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Abstract
Background: Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF) have
been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine
metabolite concentrations are partly determined by genetic influences.

Methods: We investigated possible relationships between DNA polymorphisms in the serotonin
2C receptor (HTR2C), the serotonin 3A receptor (HTR3A), the dopamine D4 receptor (DRD4), and
the dopamine β-hydroxylase (DBH) genes and CSF concentrations of 5-hydroxyindolacetic acid (5-
HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy
volunteers (n = 90).

Results: The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02). The DBH-1021
heterozygote genotype was associated with 5-HIAA (p = 0.0005) and HVA (p = 0.009)
concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were
significantly associated with any of the monoamine metabolites.

Conclusions: The present results suggest that the HTR3A and DBH genes may participate in the
regulation of dopamine and serotonin turnover rates in the central nervous system.

Background
Concentrations of the major serotonin metabolite 5-

hydroxyindoleacetic acid (5-HIAA), the major dopamine
metabolite homovanillic acid (HVA), and the major
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norepinephrine metabolite 3-methoxy-4-hydroxyphe-
nylglycol (MHPG) in lumbar cerebrospinal fluid (CSF)
have been used extensively as indirect measures of
monoamine turnover in the brain of humans. Studies of
human twins indicate that CSF 5-HIAA and HVA levels are
under familial influence of both genetic and environmen-
tal origin, whereas MHPG is under major genetic influ-
ence [1]. In rhesus monkeys significant portions of CSF 5-
HIAA, HVA, and MHPG in the central nervous system,
have been shown to be determined by genetic mecha-
nisms [2].

A number of serotonin receptors mediate the effects of
serotonin. Among several functions, the serotonin recep-
tor 5-HT2C, which is densely expressed throughout the
brain [3], seems to be directly involved in the regulation
of serotonin and norepinephrine activities in the brain [4-
6]. The 5-HT2C gene (HTR2C) is localised to chromosome
Xq24 [7]. An HTR2C variant giving rise to a Cystein to Ser-
ine substitution at position 23 of the protein has been
identified [8]. This variant was shown to influence the CSF
MHPG concentration in a Finnish sample of predomi-
nantly alcoholic offenders [9].

In contrast to all other serotonin receptors, which are G
protein-coupled, the 5-HT3 receptor is a ligand-gated ion
channel [10]. In the brain 5-HT3 receptors are localised in
areas including the amygdala, hippocampus, and caudate
nucleus. In addition to their effects on serotonin-regu-
lated physiological processes, there are data suggesting
that 5-HT3 receptors influence the activity of several other
neurotransmitters, including norepinephrine and
dopamine [11-13]. The 5-HT3A gene (HTR3A) is localised
to chromosome 11q23.1-q23.2 [10]. An HTR3A single
nucleotide polymorphism (178 C/T) in the upstream reg-
ulatory region was recently discovered to be of putative
functional importance, because luciferase reporter assays
in human embryonal kidney cells showed a two to three
times higher activity of the rare allele compared to the
wildtype [14]. This HTR3A variant was reported to be
associated with bipolar disorder [14] and the personality
trait harm avoidance in women [15].

The dopamine D4 receptor has a predominantly cortical
localisation in the human brain [16]. Among several
effects, the dopamine D4 receptor seems to modulate
dopamine synthesis and turnover [17,18]. The dopamine
D4 receptor gene (DRD4) is located to chromosome
11p15.5 [19]. Recently, a putative functional DRD4
upstream region variant (-521C/T) was discovered, where
the -521C allele was reported to be 40% less active than -
521T allele in a chloramphenicol acetyltransferase assay
using human retinoblastoma cells [20]. This DRD4 vari-
ant was associated with schizophrenia [20] as well as the
personality trait novelty seeking in some [21-24] but not

all studies [25-31]. However, meta-analyses suggested
association with both conditions [32-34].

The enzyme dopamine β-hydroxylase (DβH) catalyses the
conversion of dopamine to norepinephrine. DβH is local-
ised in catecholamine-containing vesicles of noradrener-
gic and adrenergic cells [35,36]. DβH enzyme activity has
been shown to be heritable to a great extent [1,37]. The
DβH gene (DBH) is located on chromosome 9q34 [38].
Recently, a DBH promoter variant (-1021 C/T) was shown
to strongly influence plasma DβH-activity [39-41], indi-
cating a functional effect. In the present study we have
examined the HTR2C Cys23Ser, HTR3A 178 C/T, DRD4 -
521 C/T and DBH -1021 C/T variants for possible rela-
tionships to concentrations of 5-HIAA, HVA, and MHPG
in lumbar CSF from healthy Swedish volunteers.

