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Trade-offs between robustness 
and small-world effect in complex 
networks
Guan-Sheng Peng1, Suo-Yi Tan1, Jun Wu1,2 & Petter Holme3

Robustness and small-world effect are two crucial structural features of complex networks and have 
attracted increasing attention. However, little is known about the relation between them. Here we 
demonstrate that, there is a conflicting relation between robustness and small-world effect for a given 
degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world 
effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop 
a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. 
We show that the optimal network topology exhibits a pronounced core-periphery structure and 
investigate the structural properties of the optimized networks in detail.

Many real-world complex systems can be modeled as networks. Examples include the Internet, metabolic net-
works, electric power grids, supply chains, urban road networks, and the world trade web among many others. In 
the last decades, an emergent science of networks has attempted to explain, predict, and control these networked 
systems. The study of complex networks has become an important area of multidisciplinary research involving 
physics, mathematics, biology, social sciences, informatics, and other theoretical and applied sciences1–6.

The function and behavior of networked systems can be largely influenced by their structural features. As 
one of the fundamental structural features, network robustness (also known as resilience, tolerance, surviva-
bility, invulnerability), i.e., the ability of a network to maintain its connectivity when a fraction of nodes (links) 
is damaged, has received growing attention in many fields7–9. In ecology, network robustness is an important 
attribute of ecosystems, and can give insight into the reaction to disturbances such as the extinction of species10. 
For biologists, network robustness can help the study of diseases and mutations, and how to recover from some 
mutations11. In economics, network robustness principles can help our understanding of the stability and risks of 
banking systems12. And in engineering, network robustness can help to evaluate the resilience of infrastructure 
networks such as the Internet or power grids13. Many studies have been devoted to designing robust networks14–21 
motivated by applications in communication networks22, power grid23, transportation network24, sensor net-
works25, logistic network26 and so on. However, many real networks are the results of complex and extended 
processes; thus, designing networks from scratch is practically impossible. Therefore, the study of improving 
existing networks is of great interest. Recently, some methods for enhancing network robustness by modifying 
the topology have been proposed, e.g., adding links27,28, deleting29, or rewiring links30–34. However, despite recent 
research focusing on the enhancement of network robustness, little has been done on the joint optimization of 
network robustness and other desirable structural features. This is the motivation for our study.

In this paper, along with the network robustness, we focus on another important and well-known structural 
feature: small-world effect, the fact that most pairs of nodes are connected by a relatively short path through the 
network2. The existence of the small-world effect had been speculated upon before the Milgram’s experiment and 
the more rigorously in the mathematical work of Pool and Kochen35. Nowadays, the small-world effect has been 
studied and verified directly in a large number of different networks. The small-world effect has obvious implica-
tions for the diffusion processes taking place on networks. For example, if one considers the spread of information 
across a network, the small-world effect implies that the spread will be fast on most real-world networks. If it takes 
only six steps for a rumor to spread from any person to any other, for instance, then the rumor will spread much 
faster than if it takes a hundred steps, or a million. Moreover, small-effect effect is also related to the synchroni-
zation of oscillator networks36. The small-world effect has been used across the many diverse applications37. The 
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small-world effect is useful in analysis of man-made networks such as transportation networks and communi-
cations networks. It is used to help determine how cost-efficient a particular network construction is. Beyond 
human constructed networks, the small-world effect is a useful metric when talking about physical biological 
networks. For example, it is used in neuroscience to discuss information transfer across neural networks, where 
the physical space and resource constraints are a major factor38. There are some previous works addressing the 
relation between robustness and small-world effect. For example, Netotea and Pongor studied the evolution of 
robust yet small-world network topologies and how the selection for robustness or small-world effect influences 
network topology39. Brede et al. studied networks that optimize a trade-off between small-world effect and resil-
ience40. However, these works did not preserve node degrees. For the practical purposes, changing the degree of 
a node can be more expensive than changing the connection in networked system. For example, the adjustment 
of airline is more easier than increasing the capacity of airports. Therefore, conserving the degrees is a reasonable 
constraint that we will use.

Here we investigate the relation between robustness and small-world effect while keeping the degrees of each 
node fixed in optimization. We focus on the complex networks with non-trivial topological features that do 
not occur in simple networks such as lattices or random graphs. To realize the trade-off between robustness 
and small-world effect, we build a multi-objective optimization model and develop a heuristic algorithm. We 
report on successful results from applying the method to scale-free network for discussing how robustness and 
small-world effect influence on network topology.

