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ABSTRACT

Themammalianmitochondrial proteome comprises over 1000 proteins, with themajority translated fromnuclear-encoded
messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial
membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally
translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mech-
anisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in
the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA
localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, includ-
ing RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review,
we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these
features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs in-
volved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response
and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial
function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the
consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and
cancers.
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INTRODUCTION

The subcellular organization of the eukaryotic cell necessi-
tates communication among organelles to maintain cellu-
lar functions. Coding RNAs transcribed in the nucleus act
as messengers of genetic information, and their protein
products are trafficked to various subcellular compart-
ments in a regulated manner. Classic studies performed
on Xenopus (Rebagliati et al. 1985; Weeks and Melton
1987) and Drosophila (St Johnston et al. 1991) oocytes first
established that RNAs are distributed asymmetrically in
the cell, with impairment to this localization pattern hinder-
ing embryo development. Further studies on specialized
cells like neurons found that RNAs localize to distinct neu-
ronal compartments. With advancements in imaging and
sequencing approaches, RNA localization has been appre-
ciated as a standard feature of eukaryotic cell organization.

Over the decades, numerous studies have revealed that
both coding and noncoding RNAs exhibit specific subcel-
lular localizations. This localization plays a pivotal role in
ensuring the proper folding and availability of the asso-
ciated protein products at precise cellular sites, thereby
preventing misfolding and accumulation in unintended lo-
cations (Shakya et al. 2021). Moreover, beyond its impact
on translation, localization may influence RNA folding,
splicing, editing, and degradation processes. Notably,
cells with extensive polarization, such as neurons andmyo-
cytes, are susceptible to disorders arising frommislocaliza-
tion. In neurons, for example, nuclear-encoded RNAs can
travel up to ameter or more to distal dendrites to influence
synaptic function.
In this review, we examine RNA localization to the mito-

chondrial surface, wheremitochondrial proteins are known
to be translated (Kellems et al. 1974; Williams et al. 2014;
Fazal et al. 2019; Uszczynska-Ratajczak et al. 2023). In
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addition, we highlight examples wheremitochondria serve
as a hub for vital RNA regulatory processes such as the in-
nate immune response, piRNA biogenesis, and cytoskele-
tal-mediated RNA transport.

MECHANISMS OF MITOCHONDRIAL RNA
LOCALIZATION

The mitochondria are double-membrane organelles re-
sponsible for energy production. Mammalian mitochon-
dria contain a 16.5 kb compact circular genome with 13
genes coding for proteins involved in oxidative phosphor-
ylation. In addition, the mitochondrial genome encodes
two ribosomal RNAs and 22 transfer RNAs (tRNAs).
Mammalian mitochondria collectively harbor ∼1100 pro-
teins (Calvo et al. 2016) across different cell types, of which
only 13 are encoded by the mitochondrial genome. Thus,
a large number of mitochondrial proteins are translated
from nuclear-encoded mRNAs that are transported to mi-
tochondria in a cotranslational or pretranslational state
(Fazal et al. 2019). Upon reaching the outer mitochondrial
membrane (OMM), these RNAs complete translation, and
the resulting protein can be imported into the mitochon-
dria by translocase complexes. The mitochondrial locali-
zation of these RNAs is likely precisely controlled by
sequences (cis-elements) within the RNA and RNA-bind-

ing proteins (RBPs) (trans-factors) that interact with these
sequences. Additionally, the repertoire and abundance
of localized RNAs change in response to the cell’s energy
requirements, as demonstrated in yeast (Tsuboi et al.
2020).

The initial evidence for RNA localization on mitochon-
dria came from studies on yeast spheroplasts that found
ribosome-like structures in the mitochondrial fraction
(Kellems et al. 1974; Ades and Butow 1980). The mito-
chondrial fraction showed amino acid incorporating abili-
ty, which was inhibited by cycloheximide, an inhibitor of
protein synthesis. These observations hinted at the associ-
ation of cytoplasmic ribosomes with mitochondria. Also,
cycloheximide-mediated inhibition of this membrane as-
sociation implies the presence of actively translating ribo-
somes at the mitochondria (Kellems et al. 1974). Electron
microscopy-based observations confirmed this associa-
tion and revealed the enrichment of bound ribosomes
in regions of close contact between the outer and inner
mitochondrial membrane (Kellems et al. 1975). Perhaps
the proximity of the bound ribosome and of the two mito-
chondrial membranes mediates the efficient translocation
of the translating polypeptides. The evidence for local
translation at the mitochondria was further supported by
the biochemical fractionation of mitochondria and their
bound ribosomes by sucrose gradient centrifugation.