Methods
Healthy human volunteers
The study was approved by the Ethics Committee of the
Karolinska Hospital, Stockholm. Informed consent of the
subjects was obtained after the nature of the procedures
had been fully explained.

The characteristics and assessment of the subjects partici-
pating in the present study have been described previously
[42,43]. Caucasian individuals (n = 90) were recruited
predominantly among students or hospital staff. Lumbar
puncture (LP) was performed in all subjects. Height was
also recorded. Back length, defined as the distance
between the external occipital protuberance and the inser-
tion point of the lumbar needle with the subject in the
lying position, was measured in 63 subjects. Eight to 19
years later a structured interview was performed by a psy-
chiatrist (EJ) to assess psychiatric morbidity (DSM-III-R;
[44]), somatic illness and presence of mental and nervous
system disorders among relatives. Subjects completed a
questionnaire regarding smoking habits. Hospital records
were obtained and examined for diagnosis. Genealogical
data for antecedents up to the third degree were obtained
from parish registers to assess the origin of the individu-
als. Subjects who reported any lifetime psychiatric disor-
der were excluded.

Of the 90 subjects 52 were men and 38 women. The age
range at the time of the structured interview was 29 to 56,
with a mean ± standard deviation of 40.5 ± 6.4 years. The
mean age ± standard deviation at LP was 27.4 ± 5.9 years,
age range 18 – 43. Thirty-six were university graduates.
Twenty-one subjects had a family history of major mental
illness defined as at least one first or second degree relative
with schizophrenia, schizoaffective disorder, bipolar dis-
order, recurrent unipolar disorder, other non-organic psy-
chosis, or who had committed suicide. Of the subjects 54
were or had been regular tobacco users, 25 were non-
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smokers or had only used tobacco once or a few times in
their life, while data were missing for 11 individuals. Of
the women, 15 used oral contraceptives at LP, 21 did not,
while data were missing for two individuals. Except for
oral contraceptives all participants were drug free at LP.
Genealogical data implicated that 89.6% and 4.7% of the
genes originated in ancestors born in Sweden and Fin-
land, respectively, and the remaining 5.7% were distrib-
uted on 8 European countries.

CSF monoamine metabolite concentrations
All subjects had at least 8 h of bed-rest in the hospital,
abstaining from food and smoking. CSF samples were
obtained by LP between 8 and 9 a.m. with the subjects in
the sitting (n = 41) or recumbent (n = 47) position. Sam-
ples of 12.5 ml CSF were drawn according to a standard-
ised sampling procedure [45]. Samples were stored at
below -20°C and analysed within two months. 5-HIAA,
HVA, and MHPG concentrations were measured by mass
fragmentography with deuterium labelled internal stand-
ards [46].

Genotype analyses
Venous blood was taken from all individuals into EDTA-
containing tubes. DNA was isolated as previously
described [47]. The HTR2C Cys23Ser variant was geno-
typed in accordance with Lappalainen et al [8]. The
HTR3A 178 C/T, DRD4 -521 C/T, and DBH -1021 C/T var-
iants were genotyped as previously described [15,26,48].

Data analyses
One way analysis of variance (ANOVA) was used for com-
parisons between genotypes and 5-HIAA, HVA, and
MHPG concentrations, respectively. To correct monoam-
ine metabolite levels for back length and use of oral con-
traceptives (among women), suggestive but discussed
confounding variables for monoamine metabolite con-
centrations in lumbar CSF [42,43,49], analysis of covari-
ance (ANCOVA) was used. For those subjects where back
length was not available, estimated back length values,
based on the relationship between back length and
height, was used as previously described [42,43]. Signifi-
cance level was defined as a p-value lower than 0.05.
Power was estimated in accordance with published meth-
ods [50,51].