Results
Conflicting relation between robustness and small-world effect. In this paper, we use a spectral 
measure of robustness—natural connectivity λ. It measures the robustness of a network by quantifying the redun-
dancy of paths between each pairs of nodes, and has been proved to sensitively exhibit the variation of the robust-
ness41,42. Besides, a measure E defined as the reciprocal harmonic average of shortest distances is adapted to 
describe the extent of small-world effect43. To analyze the relation between robustness and small-world effect, we 
first propose a single-objective optimization model to optimize robustness and small-world effect separately and 
then investigate the change of one property when optimizing another one. We consider scenarios where changing 
the degree of a node is significantly more expensive than rewiring a link, thus we impose the constraint that each 
node degree di is fixed in optimization process. Besides, the optimized network should be connected. We use the 
degree-preserving greedy optimization algorithm44,45 shown in Fig. 1 to search the optimal robust network or the 
optimal network with small-world effect. Starting from an initial network, we adopt the rewiring method at each 
time step. Only if the objective is improved and the generated network is still a connected simple network, the 
rewiring is accepted. We repeat this procedure for many iterations to obtain the optimized network. We apply the 
single-objective optimization method to model networks. Figure 2 shows the change of the robustness λ and the 
small-world effect E versus iterations t in scale-free networks and ER random graphs, respectively. We find that 
optimizing λ will reduce E obviously while increasing E also leads to a great loss of robustness λ. It means that 
robustness and small-world effect are in a conflicting relation.

Since the degree of each node is fixed in optimization, the degree correlation is a significant network property 
that deserve investigation. In a work by Milo et al.46, they presented an approach for comparing network local 
structure based on the significance profile (SP). To obtain the SP of a network, the statistical significance for each 
subgraph is calculated by comparing the network to an ensemble of randomized network with the same degree 
sequence. Similarly, this method can also be used to analyze the degree correlations in networks. Specifically, 
when studying the degree correlations, the statistical significance is described by the Z score:
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where m(di, dj) is the number of links between the nodes with degree di and nodes with degree dj in the network, 
and 〈 mr(di, dj)〉  and σr(di, dj) are the mean and standard deviation of the values of m(di, dj) in a randomized net-
work sets, where the networks are randomized from the specific network by executing the degree-preserving 
rewiring algorithm44 enough times. Therefore, according to the equation, Z score reflects the density of connec-
tions between nodes with different degrees. The higher the value of Z(di, dj) score is, the more connections 
between di-degree nodes and dj-degree nodes the network has. Figure 3 shows the correlation profiles of the λ
-optimized network and the E-optimized network based on scale-free network and ER random network. The Z 
score value is normalized to a range of [− 1, 1] and indicated by the color in the correlation profiles. The rand-
omized network is generated by rewiring the original networks in Fig. 3 for 104 times while keeping node degrees 
fixed. We generate 103 randomized networks to ensure the stability of results. The results in Fig. 3(a) and (c) show 
that the optimization for λ results in a more assortative topology compared to the randomized network with the 
same degree sequence. Nodes in λ-optimized network prefer to attach to those nodes with similar degree. On the 

Figure 1. Degree-preserving rewiring process. 
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Figure 2. The change of the robustness λ and small-world effect E versus iterations t in single-objective 
optimization in different model networks. (a) and (b) correspond to scale-free network with its power-law 
exponent γ =  3, while (c) and (d) correspond to ER random network with its connection probability p =  0.05. 
The network size is N =  100.

Figure 3. The correlation profiles of the λ-optimized network and the E-optimized network based on scale-
free network and ER random network. The Z score value is normalized to a range of − 1 to 1 and indicated by 
the color. The higher the value of Z(di, dj) score is, the more links between di-degree nodes and dj-degree nodes 
the network has.
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contrary, the E-optimized network is inclined to be a disassortative network, in which high-degree nodes prefer 
to connect low-degree nodes rather than connect the nodes with similar degree. Therefore, the E-optimized net-
work shows a high degree of difference with λ-optimized network, which implies that robustness and small-world 
effect are in a conflicting relation.

