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Research of nanotechnology for cancer therapy and diagnosis extends beyond drug
delivery into the targeted site or surveillance the distribution of nanodrugs in vivo or
distinction tumor tissue from normal tissue. To satisfy the clinic needs, nanotheranostic
platform should hide the surveillance by immune system and the sequestration by
filtration organs (i.e., liver and spleen). Use of biologically derived cellular components
in the fabrication of nanoparticles can hide these barriers. In this review, we update the
recent progress on cell membrane-coated nanoparticles for cancer theranostics. We
hope this review paper can inspire further innovations in biomimetic nanomedicine.
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INTRODUCTION

Cancer is known to be the most aggressive malignancy to humans, and definitely the major cause of
death worldwide (Roma-Rodrigues et al., 2019). In the fight against cancer, half of the battle is won
based on its early detection (Phillips et al., 2014; Ye et al., 2014). As we know, new treatments such
as phototherapy and immunotherapy have received considerable attention due to their obvious
advantages than the conventional therapies. Phototherapy including photothermal therapy (PTT)
and photodynamic therapy (PDT), they rely on the phototherapeutic agents in cooperation with
laser irradiation to selectively kill cancer cells, while ignoring the healthy cells in the dark (Liu X.
et al., 2018; Li W. et al., 2019). However, monotherapies have limited efficacy. Consequently,
multiple approaches have been provided to be a promising route for cancer therapy (Min et al.,
2019; Yue et al., 2019).

Theranostics based on nanotechnology strategies is a new form of cancer treatment, they can
integrate the conventional or the new therapeutic modalities and diagnostic functions such as
magnetic resonance (MR) imaging, photoacoustic (PA) imaging, positron emission tomography
(PET) imaging or fluorescence imaging etc. into one single carrier and assist in the management
of cancer (Li et al., 2016; Li T. et al., 2019). Theranostics showed a number of advantages such as
improved diagnosis, tumor specific delivery of drugs, reduced damage to healthy tissue.
In the last few decades, theranostic nanoplatforms gained great progress in basic
research and produced a large number of excellent publications (Yang H. et al., 2018;
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FIGURE 1 | The application of cell membrane-coated nanoparticles for cancer therapy and imaging.

Shen et al., 2019). Scientists developed numerous theranostic
nanosystems based on organic nanoparticles, inorganic
nanoparticles, micelles, dendrimer, and got good effect in
cell studies and animal studies (Ray et al., 2018; Yang J. et al.,
2018; Shao et al., 2019; Xu et al., 2019; Bort et al., 2020).
These theranostic nanoplatforms were modified with polymer,
antibody, peptide or other functional molecules to obtain
profuse biological functions, such as targeting, long circulation,
biocompatibility, and immune escaping (Yang et al., 2017; Liu S.
et al., 2019; Xie X. et al., 2019; Wu et al., 2020).

But the application of theranostic nanoplatforms in the
clinical trials have been disappointing. Two vital problems
need to be solved urgently, the first one is the biosafety of
theranostic platforms should be systemically evaluated. The
second one, which our final goal, is getting the expected effect
in the clinic (Choi et al., 2012; Liu Y. et al., 2018; Vankayala
and Hwang, 2018; Jing et al., 2019). As a consequence, we
should develop theranostic nanosystems that closely mimic the
biological composition of our bodies and make the efficiency of
theranostic nanoplatforms maximally.

Cell membrane coated biomimetic nanoplatforms are often
semi-biological (or semi-artificial) which take advantages of their
inherited property, such as biointerfacing, self-identification and
signal transduction can escape from biological barriers such as
immune clearance, opsonization, and negotiation with vascular
system (Evangelopoulos and Tasciotti, 2017; Chen et al., 2019;
Jin et al., 2019; Madamsetty et al., 2019; Yan et al., 2019;
Ma et al., 2020a). These theranostic nanoplatforms have the
potential to play an important role in cancer diagnosis and
treatment (Bose et al., 2018a; Li Z. et al., 2018; Meng et al.,
2018; Sung et al., 2019; Ye S. et al., 2019). This review article
will introduce the recent efforts on the rational design of cell
membrane-based biomimetic nanosystem for cancer diagnosis
and treatment, we highlight the strategies of engineering and
application in Figure 1.