Results
Relationships between HTR2C genotypes and CSF 
monoamine metabolite concentrations
The HTR2C genotyping was successful in 86 individuals.
Among men the allele frequencies were 0.88 (Cys23) and
0.12 (Ser23). In women the allele frequencies were 0.89
(Cys23) and 0.11 (Ser23), distributed on the following
genotypes: Cys23Cys (81%), Cys23Ser (16%), and
Ser23Ser (3%). As the HTR2C gene is localised on the X

chromosome, each gender was analysed separately.
Among women, the Ser23Ser and Cys23Ser genotypes
were pooled and analysed versus the Cys23Cys genotype,
because of the small number of Ser23Ser subjects. There
were no significant relationship between genotypes and
any of the CSF monoamine metabolite concentrations
neither among men or women (table 1).

Relationships between HTR3A genotypes and CSF 
monoamine metabolite concentrations
The HTR3A 178 C/C genotype was the most frequent
(67%), followed by the 178 C/T (30%) and the 178 T/T
(3%) genotypes. The allele frequencies were 0.82 (178C)
and 0.18 (178T). The 178 T/T and 178 C/T genotypes
were pooled in the calculations, because of the small
number of subjects carrying the 178 T/T genotype. In the
total sample there were associations between the HTR3A
variant and 5-HIAA (p = 0.002) and HVA (p = 0.006) con-
centrations, with higher concentrations of these
monoamine metabolites in carriers of the T-containing
genotypes (table 2). However, when corrected for back-
length the association between the HTR3A variant and
lumbar HVA concentrations was reduced to a trend (p =
0.08). In the male sub-sample, no significant relation-
ships between HTR3A variation and 5-HIAA or HVA con-
centrations emerged. Among women the relationship
between HTR3A variation and 5-HIAA concentrations,
indicating higher 5-HIAA levels in subjects carrying the
178T allele, was significant both uncorrected (p = 0.004),
corrected for back-length (p = 0.006), and corrected for
use of oral contraceptives (p = 0.03; table 2). However, in
the female sub-sample the association between HTR3A
and HVA concentrations was of borderline significance (p
= 0.05 uncorrected, p = 0.03 corrected for use of oral con-
traceptives), but was non-significant after correction for
back-length (p = 0.12). Inspection of the CSF levels of the
different genotype groups indicated a possible heterosis
effect with regard to the CSF 5-HIAA and HVA concentra-
tions [52]. We therefore also performed calculations pool-
ing the homozygotic genotypes. However, the probability
levels of significance did not exceed those obtained pool-
ing the T/T and C/T genotypes (table 2). There were no sig-
nificant relationships between the HTR3A genotype and
MHPG concentrations (table 2).

Relationships between DRD4 genotypes and CSF 
monoamine metabolite concentrations
The DRD4 -521 C/T genotype was the most frequent
(58%), followed by the -521 T/T (28%) and the -521 C/C
genotypes (14%). The allele frequencies were 0.57 (-
521T) and 0.43 (-521C). When women were analysed
separately, the -521 C/C and -521 C/T genotypes were
pooled, because of the small number of -521 C/C sub-
jects. There was no significant relationship between DRD4
genotypes and any of the CSF monoamine metabolite
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concentrations neither in the total sample, nor among
men or women (table 3).

Relationships between DBH genotypes and CSF 
monoamine metabolite concentrations
The DBH -1021 C/C genotype was the most frequent
(71%), followed by the -1021 C/T (26%) and the -1021
T/T genotypes (3%). The allele frequencies were 0.84 (-
1021C) and 0.16 (-1021T). The -1021 T/T and -1021 C/T
genotypes were pooled in the calculations, because of the
small number of subjects with the -1021 T/T genotype. In
the total sample there was an association between DBH

genotype and 5-HIAA concentrations (p = 0.01 uncor-
rected, p = 0.003 when corrected for back-length), with
higher 5-HIAA levels in subjects with the -1021T contain-
ing genotypes (table 4). This relationship reached
significance also among men (p = 0.06 uncorrected, p =
0.04 corrected for back length), but not among women
(table 4). In the total sample there was a tendency for
association (p = 0.09) between the DBH variant and HVA
concentrations, with higher HVA levels in -1021T carriers
(table 4). When corrected for back-length the strength of
this difference was significant (p = 0.03). Neither in the

Table 1: Serotonin receptor 5-HT2C (HTR2C) genotypes and relationships to monoamine metabolite concentrations in human lumbar 
cerebrospinal fluid.

