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Recent works have shown that the resting-state brain functional connectivity
hypernetwork, where multiple nodes can be connected, are an effective technique
for brain disease diagnosis and classification research. The lasso method was used
to construct hypernetworks by solving sparse linear regression models in previous
research. But, constructing a hypernetwork based on the lasso method simply selects
a single variable, in that it lacks the ability to interpret the grouping effect. Considering
the group structure problem, the previous study proposed to create a hypernetwork
based on the elastic net and the group lasso methods, and the results showed that the
former method had the best classification performance. However, the highly correlated
variables selected by the elastic net method were not necessarily in the active set
in the group. Therefore, we extended our research to address this issue. Herein, we
propose a new method that introduces the sparse group lasso method to improve
the construction of the hypernetwork by solving the group structure problem of the
brain regions. We used the traditional lasso, group lasso method, and sparse group
lasso method to construct a hypernetwork in patients with depression and normal
subjects. Meanwhile, other clustering coefficients (clustering coefficients based on pairs
of nodes) were also introduced to extract features with traditional clustering coefficients.
Two types of features with significant differences obtained after feature selection were
subjected to multi-kernel learning for feature fusion and classification using each
method, respectively. The network topology results revealed differences among the
three networks, where hypernetwork using the lasso method was the strictest; the
group lasso, most lenient; and the sgLasso method, moderate. The network topology
of the sparse group lasso method was similar to that of the group lasso method but
different from the lasso method. The classification results show that the sparse group
lasso method achieves the best classification accuracy by using multi-kernel learning,
which indicates that better classification performance can be achieved when the group
structure exists and is properly extended.

Keywords: hypernetwork, sparse group lasso, cluster coefficients based on pairs of nodes, multi-feature,
classification, depression
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INTRODUCTION

In recent years, neuroimaging techniques have become
increasingly popular for the exploration of interactions among
brain regions. Blood oxygen level-dependent (BOLD) signal
as a neurophysiological indicator on resting-state functional
magnetic resonance imaging (rs-fMRI) can detect spontaneous
low-frequency brain activity (Zeng et al., 2012). The interaction
between brain regions at rest can be denoted by a functional
connectivity network constructed by BOLD signals. Complex
brain network research can help elucidate the mechanisms
underlying mental disorders and possibly show relevant imaging
markers, which provide new perspectives for the diagnosis
and evaluation of clinical brain diseases (Nixon et al., 2018).
Therefore, brain function network models have been successfully
used to study the diagnosis and classification of neuropsychiatric
diseases, including epilepsy (Zhang et al., 2012), depression
(Kaiser et al., 2016), Alzheimer’s disease (Pievani et al., 2011),
and schizophrenia (Lynall et al., 2010).

According to image data obtained by fMRI, many analysis
approaches have been proposed to construct functional brain
connectivity network models, including correlation-based
approach (Bullmore and Sporns, 2009; Sporns, 2011; Wee
et al., 2012; Jie et al., 2014), graphical models (Bullmore et al.,
2000; Chen and Herskovits, 2007), partial correlation approach
(Salvador et al., 2005; Marrelec et al., 2006, 2007), and the sparse
representation approach (Lee et al., 2011; Wee et al., 2014). Most
existing studies have successfully applied the correlation-based
approach to the classification of patients with depression and
normal controls (Zeng et al., 2012; Ye et al., 2015; Monti and Hyv
Rinen, 2018); however, this approach can only capture pairs of
relationships without effectively expressing interactions among
multiple brain regions (Huang et al., 2010). In addition, there are
many false connections given the arbitrary selection of thresholds
based on the correlation network (Wee et al., 2014). Graphical
models are limited in that they are confirmative, rather than
exploratory, so it makes them inadequate for measuring brain
functional connectivity, because little prior knowledge is adopted
in studying brain functional connectivity (Huang et al., 2010).
One of the algorithms based on partial correlation network
models–the sparse inverse covariance matrix (SICE) estimating
the magnitude of connectivity–is not appropriate because of
the shrinking effect, and it is very sensitive to the regularization
parameters (Wee et al., 2014). Sparse representations have also
been proposed for building functional connectivity networks
(Lee et al., 2011). Wee et al. used the group lasso method based on
l2,1 regularized for building functional connectivity networks to
classify normal subjects and patients to estimate using the same
topology but connection networks with different connection
strengths (Wee et al., 2014). Yet, the network topology mode of a
particular group is ignored.