To verify the inferences, we also investigated the trial on a real network, Zachary’s karate club, which is a social 
network in a karate club at a US university in the 1970s47. It has 34 nodes and 78 links (see Fig. 4(a)). Figure 4(b) 
shows the value of λ and E in the original network, the λ-optimized network and E-optimized network. The 
results shows similar conclusions, i.e., optimizing λ will result in a decrease of E, while maximizing E will decrease 
λ of network. Several primary topological properties are expressed through radar charts in Fig. 5. We can clearly 
see the different topologies of λ-optimized and E-optimized networks. The E-optimized network (Fig. 5(b)) 
exhibits roughly a multi-hub, local star-like structure in which high-degree nodes (hubs) are interconnected 
through low-degree nodes, and low-degree nodes rarely attach to each other. In the multi-hub star-like structure, 
information on any node can be quickly transmitted to other nodes through the hubs they connected. Moreover, 
lower D, lower σd shown in radar chart illustrates that each pair of nodes have approximately the same short 
length of distance. The multi-hubs star-like network has a disassortative structure and a lower cluster coefficient. 
On the contrary, the λ-optimized network (Fig. 5(c)) has a core-chain with a core comprised of high-degree 
nodes and other low-degree nodes that are interconnected to form a long chain. The highly interconnected hubs 
guarantee the connectivity of network after the removals of some nodes, even the high-degree nodes, whereas the 
structure with a long chain composed of low-degree nodes will leads to a high cost of communication between 
nodes. The core-chain topology displays a high degree of assortativity and clustering. That multi-hub star-like 
represent the extreme case of disassortativity and the core-chain topology represent networks optimized for 
assortativity was found in ref. 48. The results in radar charts show that the robust networks and the efficient net-
works are completely different in our network metrics.

Trade-off between robustness and small-world effect. To consider both the robustness and 
small-world effect of network in optimization, SMS-MOEA is utilized to obtain the Pareto-optimal front, namely 
the best possible set of non-dominating solutions. In Fig. 6, we show the Pareto-optimal front of λ and E opti-
mized from the initial solutions, which is generated from an initial scale-free network with nodes N =  100, links 
M =  179 and power-law exponent γ =  3 by executing the mutation operator for 103 times. Here we state the 
parameter used for SMS-EMOA: The population size is 50, the crossover probability is Pc =  0.9, and the mutation 
probability is Pm =  0.05. Besides, we iterate the optimization 20,000 times. As expected, the index E of networks 
in Pareto-optimal front decreases monotonically with their robustness λ in Fig. 6. Hence, the results are 
well-distributed and have a good convergence, which vertify the effectiveness of SMS-MOEA when optimizing 
the network topology.

We analyze the change in network structure as the optimization orientation for robustness and small-world 
effect are shifted. Figure 7 gives the correlation profiles and the exhibition of three selected networks in 
Pareto-optimal solutions. Figure 7(a) and (c) show the topology of the network with high E and the network with 
high λ respectively, while the intermediate network with both high λ and E is shown in Fig. 7(b). In Fig. 8, the 
topological properties of optimized networks in Pareto-optimal front is depicted. Here we can clearly observe the 
transition from small-world network structure towards robust network structure.

As described above, the network with low λ and high E roughly display a multi-hubs star-like structure, in 
which most of low-degree nodes are directly connected to high-degree nodes. Therefore, the network has low 

Figure 4. Optimization results on a real network. (a) The degree distribution of the real network. (b) The 
values of λ (red) and E (blue) before and after the optimization. The real network is the social network in a 
karate club at a US university in the 1970s. It has 34 nodes and 78 links. The length of column with red line 
corresponds to the value of λ axis, while the column with blue shading corresponds to the E axis. The results are 
averaged over 100 independent realizations.
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Figure 5. The visualization of original network and the optimized networks and their topological 
properties. (a) original network, (b) E-optimized and (c) λ-optimized network have the same degree sequence. 
The degree of node is proportional to its size. The radar graphs show the values of topology metrics including 
assortativity coefficient r, clustering coefficient C, network diameter D, standard deviation of distance 
distribution σd and spectral gap SG.
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assortativity coefficient r, low clustering coefficient C, low network diameter D and low standard deviation of 
distance distribution σd (see Fig. 8). Naturally, this structure is very fragile for the removal of hubs. With increas-
ing robustness λ, the index E of the optimal networks decreases monotonously, and the degree assortativity of 
network is enhanced. As shown in Fig. 7, links between high-degree nodes and low-degree nodes obviously 
decreases, and links among high-degree nodes and links among low-degree nodes increases. The multi-hubs 
star-like structure is gradually changed into a core-periphery structure. In this structure, the interconnected 
high-degree nodes form the core, while the periphery is composed of interconnected low-degree nodes. 
Increasing λ, reduce the number of links between the core and the periphery. The core-periphery structure grad-
ually evolves into a core-chain structure. The link density of the core increases, and the periphery expands, and 
then evolves into long chain or ring substructures (see Fig. 7(c)). The increasing variation of clustering coefficient 
C, network diameter D and standard deviation of distance distribution σd validates the transition process of net-
work topology. In addition, we find that as the increase of robustness, the spectral gap SG increases. It indicates 
that the optimization for robustness will improve the communicability and the expansion of network.