5-HIAA HVA MHPG

HTR2C Allele/
genotype

Sex n Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb

Cys23 Men 43 92 ± 40 F = 0.27 F = 0.13 166 ± 75 F = 0.73 F = 0.50 43 ± 8 F = 1.75 F = 1.48
Ser23 6 86 ± 16 p = 0.61 p = 0.72 144 ± 39 p = 0.40 p = 0.48 39 ± 4 p = 0.19 p = 0.23

Cys23Cys Women 30 105 ± 39 F = 0.66 F = 0.57 194 ± 77 F = 2.14 F = 1.34 40 ± 6 F = 1.03 F = 0.91
Cys23Serc 6 118 ± 29 p = 0.42 p = 0.46d 231 ± 69 p = 0.15 p = 0.25e 44 ± 8 p = 0.32 p = 0.35f

Ser23Serc 1 107 229 38

5-HIAA = 5-hydroxyindoleacetic acid; HVA = homovanillic acid; MHPG = 3-methoxy-4-hydroxyphenylglycol. Statistical comparisons done on 
monoamine metabolite residuals correcteda and uncorrectedb for back length. c Cys23Ser and Ser23Ser genotypes were combined in the analyses. d 

Correction for use of oral contraceptives, F = 0.21, p = 0.65. e Correction for use of oral contraceptives, F = 0.84, p = 0.37. f Correction for use of 
oral contraceptives, F = 0.22, p = 0.64.

Table 2: Serotonin receptor 5-HT3A (HTR3A) genotypes and relationships to monoamine metabolite concentrations in human lumbar 
cerebrospinal fluid.

5-HIAA HVA MHPG

HTR3A 
Genotype

Sex n Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb

T/Tc All 3 105 ± 52 F = 5.75 F = 10.22 203 ± 124 F = 3.25 F = 7.95 44 ± 5 F = 0.45 F = 0.29
C/Tc 27 117 ± 36 p = 0.02 p = 0.002 211 ± 67 p = 0.07 p = 0.006 43 ± 8 p = 0.50 p = 0.75
C/C 60 90 ± 35 166 ± 71 42 ± 7
T/Tc Men 1 52 F = 0.31 F = 0.96 113 F = 0.75 F = 1.49 49 F = 0.20 F = 0.49
C/Tc 11 106 ± 33 p = 0.58 p = 0.33 193 ± 50 p = 0.39 p = 0.23 44 ± 9 p = 0.66 p = 0.49
C/C 40 90 ± 37 159 ± 11 43 ± 7
T/Tc Women 2 131 ± 34 F = 8.55 F = 9.75 248 ± 137 F = 2.49 F = 4.05 41 ± 3 F = 0.68 F = 1.00
C/Tc 16 124 ± 37 p = 0.006 p = 0.004d 224 ± 76 p = 0.12 p = 0.05e 42 ± 7 p = 0.42 p = 0.32f

C/C 20 92 ± 30 179 ± 64 40 ± 6

5-HIAA = 5-hydroxyindoleacetic acid; HVA = homovanillic acid; MHPG = 3-methoxy-4-hydroxyphenylglycol. Statistical comparisons done on 
monoamine metabolite residuals correcteda and uncorrectedb for back length. c T/T and C/T genotypes were combined in the analyses. d Correction 
for use of oral contraceptives, F = 5.56, p = 0.02. e Correction for use of oral contraceptives, F = 1.76, p = 0.19. f Correction for use of oral 
contraceptives, F = 0.17, p = 0.68. Analysing heterosis, i.e. comparing homo- vs heterozygotes: All subjects 5-HIAA: F = 10.03, p = 0.002 (F = 5.71, 
p = 0.02 after correction for back length). All subjects HVA: F = 7.13, p = 0.009 (F = 2.28, p = 0.10). Men 5-HIAA: F = 1.96, p = 0.17 (F = 1.00, p = 
0.32). Men HVA: 2.33, p = 0.13 (F = 1.40, p = 0.24). Women 5-HIAA: F = 6.73, p = 0.01 (F = 5.65, p = 0.02 and F = 3.76, p = 0.06 corrected for back 
length and use of oral contraceptives, respectively). Women HVA: F = 2.49, p = 0.12 (F = 1.03, p = 0.32 and F = 0.98, p = 0.33 corrected for back 
length and use of oral contraceptives, respectively).
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smaller male or female sub-samples this difference
reached significance (table 4).

