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Eosinophilic esophagitis (EoE) is an increasingly common food allergy disease of the
esophagus that received its medical designation code in 2008. Despite this recency, great
strides have been made in the understanding of EoE pathophysiology and type 2
immunity through basic and translational scientific investigations conducted at the
bench. These advances have been critical to our understanding of disease
mechanisms and generating new hypotheses, however, there currently is only one very
recently approved FDA-approved therapy for EoE, leaving a great deal to be uncovered
for patients with this disease. Here we review some of the innovative methods, models
and tools that have contributed to the advances in EoE discovery and suggest future
directions of investigation to expand upon this foundation.
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INTRODUCTION

Eosinophilic esophagitis (EoE) is a chronic, antigen-mediated inflammatory disease of the
esophagus characterized histologically by esophageal eosinophilia (>15 eosinophils per high
power field, HPF) and clinically by esophageal symptoms such as dysphagia and recurrent food
impaction (1). While the incidence of EoE appears to be increasing across several populations
throughout the Western world (2, 3), there currently is only one recent FDA-approved therapy for
EoE. Advances in disease management and therapeutic options for patients with EoE have been
limited by our current understanding of the pathophysiology of the disease, including fundamental
signaling mechanisms, key cell types driving disease, and understanding the relative contributions
and interplay of genetic and environmental influences. Although the first description of EoE was
reported in 1978 by Landres et al, and EoE was first proposed as a distinct clinicopathologic entity
in 1993 by Attwood et al, the disease did not receive a medical diagnostic (ICD-9) code until 2008
(4–6). Despite the relative novelty of the disease, significant progress has been made over the last
two decades advancing our understanding of EoE through application of basic and translational
scientific approaches which we highlight here. Collectively, these basic and translational efforts have
made meaningful contributions to the field of eosinophilic GI diseases, and pave new paths for
future areas of investigation.
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ANIMAL MODELS OF DISEASE

A critical component in understanding mechanisms of disease is
utilization of relevant model systems. In several closely related
diseases, including inflammatory bowel disease (7, 8), asthma
(9, 10) and atopic dermatitis (11, 12) animal models have proven
to be invaluable for uncovering fundamental pathomechanisms
and validating potential therapeutic interventions. Over the last
decade, several murine models have emerged to help uncover the
pathophysiology and disease mechanisms of EoE. The first of
these models was described by Mishra et al. in 2001 where
intranasal exposure of Aspergills fumigatus was administered to
mice three times weekly over a three-week period resulting in
both bronchial and gastrointestinal eosinophil accumulation as
well as esophageal epithelial hyperplasia (13). This was the first
description of a pathophysiological connection between allergic
hypersensitivity responses in the lung and the esophagus. Like
most EoE models, this model is best utilized in mice of Balb/C
background, which are more prone to type 2 inflammatory
responses, and results in eosinophil responses outside of the
esophagus. Using this model, Brandt et al. demonstrated that
a4b7-integrin is important for gastrointestinal eosinophil
trafficking – specifically the absence of the b7 gene did not
significantly affect eosinophil recruitment into the lung of
allergen-challenged mice but did affect intestinal recruitment
(14). The aspergillus model was also used by Blanchard et al. to
demonstrate an important role for periostin, which is one of the
most overexpressed genes (35-fold) in the esophagus of EoE
patients in eosinophil recruitment (15, 16). In this model,
aspergillus-sensitized mice lacking periostin displayed
decreased eosinophil recruitment to the lungs and esophagus.