The mitochondrial fraction isolated
from yeast spheroplasts showed ami-
no acid incorporation ability in an in
vitro translation system (Ades and
Butow 1980).
With the emergence of RNA-se-

quencing technologies, biochemical
fractionation coupled with sequenc-
ing has revealed the localization of
thousands of RNAs to the mitochon-
drial surface in yeast (Marc et al.
2002; Eliyahu et al. 2011). Since these
initial findings, several studies have
uncovered the mechanistic details of
this localization process. Early studies
established the role of sequence ele-
ments in the 3′ UTR for localization,
with these sequence elements serv-
ing as recognition sites for RBPs.
Later studies found that in addition
to RNA sequence elements, transla-
tion is required for the localization of
a subset of RNAs. With the availability
of transcriptome-based approaches,
more features governing RNA locali-
zation have since been uncovered.
Below, we discuss the mechanisms
modulating the RNA localization to
the OMM (Fig. 1).FIGURE 1. Modes of RNA localization to the mitochondrial membrane.
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RNA-SEQUENCE-DEPENDENT LOCALIZATION
(CIS-ELEMENTS)

Sequences in 3′′′′′ UTR and RBP binding

The OMM-localized RNAs can be classified into two broad
categories based on their localization mechanisms: RNA-
sequence-dependent and ribosome-dependent. The for-
mer mechanism requires sequences within the RNA to
guide localization to the OMM, presumably mediated by
the binding of RBPs. These RBPs typically bind sequence
elements in the 3′-UTR region of mRNAs, escort them to
OMMwhere they are translated, and the resulting peptide
is subsequently imported into the mitochondria. In yeast,
one well-studied RBP belongs to the PUF family of pro-
teins, with initial studies establishing them to function as
translational repressors (Wharton et al. 1998). Later studies
identified the role of PUF proteins like Puf3p in mediating
the localization of RNAs toOMM (Eliyahu et al. 2010; Gadir
et al. 2011; Lapointe et al. 2018), with the deletion of Puf3p
resulting in the mislocalization of many transcripts in yeast
(Saint-Georges et al. 2008). Notably, mutations in the
Puf3p binding motif of bcs1 RNA affected its localization.
These RBPs also suppress the translation of the bound
RNAs in transit to the mitochondria to allow translation
and efficient folding at the destination.
While the role of PUF proteins in mRNA localization is

well established in yeast, recent discoveries are revealing
similar mechanisms in higher organisms. In human cells,
PUF homologs such as PUM1 and PUM2 have been recog-
nized as translational repressors (Vessey et al. 2006; Uyhazi

et al. 2020). However, their direct involvement in RNA lo-
calization is still under investigation. Interestingly, a com-
parable mechanism of OMM localization for nuclear-
encoded mitochondrial RNAs has been observed in both
flies and mammalian cells (Gehrke et al. 2015). This pro-
cess is mediated by PUM and PINK1 proteins. Upon reach-
ing the OMM, PUM-bound RNAs undergo derepression of
translation, triggered by PINK1-mediated displacement of
PUM repressors.
Although many candidate RBPs that might control RNA

localization have been identified (Fig. 2), it is still unclear
what RBPs mediate localization in higher eukaryotes. For
example, in mammalian cells, RBP CLUH preferentially
binds nuclear mRNAs for mitochondrial proteins (Gao
et al. 2014). The depletion of CLUH resulted in the re-
duced levels of protein products of the bound RNAs and
mitochondrial morphology defects. The proximity label-
ing-based detection of protein–RNA complexes identified
28 OMM-localized RBPs in HEK293 cells, including the
RBP SYNJ2B, which is thought to be involved in retaining
∼100 RNAs atOMM (Qin et al. 2021). Knockout of SYNJ2B
abolished the localization of these mRNAs at the OMM
and impaired the cellular stress response by compromising
the function of oxidative phosphorylation complexes.
Another recent study identified the proteins in proximity
to TOM20 (OMM translocase) in human cells and found
an overall enrichment of RBPs near TOM20, specifically
proteins like AKAP1, LARP4, MED15, and CPSF2, thereby
providing a candidate list of RBPs that might be involved in
guiding mRNAs to the OMM (Meurant et al. 2023). Thus,
althoughmany RBPs are known to interact with nuclear-en-

coded mitochondrial transcripts, fur-
ther studies are required to show
that these RBPs play a role in RNA
localization.