We also performed calculations pooling the homozygotic
genotypes, i.e. analysing possible heterosis [52]. In the
total sample there was an association between DBH heter-
ozygosity and 5-HIAA concentrations (p = 0.003
uncorrected, p = 0.0005 when corrected for back-length)

(table 4). This relationship reached significance also
among men (p = 0.06 uncorrected, p = 0.04 corrected for
back length) and women (p = 0.005 uncorrected, p = 0.02
corrected for back length, p = 0.05 corrected for use of oral
contraceptives; table 4). In the total sample there was an
association (p = 0.04 uncorrected, p = 0.009 corrected for
back-length) between DBH heterozygosity and HVA con-
centrations (table 4). This association failed to obtain sig-

Table 3: Dopamine D4 receptor (DRD4) genotypes and relationships to monoamine metabolite concentrations in human lumbar 
cerebrospinal fluid.

5-HIAA HVA MHPG

DRD4 
Genotype

Sex n Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb

C/C All 13 104 ± 43 F = 0.76 F = 0.22 199 ± 94 F = 1.39 F = 0.52 42 ± 7 F = 2.62 F = 2.68
C/T 52 99 ± 34 p = 0.47 p = 0.80 176 ± 68 p = 0.25 p = 0.59 41 ± 7 p = 0.08 p = 0.07
T/T 25 96 ± 41 181 ± 77 45 ± 8
C/C Men 12 104 ± 44 F = 0.99 F = 0.98 197 ± 98 F = 1.49 F = 1.60 43 ± 7 F = 1.93 F = 2.06
C/T 26 91 ± 35 p = 0.38 p = 0.38 156 ± 63 p = 0.24 p = 0.21 41 ± 8 p = 0.16 p = 0.14
T/T 14 84 ± 32 155 ± 50 46 ± 8
C/Cc Women 1 107 F = 0.004 F = 0.11 229 F = 0.003 F = 0.48 38 F = 0.78 F = 1.23
C/Tc 26 106 ± 33 p = 0.95 p = 0.74d 195 ± 68 p = 0.96 p = 0.49e 40 ± 6 p = 0.38 p = 0.27f

T/T 11 111 ± 47 214 ± 93 43 ± 7

5-HIAA = 5-hydroxyindoleacetic acid; HVA = homovanillic acid; MHPG = 3-methoxy-4-hydroxyphenylglycol. Statistical comparisons done on 
monoamine metabolite residuals correcteda and uncorrectedb for back length. c C/C and C/T genotypes were combined in the analyses. d 

Correction for use of oral contraceptives, F = 0.38, p = 0.54. e Correction for use of oral contraceptives, F = 0.04, p = 0.84. f Correction for use of 
oral contraceptives, F = 1.09, p = 0.30.

Table 4: Dopamine β-hydroxylase (DBH) genotypes and relationships to monoamine metabolite concentrations in human lumbar 
cerebrospinal fluid.

5-HIAA HVA MHPG

DBH 
Genotype

Sex n Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb Mean ± SD 
(nmol/L)

Fa pa Fb pb

C/C All 64 92 ± 35 F = 9.07 F = 6.42 172 ± 66 F = 5.21 F = 3.00 42 ± 7 F = 0.01 F = 0.01
C/Tc 23 118 ± 39 p = 0.003 p = 0.01 208 ± 93 p = 0.02 p = 0.09 42 ± 9 p = 0.90 p = 0.93
T/Tc 3 78 ± 25 151 ± 18 40 ± 5
C/C Men 36 86 ± 36 F = 4.68 F = 3.80 156 ± 56 F = 2.22 F = 1.81 43 ± 7 F = 0.08 F = 0.04
C/Tc 15 107 ± 35 p = 0.04 p = 0.06 186 ± 98 p = 0.14 p = 0.18 43 ± 10 p = 0.78 p = 0.84
T/Tc 1 95 160 45
C/C Women 28 101 ± 31 F = 4.08 F = 3.37 192 ± 73 F = 3.72 F = 1.79 41 ± 6 F = 0.03 F = 0.08
C/Tc 8 139 ± 38 p = 0.05 p = 0.07e 249 ± 72 p = 0.06 p = 0.19d 41 ± 7 p = 0.87 p = 0.78f

