not from a single origin. FastStructure analysis suggests either K = 6

or K = 7 as the best model, both of which leads to some populations being highly admixed (e.g.

BI) while others are fairly homogenous (e.g. SH).

(DOCX)

S4 Fig. RADseq outliers associated with environmental variables. Based on bayenv2 analy-

ses using environmental variables, we identified 50 loci that correlated with minimum temper-

ature of coldest month, only 2 of which overlapped with the resistance outliers; 27 loci

correlated with precipitation of the driest month, 0 of which overlapped with the resistance

outliers; 36 loci correlated with elevation, 0 of which overlapped with the resistance outliers.

(DOCX)

S5 Fig. RADseq outliers when resistance/susceptible status was randomly assigned to pop-

ulations. A screen for outliers when resistance status was randomly assigned to populations
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(100 randomizations) did not uncover the same pattern of enrichment across chromosomes as

the original outlier screen. None of the randomizations produced 5 outlier regions (A). Few

randomizations led to a greater number of outliers (B; vertical line denotes the number of out-

liers found in the original grouping). The regions didn’t show an increased frequency of being

identified as outliers in the randomly assigned analysis (C; y-axis shows the number of times

the SNP was identified as an outlier in the randomizations). In Fig C, the fifteen chromosomes

are presented in different colors on the x-axis (as in Fig 2A) and the greyed areas represent the

regions showing outlier enrichment from the original screen.

(DOCX)

S6 Fig. Differences between outliers inside and outside of outlier enriched regions. (A-D)

Distributions of the number of genes within 4 mb of an outlier, either inside (blue) or outside

(red) an outlier-enriched region. For each type of gene, the outliers outside of the regions

show a left-skewed distribution indicating fewer close detoxification genes for (A) ABC trans-

porters, (B) Glycosyltransferases, (C) Cytochrome P450s and (D) Glutathione S-transferases.

(E) Outliers outside of the regions have lower frequencies of the resistant haplotype than those

inside the regions, suggesting they are more population specific.

(DOCX)

S7 Fig. Nucleotide diversity across all SNPs that aligned to the I. nil genome. Data are

shown are the ratio of susceptible to resistant individual nucleotide diversity. Grey bars indi-

cate the outlier enriched regions identified on chromosomes 1, 6, 10, 13, and 15. Dashed lines

show the 5% most extreme genome-wide values.

(DOCX)

S8 Fig. Test of convergence across outlier enriched region for each chromosome. (A) Likeli-

hood ratio of the following models relative to a neutral model with no selection: standing vari-

ant model (blue), migration (green) or independent mutation (red). (B) Likelihood surface for

minimum frequency of the standing variant and the strength of selection holding the age of

the standing variant constant; the point indicates the highest likelihood; the color indicates the

likelihood (white (high) to yellow to red (low)). (C) Likelihood for the minimum age of stand-

ing variant maximizing over the other parameters.

(DOCX)

S1 Table. EPSPS SNP data for gene copy A and B. SNP # = the location of the SNP after

alignment with EPSPS from Convulvulus arvensis, Ho = observed heterozygosity (across all

samples), He = expected heterozygosity, HWE p-value = p-value for test of Hardy-Weinberg

equilibrium from permutation test, Alleles = SNP alleles, Syn = whether a synonymous change

(as determined by alignment with C. arvensis sequence), P-value chi-squared R vs S = p-value

for test of allele frequency difference between resistant and susceptible populations, P-value

cor with resistance = adjusted p-value for correlation with survival.

(DOCX)

S2 Table. Population genetics parameters for the RADseq SNPs. Population = population

abbreviation. Ave N/locus = average number of individuals with high quality allele data per

locus. % loci missing = average percent of the population with missing data per locus.

Ho = observed heterozygosity. He = expected heterozygosity. FIS = Wright’s inbreeding coeffi-

cient.

(DOCX)

S3 Table. Assembly statistics for the Illumina genome assembly (using ABYSS-PE), the

PacBio + Illumina genome assembly (using DBLOG2), the resequencing assembly (using
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Megahit) and the resequencing assembly contigs containing SNPs.
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