Open reading frame sequences

Sequence elements within the open
reading frame (ORF) can also be cru-
cial in determining RNA localization.
For instance, in yeast, mitochon-
drial dynamics undergo significant
changes during the transition from
fermentation to a respiratory mode
of energy production (Egner et al.
2002). This transition has a subse-
quent impact on RNA localization.
As cells switch to the respiratory
mode, the volume of the mitochon-
dria increases, thereby facilitating
the conditional localization of specific
RNAs, such as atp3 and tom22. The
larger mitochondrial volume in
changing conditions elevates theFIGURE 2. RNA-binding proteins (RBPs) are implicated in localizing RNAs to mitochondria.
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likelihood that these RNAs will encounter the mitochondri-
al surface, as opposed to RNAs that are constitutively local-
ized, such as tim50. It is also noteworthy that the ORF of
tim50 contains a sequence that encodes polyproline resi-
dues. This sequence causes ribosome stalling during trans-
lation, thus facilitating the recognition of themitochondrial
targeting sequence (MTS) and constitutive localization of
tim50 RNA on mitochondria (Tsuboi et al. 2020; Arceo
et al. 2022).

Other sequence elements

With the availability of transcriptome data based on prox-
imity labeling of RNAs, it is now possible to derive se-
quence features contributing to RNA localization to the
OMM. Machine learning-based predictions of the APEX-
seq-based proximity biotinylation data set have unveiled
the significance of several factors in OMM localization, in-
cluding UTRs, poly(A) tail length, and short sequence mo-
tifs (Fazal et al. 2019). Notably, RNA-sequence-dependent
transcripts exhibit shorter poly(A) tails and 3′ UTRs com-
pared to RNAs relying on translation-dependent localiza-
tion (i.e., ribosome-dependent RNAs). A recent study
supported some of these findings by identifying mito-
chondria-bound RNAs derived from the larval stage of ver-
tebrate zebrafish (Uszczynska-Ratajczak et al. 2023). The
comparison of 18 zebrafish orthologues derived from the
mitochondria-bound fraction through OMM proximity la-
beling of human cells revealed 17 out of 18 RNAs common
in both (Fazal et al. 2019). They also found that ribosome-
dependent RNAs coding for mitochondrial proteins con-
tained longer ORFs and 3′ UTRs, further corroborating
the APEX-seq findings in HEK293 cells (Fazal et al. 2019).

RIBOSOME-DEPENDENT LOCALIZATION

The ribosome-dependent RNAs require the translation of
the N-terminal peptide sequence, the MTS, for their local-
ization to the OMM. These RNAs are likely transported
cotranslationally after the MTS has been translated, but
while the translating ribosome is still bound to the mRNA
(Wang et al. 2016; Fazal et al. 2019). Once the MTS has
been translated, it can be recognized by the translocase
complexes on the OMM. This recognition allows the trans-
lating protein to be imported into the mitochondria. In
yeast, for example, the localization of atp2 mRNA was
found to be dependent on the translation of the MTS.
The introduction of the premature stop codon in the
atp2 sequence, which detaches the ribosomes from
RNA, caused loss of localization (Garcia et al. 2010). The lo-
calization of ribosome-dependent RNAs was affected by
factors that detach ribosomes from RNA, as observed by
Saint-Georges et al. (2008); the addition of the transla-
tion-inhibitor puromycin abolished the localization of
over 200 RNAs in yeast.

In human cells, thousands of RNAs accumulate at OMM
for local translation. Proximity-labeling-based RNA se-
quencing (Fazal et al. 2019) revealed the enrichment of nu-
clear mRNAs coding for mitochondrial proteins at OMM.
Furthermore, the localization of these RNAs was affected
in the presence of various translational inhibitors.
Cycloheximide, which prevents the elongation of trans-
lating ribosomes, typically enhanced the localization of
ribosome-dependent transcripts, likely by enhanced local-
ization of RNAs bound to stalled ribosomes that had
synthesized a nascent peptide containing an MTS se-
quence. In contrast to cycloheximide, puromycin caused
the detachment of translating ribosomes from the RNAs
and typically abolished the localization of ribosome-de-
pendent RNAs but not of the RNA-dependent ones.
Localization of these RNA-sequence-dependent tran-
scripts therefore occurs independent of translation, and
does not require ribosome recognition of the translating
N-terminal leader peptide.

Previously, studies in yeast had shown that a number of
mitochondria-localized proteins, such as mitochondrial ri-
bosomal proteins, contain internal targeting sequences
that assist their import into mitochondria. Whether the
RNAs coding for such proteins localize to OMM has not
been well studied (Bykov et al. 2022). A recent study in hu-
man cells showed many of the RNAs coding for such mito-
chondrial ribosomal proteins localize to the OMM in a
translation-independent manner (Fazal et al. 2019).