T/Tc 2 70 ± 30 147 ± 23 38 ± 4

5-HIAA = 5-hydroxyindoleacetic acid; HVA = homovanillic acid; MHPG = 3-methoxy-4-hydroxyphenylglycol. Statistical comparisons done on 
monoamine metabolite residuals correcteda and uncorrectedb for back length. c T/T and C/T genotypes were combined in the analyses. d Correction 
for use of oral contraceptives, F = 0.88, p = 0.36. e Correction for use of oral contraceptives, F = 0.46, p = 0.50. f Correction for use of oral 
contraceptives, F = 0.003, p = 0.96. Analysing heterosis, i.e. comparing homo- vs heterozygotes: All subjects 5-HIAA: F = 9.56, p = 0.003 (F = 13.07, 
p = 0.0005 after correction for back length). All subjects HVA: F = 4.43, p = 0.04 (F = 7.24, p = 0.009). Men 5-HIAA: F = 3.85, p = 0.06 (F = 4.6187, 
p = 0.04). Men HVA: 1.95, p = 0.17 (F = 2.31, p = 0.14). Women 5-HIAA: F = 9.14, p = 0.005 (F = 9.74, p = 0.004 and F = 4.11, p = 0.05 corrected 
for back length and use of oral contraceptives, respectively). Women HVA: F = 4.43, p = 0.04 (F = 6.42, p = 0.02 and F = 1.81, p = 0.19 corrected 
for back length and use of oral contraceptives, respectively).
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nificance in the smaller male sub-sample. Among women
there was an association (p = 0.04 uncorrected, p = 0.02
corrected for back-length), which however did not sur-
vived correction for use of oral contraceptives (p = 0.18;
table 4).

There were no significant relationships between the DBH
genotype and MHPG concentrations (table 4).

Given α = 0.05 the present study had a power of 0.93 –
0.96 (total sample), 0.67 – 0.81 (men), or 0.53 – 0.67
(women) to detect differences of a large effect size (f =
0.40). For differences of a medium effect size (f = 0.25)
the power was 0.54 – 0.65 (total sample) or less.

Discussion
The present study is, to our knowledge, the first to investi-
gate three potentially functional candidate gene variants
(HTR3A 178 C/T, DRD4 -521 C/T, DBH -1021 C/T) in the
context of monoamine metabolite concentrations in cere-
brospinal fluid from human healthy volunteers. Associa-
tion was detected between two of these gene variants
(HTR3A 178 C/T, DBH -1021 C/T) and the indirect meas-
ures of monoamine activity in the brain.

However, we were not able to replicate the previously
reported finding of higher CSF MHPG concentrations in
HTR2C Ser23 compared to Cys23 carriers among men [9].
On the contrary, our male sub-sample showed a non-sig-
nificant relationship in the opposite direction, i.e. higher
MHPG concentrations in Cys23 subjects (table 1). When
we added another 23 men, excluded from the main anal-
ysis because of reported life-time psychiatric disorder,
mostly alcohol abuse, depressive or anxiety disorders, this
difference reached nominal significance (F = 4.44, d.f. =
71, p = 0.04), a result robust for correction for back-length
(p = 0.04) and presence of life-time psychiatric disorder (p
= 0.04), respectively (data not shown). Reasons for the
different results in the two studies may include the differ-
ent selection of subjects. The previous study included 73%
alcoholic violent offenders and 27% healthy controls of
Finnish ethnicity, and the HTR2C genotype effect was
most prominent among the offenders [9], whereas the
present study only included healthy subjects. The present
study may lack power to detect the previous relationship.
Alternatively, assuming different relationships between
alcoholic violent offenders and healthy controls, the Finn-
ish study may be under-powered concerning control sub-
jects. It is also possible that both results are valid, but the
results reflect an association to a linked variant, and that
the degree of linkage between the HTR2C Cys23Ser vari-
ant and the 'real' functional polymorphism differs
between the two populations investigated. There may also
be a difference between the two populations with regard
to other genes interacting with the present to influence

MHPG concentrations. It is also possible that the Finnish,
the present or both results have emerged by chance.