The results also show that the network with both high robustness and small-world effect exhibits a 
core-periphery structure, which is quite similar to the results by Netotea and Pongor39. It is obviously a compro-
mised structure between the multi-hubs star-like structure and the core-chain structure. Optimization for robust-
ness will make the core denser, and expand the chains of the periphery, while optimization for small-world effect 
make the core sparser, and fragment the periphery so that each low-degree node connects to one or more hubs.

Discussion
In this paper, we have emphasized that both robustness and small-world effect are of great importance for design-
ing or optimizing the network topology. Generally, small-world effect can be interpreted by the reciprocal of aver-
age shortest path lengths, while robustness is positively related to the redundancy of alternative routes in network 
which can be precisely measured by natural connectivity.

We have verified that robustness and small-world effect are in a conflicting relation in optimization while 
conserving node degree by means of large amount of optimization experiments. The efficient network shows a 
multi-hubs star-like structure, which is proved to be fragile for the removals of high-degree nodes. Conversely, the 
robust network has a core-chain topology in which high-degree with a cluster of high-degree nodes comprise the 
core and other low-degree nodes that are interconnected to form long chain substructures. Obviously, such long 
chain substructure has a serious problem with the communication among nodes.

To optimize both robustness and small-world effect, we proposed a multi-objective evolutionary algorithm 
including crossover, mutation and reduce operators. We have demonstrated that our algorithm can optimize the 
network topology for both robustness and small-world effect. We found the networks that realize the trade-off 
between robustness and small-world effect exhibit a core-periphery structure where high-degree nodes comprise 
the core and low-degree nodes form the periphery. Optimizing robustness will strengthen the link density of 
core and expand the periphery, while optimization for small-world effect will weaken the core and fragment the 
periphery. We also investigate several primary topological properties in optimized networks for robustness and 
small-world effect to discuss their relation.

As a final point, we note that constraints such as geography or rewiring limitations should be considered 
in practical applications. When such constraints are imposed, the multi-objective optimization results could 
potentially be quite different. Moreover, the trade-off between robustness and small-world effect in directed or 
weighted network are also interesting future directions.

Methods
Robustness, small-world effect and topology metrics of network. In this paper, we employ a rather 
new robustness measure—natural connectivity λ—which has been received growing attention41,42,49–54. Natural 
connectivity, derived from the Estrada index42,52, has an intuitive physical meaning and a simple mathematical 

Figure 6. Pareto-optimal fronts in the multi-objective optimization for λ and E. The red points represent 
the optimized networks, and the blue points represent the original networks. The size of population is 50. Each 
solution in population is a scale-free network with 100 nodes, 179 links and power-law exponent γ =  3.
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formulation. Physically, it characterizes the redundancy of alternative paths by quantifying the weighted number 
of closed walks of all lengths and can also be interpreted as the Helmholtz free energy of a network41,42. 
Mathematically, the natural connectivity can be derived from the graph spectrum as an average eigenvalue and 
increases strictly monotonically with the addition of edges. It is defined as:

Figure 7. The correlation profiles and the visualization of selected networks in Pareto-optimal solutions set. 
(a) The network with high E and low λ. (b) The network with both relatively high λ and E. (c) The network with 
high λ and low E. The Z score value is normalized to a range of − 1 to 1 and indicated by the color. The higher the 
value of Z(di, dj) score is, the more links between di-degree nodes and dj-degree nodes the network has.

Figure 8. Topological properties of the optimized networks in Pareto-optimal solutions set. The 
assortativity coefficient r, clustering coefficient C, network diameter D, standard deviation of distance 
distribution σd and spectral gap SG are listed to understand their relation to robustness and small-world effect. 
These topological properties of networks are in ascending order of their value of λ.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:37317 | DOI: 10.1038/srep37317

∑λ =









λ

=N
eln 1 ,

(2)i

N

1

i

where N is the number of nodes in a network G and λi is the ith element of the set {λ1, λ2, … , λN}, which is called 
the spectrum of G. It is shown that the natural connectivity has a strong discrimination in measuring the robust-
ness of complex networks and lower computation complexity. The natural connectivity λ of a network increases 
in the optimization process, the robustness of the network is improved. Similarly, the network become more 
fragile as the natural connectivity λ decreases.