OTHER MECHANISMS OF RNA LOCALIZATION
TO AND RETENTION AT THE OMM

RNA localization as part of cytoskeletal-based
transport of mitochondria

Cytoskeleton-mediated transport is essential to orches-
trate the RNA delivery to subcellular locations, and its sig-
nificance becomes particularly evident in specialized cell
types like neurons, where RNAs originating in the cell
body undergo translation at distant locales such as axon
terminals. Organelles like mitochondria and early endo-
somes use cytoskeletal microtubule networks as cellular
highways to reach their destination, assisted by motor pro-
teins such as dynein and kinesins. Several RNAs hitchhike
on these organelles and take advantage of cytoskeletal-
mediated transport to get to far locations. Examples of
such hitchhiking have been observed in the axons of pri-
mary motor neurons derived from embryonic mice where
COX7C mRNA colocalizes with mitochondria (Cohen
et al. 2022). Further, live imaging unveiled the cotransport
ofCOX7CmRNAwith mitochondria along axonal process-
es, whichwas dependent on theMTS andORF elements of
themRNA. Another recent study identified the cotransport
of PINK1mRNAwith mitochondria to distal neurites where
local translation of the short-lived PINK1 protein assists in
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removing damaged mitochondria. The mitochondrial
membrane protein SYNJ2B and its interacting partner
SYNJ2 tether the PINK1 mRNA via the RNA-binding
domain of SYNJ2 and mediate its transport (Harbauer
et al. 2022).
In addition to being localized on the mitochondrial sur-

face, many RNAs encoding mitochondrial proteins are
translated in the vicinity of mitochondria. Retinal ganglion
cells (RGCs), responsible for transmitting visual signals
over long distances, rely on the localized translation of
RNAs within their axons. The FISH-based detection of
LB2 mRNAs in RGC axons and proteomic profiling of its
newly synthesized protein validated its local translation
(Yoon et al. 2012). In line with these observations, a study
(Cioni et al. 2019) found that late endosomes carrying LB2
mRNAs often dock at mitochondria in RGC axons. The
proximity of endosomes and mitochondria ensures the
delivery of translated LB2 protein to the mitochondria.
Mutations affecting this process lead to mitochondrial ab-
errations and compromised neuronal function.
These studies have established the cotransport and lo-

cal translation of RNAs tethered to or in proximity to the
mitochondrial membrane and opened up new avenues
for future research. For instance, the mechanisms behind
the selective binding of RNAs coding for mitochondrial
proteins and their tethering to the endosomal membrane
are poorly understood. Recent studies are beginning to
delve into thesemechanisms by revealing the involvement
of a multimeric Rab5-FERRY complex on endocytic vesi-
cles, which plays a crucial role in binding RNAs encoding
mitochondrial proteins (Schuhmacher et al. 2023). The
cryo-EM structure of the FERRY complex identified the
novel role of a coiled-coil domain of the FERRY subunit
in RNA binding (Quentin et al. 2023).
Another instance of RNA hitchhiking was observed on

lysosomes. Using proximity proteomics labeling, the
ANXA11 protein was identified as a molecular tether that
binds both RNA granules and the lysosomal membrane,
enabling the transport of RNA granules along axonal
lengths (Liao et al. 2019). Much like the interactions ob-
served between endosomes and mitochondria, it remains
unclear whether there exists mitochondrial proximity to ly-
sosomes and if the eventual import of protein products de-
rived from RNAs localized on lysosomes occurs.
The APEX-seq-based profiling of OMM transcriptome in

the presence of nocodazole, which disrupts microtubule
networks, revealed the loss of localization of the majority
of OMM resident RNAs in HEK293 cells (Fazal et al.
2019). These observations suggest that microtubule-
based transport might not be exclusive to specialized cells
like neurons but a general phenomenon governing RNA
localization across various cell types. Exploring how these
RNAs tether to cytoskeletal networks and how the cross
talk between organelles like endosomes andmitochondria
is mediated are exciting topics to study in the future.

Mitochondria and innate immunity

TheOMM serves as an anchoring platform to host immune
surveillance pathways. Upon infection by RNA viruses,
RNA sensors like Retinoic acid-inducible gene-I (RIG-I)
(Jiang et al. 2011; Kowalinski et al. 2011) and Melanoma
differentiation-associated gene 5 (MDA-5) (Kato et al.
2008) recognize the viral RNA in the host cytoplasm.
RIG-I primarily recognizes the 5′ triphosphate moiety of
short double-stranded RNAs (dsRNAs) (Baum et al.
2010), whereasMDA-5 recognizes long dsRNAs. The bind-
ing of viral RNAs to these sensors induces a conformational
change followed by oligomerization on the RNA. The
RNA-bound oligomers of RIG-I (Thoresen et al. 2023) or
MDA-5 then interact with mitochondrial antiviral-signaling
protein (MAVS) on the mitochondrial surface. The N-termi-
nal domain of RIG-I, MDA-5, and MAVS contains a cas-
pase-recruitment domain (CARD), and the binding of the
CARD domains of RIG-I and MDA-5 to the CARD domain
ofMAVS induces the oligomerization ofMAVS.MAVS olig-
omerization leads to a cascade of events that activates
transcription factors like NF-κB and IRF-3/7, culminating
in the transcription and release of interferons (Seth et al.
2005; El Maadidi et al. 2014; Bender et al. 2015).
In addition to foreign RNAs, aberrant cellular RNAs can