Several models have used intraperitoneal ovalbumin (OVA)-
alum sensitized mice that were subsequently challenged with two
doses of intragastric OVA-coated beads. This resulted in
eosinophil infiltration throughout the gastrointestinal tract as
well as gastromegaly and cachexia—a process that was one of the
first to report the pathologic function of eotaxin and eosinophils
in allergic GI disease (17). Several iterations followed this
approach that used mice or guinea pigs and altered timing and
duration of allergen antigen sensitization or challenge. Methods
included utilization of skin sensitization or incorporation of
corn, peanut, or environmental allergens such as dust mites
(18–21). An important advance was made in 2013, when Noti
and colleagues reported the importance of thymic stromal
lymphopoietin (TSLP) in eliciting basophil responses to
promote EoE. They did this by skin sensitizing mice with a
vitamin D analog plus OVA or crude peanut extract for 2 weeks
followed by intragastric OVA challenge and found marked TSLP
upregulation along with an EoE-like phenotype (22). This was
one of the first descriptions to incorporate basophils in an EoE
model of pathology. What is more, Venturelli et al. then showed
that epicutaneous sensitization and intranasal OVA challenge
resulted in accumulation of eosinophils and upregulation of type
2 inflammatory cytokines and the IL-33 receptor, ST2, in the
esophagus (23). Interestingly, inhibition or deletion of ST2 in
addition to depletion of basophils markedly diminished the type
2 inflammatory response.
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Collectively, these models support EoE (and perhaps the
more distal eosinophilic gastrointestinal diseases) as a type 2
inflammatory condition that can be induced through various
modes of allergen sensitization including respiratory, skin, and
gastrointestinal tract. These sensitization models are powerful
tools for investigating specific antigen-driven aspects of EoE but
differ from human disease in several important ways, including
the development of diffuse gastrointestinal (not isolated to the
esophagus) and/or systemic eosinophilia.

More recentmodels have investigated cytokine overabundance.
For instance, IL-33, which was first described in 2005 as triggering
strong type 2 responses, is known to be uniquely increased in the
esophagus of patients with EoE (24). Subsequently, Judd et al.
administered IL-33 intraperitoneally for 1 week, which resulted in
profound esophageal eosinophilia that was IL-13 dependent,
supporting a mechanistic tie (25). Notably, this model is
uniquely effective in both Balb/C and C57B6 background mice.
A subsequent model that is early in development has expanded
upon this line of methodology by localizing IL-33 overexpression
to the esophageal epithelium with OVA sensitization and found a
more robust esophageal eosinophilia than wildtype mice
undergoing OVA sensitization (26).

Eotaxin-3 (CCL26) and TSLP overexpression models, either
globally or esophageal tissue-specific, have not yet been
described in EoE. There are several examples in atopic
dermatitis of transgenic mice that overexpress type 2
cytokines under keratin promotors (e.g., K14-IL4+K5-IL13,
K5-TSLP, K14-IL33) that develop AD-like skin disease (27).
Notably, these skin-specific keratins are also expressed in the
esophagus, but to date no complete descriptions of esophageal
pathology has been published using these methods, though one
would expect development of EoE-like disease. It is interesting
to note that two of the most highly overexpressed genes in the
esophagus (CCL26, TSLP) have not reverse translated to mouse
models to date.
HUMAN ESOPHAGEAL TISSUE
INVESTIGATIONS

Studies of human esophageal tissue isolated from EoE patients,
enabled by major advances in cellular and molecular biology
techniques and the advent of next-generation sequencing, have
rapidly expanded our fundamental understanding some of the
key disease pathways, cell types and intercellular interactions
underlying the development of EoE. Some of the earliest
examples include performing microarray and later bulk RNA
transcriptional profiling on esophageal biopsies from patients
with EoE compared to non-EoE controls (16, 28). Consistently,
these studies have revealed high levels of CCL26 (eotaxin-3)
expression in the esophagus, as well as induction of type 2
cytokines such as epithelial alarmins (TSLP, IL-33), IL-4, IL-5,
IL-13 and stromal factors (16, 28, 29). Interestingly, early
investigations attempting to tease out molecular differences
between EoE and EoE that responded to PPI found that
transcriptionally, they were largely indistinguishable (30).
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Other transcriptional analyses have suggested that loss of a
critical serine protease, SPINK7, may be an early event in EoE
pathogenesis (31). Most recently bulk RNA sequencing has been
applied to study increasingly common EoE variants where
eosinophils are reduced or absent, yet inflammation in the
esophagus persists (32). The investigators found that compared
to classic EoE and GERD specimens, the three EoE subtypes they
identified (EoE-like esophagitis, lymphocytic esophagitis, non-
specific esophagitis) all lacked the classic Th2 inflammatory
response, despite having endoscopic and histologic structural
similarities to classic EoE. These findings present opportunities
for further investigation of esophagitis variants.