DEVELOPMENT OF CELL
MEMBRANE-COATED BIOMIMETIC
THERANOSTIC NANOPLATFORM

Hu et al. (2011) first reported that they used a top-down method
to synthesize erythrocyte membrane camouflaged nanoparticles
for long-circulating cargo delivery. Since that, cell membrane,
not just erythrocyte membrane but cancer cell membrane, stem
cell membrane, platelet membrane, endothelial cell membrane,
etc. were used for coating materials of nanoparticles (Kroll
et al., 2017; Narain et al., 2017; Pasto et al., 2019; Zhou et al.,
2019). Owning the advantages of the native functionalities
originating from cell membrane including reserved antigens and
cell membrane structure, biomimetic nanoparticles can acquire
special functions, such as ligand recognition and targeting, long
blood circulation, and immune escaping (Chen Z. et al., 2016;
Feng et al., 2019; Meng et al., 2019). In a valuable review paper,
the authors discussed in detail the advantages of different cell
membrane camouflaged nanoparticles (Chen Z. et al., 2016).
In this paper, we briefly summarized the recent progress in
the development of biomimetic cell membrane camouflaged
nanocomplex for cancer theranostic. We also demonstrated
the highlight in the recent research about biomimetic cell
membrane camouflaged nanocomplex on cancer theranostic in
the following sections.

RED BLOOD CELLS MEMBRANE
CAMOUFLAGED THERANOSTIC
NANOCOMPLEX

Red blood cells (RBCs) are the primary transport of oxygen
through the blood in body, they can live up to 120 days
in humans, and are nature’s long circulating carriers
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(Hsieh et al., 2015; Fang et al., 2018; Liu J.M. et al., 2018). It
is reported that RBCs are the ideal membrane modification
materials because of the abundant proteins, glycans, and
receptors on the RBCs membrane surfaces which can bypass
the immune system attack (Rao et al., 2017; Ren et al., 2017;
Su et al., 2017). For example, CD47 (integrin-associated
protein) is a self- marker of RBCs which can interface with
its corresponding receptor, prevent the clearing from the
bloodstream by macrophages (Oldenborg et al., 2000; Xie J. et al.,
2019). The intact RBCs membrane could directly modify on
the surface of nanoparticles without any complex process, and
the final nanoparticle still inherits the functions of RBCs (Jiang
et al., 2017; Lian et al., 2019; Yang et al., 2019). In one instance,
Li et al. used Ag2S quantum dots (QD), a good fluorescence
imaging agent with ideal photothermal and photodynamic
therapeutic effects under laser irradiation as a sonosensitizer.
Pluronic F-127-modified Ag2S QDs were wrapped in RBC
vesicles for enzyme-augmented sonodynamic therapy (SDT).
RBC membranes coating in this system could prolong the
circulation time of the probe, and catalyzed endogenous H2O2
by the catalase in RBCs to ameliorate tumor hypoxia. Besides,
Ultrasound (US) could also promote tumor blood flow, relieve
the hypoxic condition, and enhance the SDT effect of the probe.
This study provide a promising strategy for the future design
of a multifunctional theranostic nanoplatform (Li et al., 2020).
Wang and co-workers designed RBC based probe (RBCp) for
NIR-II fluorescence bioimaging-guided tumor surgery and
light-triggered O2 release to enhance PDT efficiency. In vivo
study showed that RBCp could provide efficient tumor targeting
and laser-responsive O2 release to enhance the PDT efficiency of
popliteal lymph node metastasis under the guidance of NIR II
fluorescence bioimaging (Figure 2; Wang et al., 2019).

CANCER CELL MEMBRANE
CAMOUFLAGED THERANOSTIC
NANOCOMPLEX

Inspired by the reality that nanotheranostic nanoplatform should
have good biocompatibility and the ability of homologous
targeting, cancer cell membrane coated nanotheranostic
nanoplatform have been recently getting more and more
attention (Li S.Y. et al., 2018; Zhang N. et al., 2018; Zhang W.
et al., 2019; Kumar et al., 2019). In particular, cancer cells are
robust and easy to multiply culture in vitro for mass membrane
collection, cancer cell membrane expressing “markers of self ”
and “self-recognition molecules” can be removed from cancer
cells and coated on nanoparticles, demonstrating homologous
targeting and immune escape ability (Bose et al., 2018b; Shao
et al., 2018; Cai et al., 2019; Harris et al., 2019; Liu C. et al., 2019;
Nie et al., 2019; Zhang D. et al., 2019). Wang and coauthors
designed HeLa cell membrane coated nanocomposites for
Fluorescence/MR dual-modal imaging guided PDT. These
HeLa membrane coated nanocomposites (denoted as mGZNs)
showed enhanced in vivo anti-tumor targeting efficiency of
80.6% for HeLa cells, providing new strategies to develop
nanocomposites for visualized cancer theranostics (Wang
et al., 2020). Zhu and coworkers designed a magnetic iron