activateMAVS signaling. For example, cancer cells arewell
known to harbor a diverse array of aberrant RNA transcripts
resulting from missplicing (Venables 2004; Kahles et al.
2018). Suchmissplicing overwhelms the spliceosome com-
plex that processes these transcripts, thereby making
these cells sensitive to interventions targeting the spliceo-
some. In such cases, inhibition of the spliceosome com-
plex can be an effective approach to target tumor cells
selectively. Treating breast cancer cells with small mole-
cule modulators of the spliceosome leads to an accumula-
tion of dsRNAs that results in the activation of the cellular
antiviral response in these cells (Bowling et al. 2021).
Sensing dsRNAs by cellular RNA sensors resulted in an ag-
gregation of MAVS. It is thought that similar to viral RNAs,
these misspliced RNAs with bound RNA sensors are
also recruited to MAVS to activate an immune response,
thus increasing the repertoire of RNAs that can localize
to the OMM under different conditions. A recent report
(Gokhale et al. 2023) showing that the OMM-localized
MAVS directly interacts with 3′ UTRs of cellular RNAs
through its intrinsically disordered domain reveals addi-
tional RNA-regulation functions by MAVS.

piRNA biogenesis

The germline cells of metazoans contain nonmembranous
perinuclear structures (nuage), which serve as a site for the
biogenesis of piRNAs. piRNAs are small RNAs (∼30 nt) that
mediate the silencing of transposons in germ cells, thereby
ensuring fertility. Electron microscopy-based observations
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of mouse cells have revealed that nuage forms close con-
tacts with mitochondria, hinting toward the role of mito-
chondria in piRNA biogenesis (Aravin et al. 2009).
Ectopic expression of MitoPLD, an endonuclease of the
piRNA biogenesis pathway, showed colocalization with a
mitochondrial marker (Huang et al. 2011; Watanabe
et al. 2011). The biochemical fractionation of mouse testic-
ular cells further confirmed its expression in the mitochon-
drial fraction (Watanabe et al. 2011). The depletion of
MitoPLD in mouse models caused the meiotic arrest and
male infertility. Similar findings have been observed in
ovarian soma cells of Drosophila, in which Zucchini, the
MitoPLD homolog, colocalized with mitochondria (Saito
et al. 2010). In Drosophila germ cells, the piRNA produc-
tion occurs in two phases in physically separate locations,
nuage and OMM. The piRNA precursors generated in
nuage move to the mitochondrial surface for further pro-
cessing. Ge et al. (2019) have shown that the RNA-binding
ATPase protein, Armitage, localizes on the mitochondrial
surface and shuttles piRNA precursors from perinuclear
nuage to mitochondria in Drosophila. Thus, key steps in
piRNA regulation likely occur on the mitochondrial sur-
face, and further studies will undoubtedly reveal the extent
and timing of such regulation at the OMM.

RNA import into mitochondria

Although RNA localization to the OMM is widespread, a
few RNAs are known to be imported into mitochondria.
The evidence for the import of nuclear-encoded RNAs
into mitochondria came from classic studies conducted
in Tetrahymena, whose mitochondria contains tRNAs
that originate from either the nuclear or mitochondrial ge-
nome (Chiu et al. 1975; Suyama 1986). Later studies on
Trypanosoma brucei, a protozoan whose mitochondria
does not encode tRNAs and solely
rely on the import of nuclear-ge-
nome-encoded tRNAs, further
confirmed tRNA import into mito-
chondria (Schneider et al. 1994;
Hauser and Schneider 1995). In yeast
and higher eukaryotes, the import of
tRNAs coding for lysine has been ob-
served (Tarassov et al. 1995).
Although the mechanism of this im-
port remains understudied, studies
have shown that in yeast, the import
requires the protein import channels
and electrochemical potential of the
OMM (Kolesnikova et al. 2000), while
additional studies identified the role
of enolase (Brandina et al. 2006) and
lysyl tRNA synthetase (Kamenski
et al. 2010), which act as carriers dur-
ing this process. Subsequent studies