While bulk RNA-sequencing proved to be revolutionary in
many ways, its limitations include failure to capture fine details
of disease as subtle immune signatures are lost among the bulk of
epithelial gene changes. Additionally, bulk RNA-sequencing
lacks the ability to map risk variants to specific cell types and
remains difficult at resolving and transcriptionally characterizing
human eosinophils and other low transcriptionally abundant
cells that are currently not well represented in the public archives
of genome-wide expression. Thus several groups have begun to
leverage new technology enabling transcriptional profiling at
single single-cell resolution (single-cell RNA-seq) to
comprehensively map the cell types and states within the
esophagus and understanding how changes in gene expression
programs relate to cell frequency and disease-specific patterns of
intercellular signaling.

At the single cell level, groups have better defined tissue
resident T cells pertinent to EoE, identifying T cell subsets such
as Tregs, and pathogenic Th2 cells that express abundant IL-5,
IL-13 and HPGD2 (33, 34). While Wen et al. were foundational
in their descriptions, this study was limited by a small number of
cells recovered (~1000) and focusing on T cells without
exploration of eosinophils or other implicated cell types.
Morgan et al. later utilized single cell RNA-sequencing to
profile approximately 14,000 esophageal cells. In this study,
they identified 8 distinct cell clusters, and described increased
clonality within a subset of Th2 cells expressing the epithelial
homing factor GPR15+, which were enriched in dairy-triggered
EoE patients. Notably, when investigated peripherally, these
GPR15+ Th2 cells were reactive to cow’s milk protein
highlighting the antigen-driven nature of EoE and suggesting
potentially novel approaches to blood-based identification of
disease triggers in some patients (33). It is worth remarking that
Morgan et al. were able to recover tissue eosinophils using their
seq-Well platform which is the first of its kind. We also note,
however, that the platform is biased against capture of large cells
and thus epithelial cells were underrepresented limiting the
potential for discovery of epithelial-immune interactions.

Analysis of the EoE esophageal transcriptome has given rise a
number of important hypotheses and guided critical
follow-on mechanistic studies. Additional tools including
immunohistochemistry, immunofluorescence, and flow
cytometry have enabled assessment of tissue spatial distribution
and expression levels of proteins and quantification and
phenotyping of suspected culprit cells such as eosinophils, mast
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cells, basophils, T cells and group 2 innate lymphoid cells (ILC2s)
comprising the immune microenvironment of the esophagus (16,
24, 25, 35–39). Immunohistochemistry and immunofluorescence
have been used for many years to query spatial aspects and
expression of various proteins, and electron microscopy of EoE
esophagi revealed 80% of tissue eosinophils were in various stages
of cytolysis (40). While T cells and allergic granulocytes have
remained at the forefront of many investigations, there is
increasing work being directed towards understanding
immunoglobin responses and characteristics in EoE. Wright
et al. found elevated total and food-specific IgG4 levels in EoE
esophagi after the landmark clinical trial revealed esophageal IgG4
deposits in the lamina propria of patients with EoE (41, 42).
Interestingly, IgG4 levels decreased in this small cohort of patients
as diet elimination led to remission. These findings highlight an
important path for plasma cell investigation in prediction and
response to food triggers.