FIGURE 2 | NIR-II fluorescence imaging guided tumor surgery of RBCp.
NIR-II fluorescence bioimaging results of epidermal tumors with sizes of
7 mm3 (row one), 3 mm3 (row two), and the NIR-II bioimaging results of
popliteal lymph node metastasis (row three). Reproduced with permission
from Wang et al. (2019). Copyright © Ivyspring International Publisher.

oxide based nanosystem coated with different types of cracked
cancer cell membranes (CCCM). This nanocomplex showed
the excellent self-recognition internalization by the source
cancer cell lines in vitro and in vivo. As shown in Figure 3A,
cellular internalization of UM-SCC-7, and HeLa cell membrane
coated MNP@DOX@NPs (termed as MNP@DOX@UM-SCC-7
and MNP@DOX@HeLa, respectively) was studied upon 3 h
coincubation with four cell lines including UM-SCC-7, HeLa,
HepG2, and COS7 cells. An amazing outcome was found that
the fluorescence intensity originating from two CCCM coated
nanoparticles was far superior in the corresponding source cells
over those in heterotypic cells. To conform the in vivo tumor
self-targeting ability toward homologous tumors, the authors
intravenously injected mice bearing UM-SCC-7 tumor on the
right hind limb with MNP@DOX@CCCM NPs prepared with
different cell membranes. As shown in Figure 3B, In the group
injected with MNP@DOX@UM-SCC-7 showed more intratumor
fluorescence intensity than other groups (Zhu et al., 2016).

STEM CELL MEMBRANE
CAMOUFLAGED THERANOSTIC
NANOCOMPLEX

Stem cell membrane is another natural biomimetic membrane
coating that have been used for cancer theranostics (Ma et al.,
2019; Shin et al., 2019; Zhao et al., 2019). Stem cell membrane
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FIGURE 3 | (A) Confocal laser scanning microscope (CLSM) images of four cell lines including UM-SCC-7, HepG2, HeLa, and COS7 cells upon 2 h coincubation
with MNP@DOX@UM-SCC-7 and MNP@DOX@HeLa. Scale bars: 20 µm. (B) Schematic illustration of UM-SCC-7 tumor-bearing mouse model treated with DOX
and various cell membrane cloaked MNP@DOX@CCCM. (C) In vivo fluorescence images at 24 h post intravenous injection with MNP@DOX@CCCM (a:
@UM-SCC-7; b: @COS7; c: @HeLa) and DOX (d) with an equivalent DOX dosage (2.5 mg/kg). Reproduced with permission from Zhu et al. (2016). Copyright ©
2016 American Chemical Society.

with its inherent tumortropism coating onto nanoparticles has
enabled the fabrication of nanocarriers with similar targeting
functionality (Letko Khait et al., 2019; Wu et al., 2019). In an
example of umbilical cord-derived mesenchymal stem cell coated
polymeric nanoplatform, poly(lactic-co-glycolic acid) (PLGA)
nanoparticle loaded with Doxorubicin (NP-Dox) were coated
with cord-derived mesenchymal stem cell membrane for tumor-
targeted delivery of chemotherapy. The coating membrane
significantly enhanced the cellular uptake efficiency of PLGA
nanoparticles and the tumor cell killing efficacy of PLGA-
encapsulated doxorubicin (Yang N. et al., 2018). In another
study, bone marrow derived mesenchymal stem cell membrane
was coated on gelatin nanogels (termed as SCMGs) for tumor-
targeted drug delivery. SCMGs showed high cancer cellular
uptake of DOX compared with gelatin-DOX and free DOX.
To monitor the in vivo distribution of nanogels, a near-
infrared fluorescent dye, Cyanine7 (Cy7) was loaded into both
SCMGs and bare gelatin nanogels. After intravenous injection
of different nanogel formulations in tumor bearing mice, the
average fluorescence signal in the SCMGs treated mice was
notably higher than that obtained in the group treated with bare
gelatin (Gao et al., 2016).