demonstrated the import of glutamine tRNA in isolated
mitochondria derived from yeast (Rinehart et al. 2005),
rat, and human cells (Rubio et al. 2008). The in vitro trans-
port of this tRNA was dependent on ATP and a functional
ATPase. In addition, the import was abolished when isolat-
ed mitochondria were treated with digitonin that disrupts
only the OMM, thereby hinting at the role of intact mito-
chondria and perhaps its protein channels in the import
process in higher eukaryotes (Rubio et al. 2008). In addition
to tRNAs, nuclear-encoded 5S rRNA is also reported in the
mitochondrial matrix (Magalhães et al. 1998), while later
studies identified RNA structural elements in the 5S rRNA
that mediate its import into mitochondria (Smirnov et al.
2008). A recent study investigated the role of long noncod-
ing RNAs (lncRNAs) in ulcerative colitis, uncovering an as-
sociation between decreased levels of the nuclear-
encoded lncRNA HOXA11os and increased disease
severity. HOXA11os RNA colocalized with complex I of
the electron transport chain, and reduction in abundance
compromised oxidative phosphorylation, thereby contrib-
uting to disease severity (Shmuel-Galia et al. 2023). Given
the limited studies available, whether other RNAs are im-
ported intomitochondria or not remains a subject for future
research.

TECHNIQUES TO STUDY RNA LOCALIZATION

Imaging

The toolbox to study subcellular localization is continuous-
ly evolving and can be broadly categorized into imaging-
based and sequencing-based approaches (Fig. 3).
Imaging-based approaches have a long history in RNA lo-
calization studies. For instance, a classic study by Singer
and Ward (1982) used a biotin-dUTP probe to detect actin

FIGURE 3. Toolbox to study RNA subcellular localization.
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mRNA inmuscle cells using an avidin-dye conjugate. Since
then, many advancements in FISH protocols have been
made to enhance the signal. In one approach, multiple
fluorescent probes bind to the RNA body forming a tiling
array, thereby enhancing the signal quality and specificity
(Femino et al. 1998; Raj et al. 2008; Trcek et al. 2017). Later
approaches like RNAscope (Wang et al. 2012) use second-
ary and tertiary probes that bind the primary probe hybrid-
ized to the RNA to improve the fluorescence. A recent
method called clampFISH uses click chemistry to ligate
the primary probe to the target followed by the binding
of fluorescent secondary and tertiary probes, significantly
enhancing the fluorescence intensity (Rouhanifard et al.
2019). Recently developed RNA aptamers like SPINACH
(Paige et al. 2011) and MANGO (Autour et al. 2018) have
also been used to image cellular RNAs. These aptamers
emit fluorescence by converting a nonfluorescent ligand
to a fluorescent state upon RNAbinding. Similar approach-
es continue to be developed to visualize RNAs of interest
in cells. However, a general limitation of imaging-based
approaches is that they need prior information about the
sequence of RNA of interest, since specific probes need
to be added to recognize and bind to the RNA(s).
With continued advancements in imaging tools and

analysis algorithms, the visualization of multiple RNAs
has become feasible in the past decade. One of the pio-
neering approaches for multiplexed RNA imaging used
five barcodes with distinct spectral properties to image
10 unique RNAs in cells (Levsky et al. 2002). On the
same line, sequential hybridization of fluorescent probes
and two rounds of hybridization visualized 12 RNAs in
yeast (Lubeck and Cai 2012). The highly advanced versions
of the above approaches, such as MERFISH (Xia et al.
2019) and seqFISH (Eng et al. 2019), can detect thousands
of transcripts by sequential hybridization of FISH probes in
multiple rounds to reveal the location of RNAs in cells.
MERFISH coupled organelle imaging revealed the subcel-
lular location of RNAs in the ER and nucleus. Further,
MERFISH coupled with expansion microscopy, which ex-
pands the fixed cell and clears proteins and lipids, has in-
creased the number of detectable RNAs by reducing
molecular crowding and improving spectral decoding
(Wang et al. 2018).
While the aforementionedmethods detect RNAs in fixed

cells, currently imaging RNAs in live cells is limited to only a
few transcripts at a time. Initial approaches performed mi-
croinjection of fluorescent RNAs into Drosophila oocytes
to image the localization and dynamics of injected RNA
(Glotzer et al. 1997; Cha et al. 2001; Wilkie and Davis
2001). The MS2 system in yeast leveraged GFP fused to
RNA-binding phage protein MS2 and a reporter RNA
with stem–loop binding sites for MS2 (Bertrand et al.
1998). The MS2 system showed the role of ash1 3′ UTR in
mediating localization to the bud region in yeast. Since
then, improvements have been made in the MS2 reporter