In addition to the complex landscape of esophageal immune
cells, esophageal epithelial and stromal cells have been well-
recognized as key drivers of disease, including through the
production of eosinophil chemotactic factors (e.g., CCL26) and
factors that regulate barrier function (CAPN14) and tissue
remodeling (POSTN). Human- and mouse-derived organoid
models and immortalized esophageal epithelial cells in air
liquid interface cultures have been used to study the
mechanistic roles of Notch and TGF-b signaling in the
epithelial and stromal microenvironment (43, 44). Human
esophageal epithelial cell lines generated from patients with
EoE have provided novel insight into potential mechanism of
action for proton pump inhibition (PPI) controlling EoE
inflammation (45). The latter study built on data that PPIs
prevent eotaxin-3 expression by blocking STAT6 from binding
to the eotaxin3 promoter, and further revealed that PPIs block
eotaxin-3 release by inhibiting a non-gastric H+/K+ ATPase
present on esophageal epithelial cells. Interestingly, the EoE
disease pathway in this model described IL-4 binding to EoE
epithelial cells triggering calcium release from the endoplasmic
reticulum leading to downstream eotaxin-3 transcription and
release. Both non-dihydropyridine calcium channel blockers
(verapamil and diltiazem) and H+/K+ ATPase blockade
through PPIs could block this process. Other ex vivo cell line
investigations include utilization of primary EoE fibroblasts to
assess the potential of thiazolidinediones to abrogate TGF-b
mediated fibrosis, and a one-of-a-kind model utilizing an
esophageal explant from cadavers allowing for functional
examination of metrics such as tensile physiology (46, 47).
These investigations have begun to elucidate mechanisms of
disease and treatment response and will generate multiple
avenues for future investigation.

As a paradigmatic allergic disease with strong but
incompletely identified environmental contributing factors, the
role of the microbiome is of great interest where much is left to
be determined. Investigators have only begun to explore how the
microbiome and host may interact in EoE. Studies have used new
innovations such as the esophageal string test (EST), which is a
weighted tablet at the end of a string once swallowed, remains in
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the esophagus for 1 hour and can accurately distinguish active
from inactive EoE (48). Microbial 16S investigations of EST
revealed an increased bacterial burden in patients with EoE and
GERD; particularly, the genus Haemophilus was significantly
increased in untreated EoE compared to non-EoE controls (49).
Around the same time, Benitez et al. performed 16S rRNA on
esophageal biopsies and oral swabs from 68 patients with EoE or
non-EoE (50). They found that Proteobacteria were abundant in
EoE patients compared to non-EoE controls, and that the oral
cavity bacteria were consistent no matter the disease state,
suggesting oral samples instead of esophageal biopsies are not
appropriate for EoE surveillance. More recently, Laserna-
Mendieta et al. applied similar 16S rRNA methodologies to
paired samples of esophageal biopsies of patients who
underwent one of the three conventional treatment methods
and non-EoE controls (baseline and post intervention): PPI,
swallowed topical corticosteroids or food elimination diet with
10 in each group (51). Overall, there were no alpha or beta
diversity differences among patients with EoE pre- or post-
treatment. Investigators did note a trend toward a decrease in
alpha diversity between patients with EoE who underwent diet
elimination compared to baseline pre-diet samples. Interestingly,
post therapy, patients treated with PPI and diet had more similar
microbial compositions whereas those on topical steroids were
closer to non-EoE controls. More recently, Benitez et al.
confirmed prior reports using 16S rRNA and incorporated
internal transcribed spacer for fungal investigations on
esophageal biopsies from EoE patients treated with or without
topical steroids (52). This was the first examination of fungal
species, and among several descriptions they report the family
Cladosporiaceae was significantly increased in patients with
inactive disease who responded to steroids compared to
inactive patients who had never received steroids before.
Collectively, these findings suggest there are differences and
changes in the esophageal bacterial microbiome composition
in patients with EoE, though much is left to be uncovered. It
should be noted that many investigators utilized different
approaches in sample acquisition methods which could
account for some of the differences noted and standardizing a
method of sampling microbiota would be beneficial for
generalizing findings. Future endeavors should be directed
towards high sensitivity methods of detection, mechanistic
underpinnings of changes, and expansion beyond the
bacterial microbiome.
PATIENT SECRETIONS