CANCER-ASSOCIATED FIBROBLAST
MEMBRANE CAMOUFLAGED
THERANOSTIC NANOCOMPLEX

Cancer associated fibroblast membrane has recently obtained
more and more attention as membrane coating materials.
As reported, cancer-associated fibroblasts are recognized as a
key obstacle to cancer treatment (Chen B. et al., 2016). On
the one hand, they construct a protecting physical barrier to
impede tumor cells uptake of antitumor drugs. One the other
hand, they secrete abundant growth factors and cytokines to
activate correlative signaling pathways for promoting tumor
angiogenesis, progression, initiation, metastasis, and resistance.
Studies have shown that used cancer-associated fibroblast
membrane coated nanoparticles to deliver therapeutic agents
could target and kill cancer-associated fibroblasts, and depleted
tumor-stroma biological interactions and in turn led to enhanced
therapy (Ji et al., 2015, 2016; Li L. et al., 2018; Kovacs et al.,
2020). Li et al. developed semiconducting polymer nanoparticles
(SPNs) coated with activated fibroblast membranes (denoted as
AF-SPN) for enhanced multimodal cancer phototheranostics.
In this study, uncoated SPN (uSPN) nanoparticles and the cancer
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FIGURE 4 | In vivo fluorescence and PA imaging of tumors in living mice after treatment with different complexes. (A) In vivo NIR fluorescence images of 4T1
tumor-bearing mice at different time points after systemic administration of uSPN, CC-SPN, and AF-SPN via tail vein injection. The tumor was on the right side of the
back, as indicated by the white dashed circles. (B) Representative PA maximum imaging projection of 4T1 tumors in living mice at 0, 24, 48, and 72 h after systemic
administration of different complexes via tail vein injection. Reproduced with permission from Li J. et al. (2018). Copyright © 2018 American Chemical Society.

cell membrane coated SPN (CCSPN) nanoparticles were as
control group. To demonstrate the photodiagnostic potential of
nanoparticles in vivo, different nanoparticles were intravenously
injected into 4T1 tumor-bearing mice, and their NIR fluorescence
and PA images were obtained. As shown in Figures 4A,B. AF-
SPN facilitated homologous targeting ability, and allowed to
specifically target cancer-associated fibroblasts. The experiment
results demonstrated that AF-SPN provided higher accumulation
in tumor tissues than both the uSPN and CC-SPN, and amplified
NIR fluorescence and photoacoustic (PA) signals for tumor
imaging (Li J. et al., 2018).

HYBRID CELLS MEMBRANE
CAMOUFLAGED THERANOSTIC
NANOCOMPLEX

Based on the concept that membranes from various cell types
carry different properties. Research Scientists developed two
types of cell membrane fusion coating made nanoparticles
inherit and amplify the properties of both source cells (Liang
et al., 2018; Ye H. et al., 2019). The two types of pre-extracted

cell membranes were mixed together at appropriate protein
weight ratios at 37◦C to facilitate membrane fusion. For instance,
Dehaini et al. fabricated RBC-platelet hybrid membrane-coated
nanoparticles. This dual-membrane-coated nanoplatform
exhibited long circulation, excellent biocompatibility and
suitability for further in vivo exploration (Dehaini et al., 2017).
In another study, firstly, the researchers get hybrid cells.
Briefly, cancerous 4T1 cells and dendritic cells (DCs) were
mixed at a ratio of 1:2 in the phosphate buffer (PBS) solution
containing 50% polyethylene glycol (PEG) (MW = 4000) and
10% dimethyl sulfoxide (DMSO) after 2 min fusion at 38◦C, the
cells were washed with medium to remove the PEG and DMSO.
After fused cells were cultured for 6-day, the cytomembranes
(FMs) of hybrid cells were collected. FMs were coated on
metal organic framework (PCN-224) by ultrasonic treatment
in a cold water bath until the solution was transparent. The
obtained hybrid cell membrane coated nanoparticles were
further purified by centrifugation to remove the free FMs.
The authors showed that this hybrid cell membrane coated
nanoparticles can not only inherit the specifically targeted ability
to homologous tumors from parent 4T1 cells but also obtained
the enhanced ability of immune induction owing to the high
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FIGURE 5 | Schematic illustration showed the preparation of PCN@FM for combined tumor therapy. Reproduced with permission from Liu W.L. et al. (2019).
Copyright © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

expression of a whole array of tumor antigens in FMs (Figure 5;
Liu W.L. et al., 2019).