to increase the signal-to-noise ratio (Wu et al. 2015; Park
et al. 2020). Furthermore, with the advent of CRISPR–
Cas9-based genome editing, a number of Cas9 variants
have been discovered and applied to image RNAs. For ex-
ample, a pioneering study (Nelles et al. 2016) used the
PAM recognition feature of Cas9 to image RNAs. Briefly,
the study used a PAM sequence-containing oligo to bind
to target RNA followedbyvisualizationof RNA-oligo hybrid
usingGFP-taggedCas9 lacking catalytic activity. Using this
approach, the investigators showed the localization of
ACTB, TFRC, or CCNA2 mRNAs in stress granules.
Recently, catalytically dead versions of RNA-cleaving Cas
proteins like Cas13a and Cas13b tagged with GFP have
also been used to locate RNAs and even track their dynam-
ics (Abudayyeh et al. 2017; Yanget al. 2019). Live cell imag-
ing, though limited to a few RNAs, facilitates careful
dissection of the dynamics of the RNA localization process.

Sequencing

The sequencing-based approaches reveal the subcellular
locale of RNAs in a high-throughput manner. The bio-
chemical fractionation of organelles followed by sequenc-
ing has identified the RNA population of the nucleus,
mitochondria, and evenmembrane-less organelles like nu-
cleolus (Tilgner et al. 2012) and stress granules (Khong
et al. 2017). While these fractionation protocols have ad-
vanced our understanding of the organelle transcriptome,
they are less suited for profiling RNA populations in mem-
brane-less organelles like the OMM, nuclear lamina, and
stress granules.
Initial efforts to profile the RNA population at these loca-

tions used proximity labeling to biotinylate ribosomes as-
sociated with ER (Jan et al. 2014; Costa et al. 2018) and
mitochondrial surface (Jan et al. 2014; Vardi-Oknin and
Arava 2019). This protocol was followed by the isolation
of biotin-tagged ribosomes and their bound RNA followed
by sequencing, which revealed the RNA population en-
riched at these sites.
Recent developments in RNA proximity labeling-based

approaches, such as APEX-seq (Fazal et al. 2019; Padrón
et al. 2019; Barutcu et al. 2022) and Halo-seq (Lo et al.
2022), have expanded our understanding of RNA organi-
zation within cells and broadened the scope of subcellular
locations whose transcriptomes can be explored. APEX, an
ascorbate peroxidase, can be targeted to various organ-
elles by tagging it with proteins that reside at the site of in-
terest or by adding short localization signals. Using this
approach, Fazal et al. profiled the transcriptome from
nine subcellular locations, including the mitochondrial sur-
face and matrix, uncovering previously unknown resident
RNAs. Moreover, the addition of translational inhibitors
like cycloheximide and puromycin, followed by APEX-
seq revealed RNAs that depend on or are independent
of translation for localization to the mitochondrial surface.
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Other sequencing-based approaches continue to be de-
veloped (Medina-Munoz et al. 2020; Pani et al. 2023).
One such approach, for example, tags a polyuridine poly-
merase to mitochondrial and ER membrane-localized pro-
teins in yeast, which adds a stretch of poly(U) to RNAs in
proximity, which can then be sequenced to identify uridy-
lated RNAs (Medina-Munoz et al. 2020).

FUTURE PERSPECTIVES

The discovery of mitochondria-bound cytoplasmic ribo-
somes, followed by various studies on examining OMM-
proximal RNAs, has led to the identification of regulatory
mechanisms of RNA localization on OMM. Nonetheless,
many aspects of the RNA localization process remain unex-
plored. In particular, although a few RBPs that mediate the
RNA localization process have been identified in yeast, the
corresponding RBPs in higher organisms remain unknown.
However, we have a candidate list of RBPs like AKAP1,
LARP4, MED15, and CPSF2 that could mediate localiza-
tion, as ascertained from proximity labeling of proteins
near TOM complexes. Future studies will undoubtedly
seek to establish the direct role of these and other RBPs
in mediating RNA localization to the OMM, thereby pro-
viding new insights into how the mammalian mitochondria
are regulated. Concomitantly, the identification of short
sequence motifs or zip codes responsible for RNA localiza-
tion is possible now due to recent advancements in exper-
imental and analysis tools for MPRA screens. Massively
parallel reporter assays (MPRAs) entail the introduction of
many (typically thousands to tens of thousands) of short se-
quences (up to ∼100–200 bp) in a reporter plasmid, intro-
duction of the plasmid into cells, and subsequent
identification of these motifs in transcribed RNAs at the lo-
cation of interest by sequencing. MPRA screens have been
used extensively to interrogate zip codes of nuclear
lncRNAs (Shukla et al. 2018), cytoplasmic circRNAs (Ron
and Ulitsky 2022), and dendrite-enriched mRNAs
(Mendonsa et al. 2023). Future studies aimed at MPRA
screens of OMM-localized RNAs will lead to the identifica-
tion of not only zip code elements but also their potential
RBP partners.