Subjects carrying the rarer HTR3A 178T allele, which has
been associated with higher protein expression than the
wild-type variant [14], displayed higher lumbar CSF 5-
HIAA concentrations. This suggests that a more efficient
variant of the 5-HT3 receptor, involved in the regulation of
serotonin activities, enhances brain serotonin turnover,
giving rise to higher levels of the serotonin degradation
product in CSF.

We were not able to find any significant relationships
between DRD4 -521 C/T variation and CSF monoamine
metabolite concentrations. This is in accordance with pre-
vious studies, analysing a DRD4 exon 3 variable number
of tandem repeat variant [42,53]. In the present report
there was a trend for an association between the DRD4 -
521 C/T genotypes and CSF MHPG concentrations. This
may mean that the present study does not have sufficient
power to detect such a relationship, or that this trend
reflects a tendency to a false positive finding. The results
so far obtained suggest that the DRD4 gene does not have
a large impact on the monoamine turnover in the brain as
reflected by the major degradation products of these com-
pounds in healthy human subjects.

One would expect that functional variants of the gene
encoding the dopamine β-hydroxylase would primarily
affect the catecholamines, in particular norepinephrine.
However, in the present study the strongest relationship
emerged between the DBH -1021 C/T variant and CSF 5-
HIAA levels. Complex interactions between the noradren-
ergic and serotonergic systems have been reported
[54,55]. Altered noradrenergic activity may alter the firing
activity of serotonergic neurons, leaving a possibility for a
decreased or increased availability of norepinehprine to
be involved in these interactions. One might speculate
that a more effective DBH variant, giving rise to an
enhanced norepinephrine formation, facilitates
noradrenergic activity, which in its turn facilitates seroton-
ergic activity, giving rise to larger amounts of the
serotonin degradation product 5-HIAA. There was also an
association between DBH -1021 C/T variation and the
major dopamine degradation product, indicating higher
HVA levels in subjects with a less effective enzyme variant.
This is in accordance with the theory that a less effective
conversion of dopamine to norepinephrine would lead to
higher amounts of dopamine, and in turn to its degrada-
tion product HVA. However, the stronger associations
between heterozygotic genotypes and 5-HIAA and HVA
concentrations, examples of positive heterosis [52], rather
indicate a more complex physiology including interac-
tions based on hidden stratification of unknown factors
or heterozygotic advantage [52]. In this context, an inter-
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action with e.g. the monoamine oxidase A gene, where
more effective variants have been reported to increase 5-
HIAA concentrations [43,56], may be a possibility. How-
ever, these latter results further complicate the task, as they
call into question the use of monoamine metabolites as
straightforward, although indirect, measures of brain
turnover. This may mean that high levels of 5-HIAA may
reflect a more effective degradation process rather than an
enhanced overall turnover giving a possibility for reduced
serotonin transmission to be associated with high levels
of 5-HIAA.

It is possible that the present associations may have
emerged by chance. Applying Bonferroni's correction
would give a p-value of < 0.0011 (0.05/45) to be consid-
ered significant. Only one of the reported relationships,
i.e. the association between DBH heterozygosity and CSF
5-HIAA levels, would survive such a correction procedure.
On the other hand, although relatively large to constitute
a sample of healthy subjects investigated by a demanding
procedure, i.e. lumbar puncture, the present sample is
small from a statistical point of view. The power of the
present study was adequate to detect differences of large,
but not medium to small effect sizes. Thus, it cannot be
excluded that relationships of smaller magnitudes may
have escaped our analysis attempts. Applying strict correc-
tions for multiple testing would make investigations like
the present impossible to perform, because a sample big
enough to withstand such a correction procedure would
probably never be possible to obtain. This is especially
true taking the detection of small effects into account.

Conclusions
If replicated, the present results suggests that the HTR3A
and DBH variants participate differentially in the regula-
tion of serotonin turnover in the central nervous system of
human subjects. It is also suggested that the DBH variant
differentially influence dopamine turnover in the brain.
The results give some support for an influence of the
HTR2C variant on norepinephrine turnover in men, but
do not favour a major differential influence of DRD4 gene
activities on monoamine metabolite concentrations in
lumbar CSF.
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