OTHER CELLS MEMBRANE
CAMOUFLAGED THERANOSTIC
NANOCOMPLEX

Thanks to the advantages of cell membrane coated nanosystem
for cancer theranostic, more and more types of cell membrane
be used as coating materials according to their self-nature and
the clinical need. Platelet, derived from megakaryocytes, is an
indispensable component of blood stream, participate in many
physiological activities and play an important role, including
coagulation, hemostasis, the body’s innate immune response,

and cancer metastasis (Li Z. et al., 2018). P-Selectin is a cell
adhesion protein, found predominantly in endothelial cells and
platelets. Upon platelet activation, it can get exposed on the
platelet membrane (PM) surface, and specifically bind to CD44
receptors upregulated on the surface of cancer cells (Bergstrand
et al., 2019). Inspired by these properties of platelets, Hu et al.
developed a PM coated core-shell nanovehicle (denoted as
PM-NV) for codelivery of tumor necrosis factor (TNF)-related
apoptosis inducing ligand (TRAIL) and doxorubicin (Dox). The
nanocomplex was defined as TRAIL-Dox-PM-NV. TRAIL is
one of the most important extracellular activators of apoptosis,
induces apoptosis of tumor cells by binding to the death receptors
(DR4, DR5) on the cell surface; while Dox can damage the nuclear
DNA of cancer cells to trigger the intrinsic apoptosis signaling
pathway. PM coating enhanced drug accumulation by active
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targeting based on the affinity between PM and overexpressed
CD44 receptors on the cancer cells. TRAIL-Dox-PM-NV showed
synergetic antitumor efficacy to MDA-MB-231 tumor-bearing
nude mice (Hu et al., 2015).

At present, the great benefits of immunotherapies in oncology
are evident, T cells engineered to express chimeric antigen
receptors (CARs) that are specific for tumor antigens have
demonstrated tremendous success in eradicating hematologic
malignancies (e.g., CD19 CARs in leukemias) (Herzyk and
Haggerty, 2018; Labanieh et al., 2018). However, this success was
not observed in solid tumors, and the reasons for this are being
investigated (Newick et al., 2017). Considering these situations,
Ma et al. combined cell membrane coating nanotechnology with
CAR-T therapy to treat hepatocellular carcinoma (HCC), due
to the high tumor specificity of CAR-T cells and the advantage
of cell membrane-camouflaged nanoparticles in drug delivery.
They used Glypican-3 (GPC3) targeting CAR-T to prepare
CAR-T membranes (CMs). GPC3, a 580-AA heparin sulfate
proteoglycan, is a key biomarker for early diagnosis of HCC due
to its overexpression in 75% of HCC samples, but not in healthy
liver or other normal tissues (Dargel et al., 2015; Zhang Q. et al.,
2018). Near-infrared (NIR) dye IR780, was loaded in mesoporous
silica nanoparticles (MSNs) to form a core. The IR780 dye with
NIR absorbance can produce heat under laser for PTT. IR780-
loaded MSNs (IMs) were coated with a layer of pre-prepared
CAR-T membranes using an extrusion method to fabricate tumor
specific CAR-T Cell membrane-coated nanoparticles (CIMs).
CIMs inherited the tumor targeting and a long circulation ability
from the membrane cloaking, and demonstrated enhanced anti-
tumor capabilities with minimal systematic toxicity both in vitro
and vivo (Ma et al., 2020b).

CONCLUSION AND PERSPECTIVES

This review has highlighted the current development of cell
membrane coated nanoparticles for cancer theranostic. We
present the overview of the application of RBC membrane
coating materials, cancer cell membrane materials, stem cell
membrane materials, and others on cancer theranostic. Cell
membrane coated nanoparticles have shown unique advantages
to enhance cancer therapy and imaging, but they still have

many problems need to be overcome in translating to the
clinic. For example, the yield of cell membrane extraction is
low, it often needs to culture a huge number of cells, and just
harvest a small amount of cell membrane, therefore cell isolation
and purification approach still requires future improvement.
There are various proteins are present on the cell membrane.
It also needs to identify the potential proteins and remove
unwanted proteins. Although a large number of cell membrane
coated nanoparticles have been developed for the integration
of cancer diagnosis and treatment, how many of their specific
functions have been developed, and whether they have realized
the functions envisioned by researchers, are the urgent problems
need to be proven. All in all, there is the need to establish standard
protocols for obtaining and testing cell membrane coating
production. However, the current evaluation of the therapeutic
and diagnostic effect of cell membrane coated nanoparticles
have been limited in preclinical studies. we hope that the
clinical translation of cell membrane coated nanoparticles can be
accelerated, which will make a positive impact on human health
and be of great economic value.
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