In addition to sequence motifs, other features of RNA
such as RNAmodifications, RNA structure, and the poly(A)
tail may mediate the localization of transcripts. RNA mod-
ifications are regulatory marks added posttranscriptionally,
further increasing the complexity of the transcriptome and
expanding the scope of cis-regulatory features. For in-
stance, m6A, methylation of adenine base at the N6 posi-
tion, has been detected in almost one-third of the
mammalian transcriptome (Dominissini et al. 2012;
Meyer et al. 2012). These m6A sites tend to be enriched
in the 3′-UTR region of mRNAs and can potentially influ-
ence RNA localization by modulating the RNA secondary
structure or the binding of RBPs. Differential RNA editing

is associated with various neurological disorders (Li and
Church 2013). For instance, a recent study found reduced
levels of adenosine to inosinemodifications in brain tissues
obtained from schizophrenia patients (Choudhury et al.
2023). Remarkably, these hypo-edited sites were enriched
in the 3′ UTR of RNAs associated with mitochondrial pro-
cesses. Investigating the impact of these modifications
on RNA localization to the OMM and mitochondrial func-
tion will shed light on the effect of editing defects. In addi-
tion to the highly abundant modifications like m6A and
inosine, the transcriptome encompasses more than a hun-
dred types of chemical modifications (Roundtree et al.
2017). The next step in our understanding of epitranscrip-
tome-mediated regulation of RNA localization on the
OMM is to explore how these diverse modifications affect
the localization of target RNAs and, thereby, organellar
function.

Additionally, the secondary structure of RNAs could in-
fluence RBP binding, which in turn could influence the lo-
calization of RNAs transiting to OMM and their translation.
With recent advancements in structure-probing tech-
niques (Siegfried et al. 2014; Spitale et al. 2015; Sun
et al. 2019), a structure-probing method coupled with
proximity labeling like APEX-seq could uncover the struc-
tural landscape of RNA as it travels from the nucleus to
OMM.

Central to understandingmitochondrial function is eluci-
dating how the nuclear and mitochondrial genomes coor-
dinate and how RNA localization to OMM differs among
cell types. Studies have shown that mitochondrial proteins
encoded by the nuclear genome are differentially ex-
pressed among mouse tissues (Pagliarini et al. 2008).
Another study (Fecher et al. 2019) has demonstrated that
mitochondria derived from three brain cell types contain
distinct proteomes. In particular, astrocyte-derived mito-
chondria metabolize fatty acids more efficiently than those
of neurons, as reflected in their mitochondrial proteomes.
It remains unknown whether these variations in the mito-
chondrial proteome modify the OMM-localized transcrip-
tome, and further investigation is required.

Several mitochondrial diseases arise from mutations in
nuclear-encoded mitochondrial proteins that show tis-
sue-specific expression, resulting in organ-specific dys-
functions. For instance, Leigh syndrome is characterized
bymutations in genes fromboth themitochondrial and nu-
clear genomes, with infants born with this disorder show-
ing neurological dysfunction. Apart from disease-related
changes, mitochondria exhibit dynamic behavior in re-
sponse to various stressors encountered on a daily basis.
These stressors range from reactive oxygen species, meta-
bolic overload, infection, to the buildup of misfolded pro-
teins. Studies in the past years have revealed that in
response to stresses like amino acid overload and aging,
the OMM forms distinct compartments known as mito-
chondria-derived compartments (MDCs) (Hughes et al.
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2016; Schuler et al. 2021). These MDCs containing select
OMM proteins such as TOM70 and SLC25A, can take
part in adaptative responses to amino acid overload. In
yeast, aging mitochondria form MDCs that are destined
for degradation in lysosomes. The formation of MDCs ren-
ders such cells capable of mitigating the effect of these
stresses. In response to infection by Toxoplasma parasites
that attach to the OMM of the host cells, mitochondria
shed vesicle-like structures containing proteins of the
OMM, as part of the cellular defense to restrict the parasite
growth (Li et al. 2022). Thus, dissecting the contribution of
RNA localization to mitochondrial function in various cellu-
lar contexts will be crucial in understanding the RNA local-
ization-mediated regulation of mitochondrial biology.
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