To measure the extent of small-world effect, as an alternative to the average path length L of a network, we 
employ the reciprocal harmonic average of shortest distances, also known as efficiency43,
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where lij is the geodesic distance from node vi to node vj. We do not use the average path length L or other index 
related to distances considering all-walks (e.g. Estrada community index52), because the reciprocal harmonic 
average of shortest distances has a simple definition and desirable mathematical properties. For example, it is nor-
malized to a range of [0,1] and is valid for disconnected networks. We remark that it can be related to the Harary 
index H(G)55, which is a measure of the compactness of the molecule, as follows
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. The index E is a summary statistic that combines aspects of the sizes of connected 
components and the average distances within these. Although it is a quite an arbitrary combination of these more 
fundamental properties (component size and distance), many authors have argued that it is a powerful predictor 
for how well the both natural and man-made networks function. It is clear, the small-world effect decreases with 
both increasing fragmentation (especially splitting large components into similar sizes) and increasing distances. 
The increase of index E indicates that the information exchanges more fast among nodes in the network. 
Conversely, the decrease of E means the loss of small-world effect.

To describe the structure of our optimized networks, we outline a list of standard network topology metrics: 
the assortativity coefficient r, clustering coefficient C, network diameter D, standard deviation of distance dis-
tribution σd and spectral gap SG. The assortativity coefficient r is a measure of assortative mixing by degree in 
networks, while the clustering coefficient of a node is the fraction of connected node pairs in the node’s neigh-
borhood. The network diameter D (the maximal distance among node pairs), average shortest path length L and 
standard deviation of distance distribution σd are utilized to measure the characteristics of distance distribution. 
Spectral gap (SG), the difference between the two largest eigenvalues of the adjacency matrix of a network, is also 
an important metric for network features. For instance, the good expansion (GE) properties in complex networks 
is shown to be related to the network spectral gap56.

Multi-objective evolutionary optimization algorithm. To solve the multi-objectives optimization 
model, we utilize an applicable optimization algorithm, S-metric selection evolutionary multi-objective optimi-
zation algorithm (SMS-EMOA)57. SMS-MOEA is proved to be suited for optimization with two and three objec-
tives. It is better than the conventional algorithms such as SPEA2 in convergence and distribution uniformity. 
Here we describe the three primary parts of SMS-EMOA for network robustness and small-world effect: crosso-
ver operator, mutation operator and reduce operator.

Crossover operator. The crossover operator fuses the genetic information from a pair of chromosomes and gen-
erate a new chromosome at each iteration. When we swap the local structure information from two selected 
networks, the main constraint we should consider is to keep each node degree fixed after crossover operation. We 
use an improved version of the crossover operator proposed in ref. 58. Figure 9 shows the process of crossover 
operator on node i. If the two networks are unconnected networks, the crossover operator is invalid, and we start 
the process again. The process of crossover operator on Gr1 and Gr2 is to employ the crossover operator on each 
node in networks according to the crossover probability pc. When the crossover operator is finished, one of the 
new generated networks is randomly selected as the new solution.

Mutation operator. Mutation operator aims to search new solutions in a local area, which can accelerate the 
convergence of the algorithm. The neighborhood of the current network is the set of networks that are obtained 
by rewiring the current network while keeping degrees fixed. At each iteration, the rewiring process shown in 
Fig. 1 is executed as the mutation operation.

Reduce operator. When a new network is added to the population, the inferior solution in the population should 
be removed. Unlike the conventional algorithm, SMS-EMOA does not maximize the objectives individually, but 
maximizes the hypervolume spanned by them in the space of objectives. The hypervolume is the area under the 
Pareto-curves and bounded by a reference point59. During the reduce operation, the contributing hypervolumes 
of each solutions is be calculated, and the inferior solution with lowest contributing hypervolume is eliminated 
from current population. In the optimization model, hypervolume of solution pi can be calculated by:
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where λ p( )i  is the robustness of solution pi and E(pi) is the small-world effect of solution pi. P =  {p1, p2, … , pv} is 
the current population which is arranged by the order of the value of robustness λ from low to high.

At each iteration, a new solution is generated from the current population by executing the mutation and 
crossover operations sequentially. Then the solution which has the lowest contribution to the hypervolume is 
removed. By repeatedly executing the steps above within a large enough number of iterations, a best possible set 
of non-dominating solutions, called Pareto-optimal front, is obtained.
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