Recent work has examined the utility of salivary and esophageal
secretions as a more readily accessible compartment to perform
analysis of protein, nucleic acid, and cellular biomarkers of
disease. Salivary samples are an attractive alternative to
invasive endoscopies. A recent report found that previously
undescribed microRNA-4668 was present and significantly
enriched in the saliva of patients with EoE vs non EoE, and
Frontiers in Immunology | www.frontiersin.org 4
notably levels of miRNA-4668 decreased in patients treated with
topical steroids (53). Salivary proteomes are also in the early
stages of discovery. In a cohort of 20 pediatric patients with atopy
(9 of whom had EoE), investigators detected IL-4, IL-5, IL-13,
eotaxin-3 and TSLP (54). Similarly, in a small cohort of active
EoE, resolved EoE and non-EoE controls, several type 2
inflammatory cytokines were significantly elevated in the saliva
of patients with active vs resolved EoE (55).

Esophageal secretions obtained by mucosal brushing allow for
a broader sampling of the esophagus, which is of particular
importance given the patchiness of disease in EoE. Other studies
have turned towards mucosal brush samplings of the esophageal
mucosa. Several years ago, investigators reported a correlation
between disease activity and levels of the eosinophil granule
protein eosinophil peroxidase (EPO) in esophageal secretions
obtained by mucosal brushing (56). Similarly, Smadi et al.
examined eosinophil-derived neutoxin (EDN) by cytology
brush inserted through a nasogastric tube as a method to
circumvent endoscopy and found EDN concentration
correlated well with EoE disease activity (57). These esophageal
brushing approaches were suggested as an alternative method of
measuring disease activity particularly given that the
overwhelming degranulation of tissue eosinophils in EoE may
limit the utility of counting grossly intact eosinophils by
microscopy. Endoscopic brush sampling was later further
developed and applied to measure total and common EoE
allergen food-specific immunoglobulins. Future studies
validating the predictive ability of esophageal secreted food-
specific antibodies to detect culprit triggers may be valuable
(58). As discussed above, one-hour EST is being validated as a
minimally invasive test alternative to endoscopy. In addition to
microbial analyses, EST was shown to capture eosinophil granule
proteins that correlated with histology and accurately
distinguished active from inactive EoE in both children and
adults (48).
PERIPHERAL BLOOD BIOMARKERS IN EOE

Many studies have investigated peripheral blood markers or
surrogates to better understand the pathophysiology of EoE
and allergy, as well as the predictive capacity of peripheral
markers in disease status, activity, or EoE allergens. Blood
eosinophils are generally challenging to study due to their low
abundance, terminal differentiation, and relatively low
transcriptional activity and mechanistic and functional studies
of these cells and their application to EoE have been limited.
Early studies linked absolute eosinophil counts to disease activity
under the hypothesis that there are elevated numbers of
eosinophils migrating from the bone marrow to the esophagus,
though clinical application of this has not been incorporated into
practice through monitoring (59, 60). Another trial by Botan
et al., 2017 analyzed the activation states of peripheral blood
eosinophils and found that morphologically, the eosinophils of
patients with EoE were more activated compared to non-EoE
controls (61). To elucidate mechanisms of eosinophil activation,
July 2022 | Volume 13 | Article 943518
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Nguyen et al. measured activation markers and transcription
factors on eosinophils from whole blood and found that CD66b
and intracellular pSTAT1 and pSTAT6 levels were higher in
patients with EoE compared to healthy controls (62). Others
have turned to eosinophil progenitors (EoP) and found that EoP
levels correlate with disease activity in pediatric EoE, which is
relevant as these eosinophil-lineage committed CD34+ cells are
known to be mobilized during allergic responses and thought to
propagate Th2 responses in the tissue either as progenitors
themselves or through in situ hematopoiesis (63). Further data
studying eosinophils and EoP and their mechanisms
of activation and behavior is needed to expand upon
EoE pathology.

In addition to peripheral blood eosinophils, there has been
great interest in discovering non-invasive biomarkers for EoE in
serum. Eotaxin-3, CLC, ECP, EDN, MBP, IL-15, and TGFb1
have been reported to be elevated in EoE (16, 60, 64, 65). Ishihara
et al. found that BCA-1, HCC-1, CTACK, SDF-1, MIP3B, and
SCCA2 were elevated in EoE patients, but there was large
overlap between patients with EoE and other eosinophilic
gastrointestinal diseases (66). To distinguish the various
cytokine patterns in EoE, inflammatory bowel disease, and
airway allergy, Johnsson et al. compared patients with these
different diseases to each other and to healthy controls and
measured plasma cytokine levels (67). They found that CCL5
(RANTES) was the main elevated chemokine relative to healthy
controls and other disease categories. Of note, CCL1 levels in the
blood of EoE patients were inversely correlated with percentage
of circulating eosinophils and CCR3 surface expression on
eosinophils was decreased in comparison to healthy controls
and patients with allergic airway disease. Blanchard et al.
performed an 84-plex cytokine assay to compare controls and
Frontiers in Immunology | www.frontiersin.org 5
patients with active EoE and found that IL-13, IL-4, IL-5, IL-6,
CD40L, IL-12p70 and EGF were significantly different in EoE
compared to control plasma (68). In contrast, Dellon et al. found
no significant differences between patients with EoE and controls
at baseline and between patients with EoE before and after
treatment, despite including IL-5, IL-13, TSLP, and eotaxin-3
in their investigations (69). Given the complexity of the data,
Hines et al. collated available studies on minimally invasive
biomarkers in EoE and concluded that several promising
biomarkers have been identified to differentiate active from
inactive EoE, but few could differentiate EoE from other atopic
diseases (70). Collectively, several studies have investigated
various peripheral cytokines with mixed results prohibiting
clinical application at this time; though we note differences in
experimental acquisition and design between studies, which may
contribute to the varied findings. While the use of non-invasive
blood markers has great benefit, further validation is required
before clinical application particularly controlling for co-morbid
atopic disease.

Other peripheral blood investigations have turned to the role
of predicting or understanding EoE allergen triggers. Dilollo and
colleagues compared blood samples of control subjects, EoE
subjects with milk trigger, and subjects with IgE mediated milk
allergies and found that stimulation of peripheral CD4 memory
cells with milk peptide resulted in proliferation and IL-4
production from these T cells in patients with known milk
trigger (71). Proliferation and IL-4 production had a high
sensitivity and specificity for predicting milk allergenicity. They
also investigated total and milk-specific IgG4 levels, which were
comparable between control and EoE groups. Similarly, these
investigators also showed circulating CD4+ T cells produce IFNg
in response to milk peptide from EoE patients with dairy as a
FIGURE 1 | Schema of varied tools and models for investigation of eosinophilic esophagitis including animal models, human esophageal cells and tissue,
esophageal secretions and peripheral blood or serum. Created with Biorender.com.
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known trigger compared to controls (72). Together, these data
unveil exciting potentials for peripheral determination of EoE
allergens and warrant further investigation with varied dietary or
aeroallergens, as well as the predictive potential of multiple
allergens as this is common in EoE.
DISCUSSION

Collectively these methodologic investigations at the benchtop
have led to meaningful discoveries in our understanding of EoE
and type 2 immunity (Figure 1). Animal models and primary cells
have created an avenue of critically studying mechanisms of
disease, manipulating the environment in a controlled,
systematic way. While great progress has been made in
understanding hardy cell types such as lymphocytes, epithelial
cells and fibroblasts, there is still a need for mechanistic tools for
studying allergic granulocytes such as eosinophils, mast cells and
basophils among others. Additionally, patients and providers
Frontiers in Immunology | www.frontiersin.org 6
would benefit from the development and clinical validation of
non-invasive methods of monitoring disease and predicting
allergen responses, as much of the healthcare burden of EoE
falls in chronic management. Exciting progress is beginning to be
made by examining basic mechanisms of activation and specificity
of T cell responses, which could potentially translating to
significant advances in how we diagnose and manage EoE. This
seemingly incremental progress at the laboratory benchtop
collectively culminates to great progress in the long-term arc of
understanding disease. We hope this non-exhaustive collection of
studies collating models and tools to investigate EoE at the bench
inspires current and future investigators.
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