Most of the above-mentioned methods describe the
relationship between two brain regions. However, recent research
has provided evidence for interactions among multiple regions,
except for the direct relationship between two brain regions. The
latest neuroscience analyses have shown necessary higher-order
interactions in neuronal spiking, local field potentials, and

cortical activity (Montani et al., 2009; Ohiorhenuan et al., 2010;
Santos et al., 2010; Yu et al., 2011). Yu et al. (2011) compared the
properties of firing patterns among local clusters of neurons (300-
mm apart) with those of neurons separated by larger distances
(600–2, 500 mm) and reported that the local firing patterns
are distinctive; to elaborate, multi-neuronal firing patterns at
larger distances can be predicted by pairwise interactions, while
patterns within local clusters often show evidence of higher-
order correlations. Montani et al. (2009) simulated the effects
of higher-order interactions on the amount of somatosensory
information transmitted by synchronous discharge rates. Santos
et al. (2010) stated that the recording activity of units in paired
interactions does not describe well the pattern of neuronal
activity. Moreover, a previous study also indicated that a single
brain region will interact directly with a few other brain regions
(Huang et al., 2010). Therefore, pairwise relationships may not
be accurate in discovering the higher-order information on brain
network, while it may be essential for studying the pathological
basis of potential neuropsychiatric diseases.

Considering the limitations of the traditional functional
network approaches, several novel methods have been proposed,
and the hypernetwork model is one such example (Jie et al.,
2016). The above shortcomings of the conventional method
can be solved by appropriately constructing a hypernetwork.
The hypernetwork is based on the hypergraph theory that is
a continuation of the graph, where one edge (hyperedge) can
connect multiple nodes (Zhou et al., 2006). In neuroimaging,
each node in a hypernetwork refers to a brain region, and
each hyperedge comprises multiple nodes to represent the
relationship among multiple brain regions. In past years,
hypergraphs have been successfully applied in a variety of
medical imaging fields, including image segmentation (Dong
et al., 2015) and classification (Gao et al., 2015; Liu et al.,
2016). Some recent studies have provided associations between
neuroscience and hypergraphs (Davison et al., 2015; Gao
et al., 2015; Jie et al., 2016; Huang et al., 2018). For
example, Gao et al. used hypergraphs to combine multimodal
neuroimaging information to identify MCI (mild cognitive
impairment) subjects (Gao et al., 2015). Davison et al.
found the existence driven by significant co-evolution within
groups of functional interactions in strength over time rather
than dyadic (region-to-region) information (Davison et al.,
2015). Jie et al. constructed a hyper-connectivity network
of brain functions by using a sparse representation method
(Jie et al., 2016). Wang et al. mined network phenotype
between genetic risk factors and disease status by a novel
diagnosis-aligned multi-modality regression method, in which
network connectivity information was represented using a
hypernetwork based on sparse representation (Huang et al.,
2018). Gu et al. reported a hypergraph representation method
using BOLD rs-fMRI data, which divided the hyperedge
into three different categories, namely bridges, stars, and
clusters, to represent the binary, focus, and spatial distribution
of architecture, respectively (Gu et al., 2017). Further, a
novel hypergraph learning-based approach has recently been
proposed to represent complex connectivity patterns in multiple
brain regions (Zu et al., 2018). The remaining interesting
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hypergraph applications have also been found in protein
function prediction and pattern recognition (Ren et al., 2011;
Gallagher and Goldberg, 2013).

In a recent study, Jie et al. (2016) created a brain function
hypernetwork to diagnose brain diseases. According to the rs-
fMRI time series, the lasso method was used to solve the sparse
linear regression model to create a hypernetwork. By using a
sparse linear model, one region can be represented as a linear
combination of other regions, which represents the interaction
between that particular region and other regions, as well as
forcing the meaningless or false interaction to be zero. However,
the limitation of using the lasso method is that when selecting a
specific brain region, if there is a strong correlation among other
brain regions in the construction of hyperedges, the specific brain
region often arbitrarily selects one of a group of brain regions
in which the group structure exists (Zou and Trevor, 2005).
However, studies have shown that the natural group structures
are very often among brain regions, which tends to work together
to realize a certain function (Liu et al., 2018). We conducted
relevant research to address the problem of group structure in
the brain network (Guo et al., 2018). The elastic net and group
lasso methods were introduced to construct a hypernetwork,
the results of which showed that the elastic net method could
better solve the group structure problem and achieve superior
classification performance than the latter. The elastic net method
could solve the group effecting problem (Zou and Trevor, 2005),
because the l2 penalty leads to group effecting, i.e., it can
tend to make highly correlated variables have similar regression
coefficients with non-zero. However, it should be noted that this
does not generally mean that highly correlated variables belong
to the active set in the group (Sjöstrand et al., 2018).

There are multiple methods to create a hypernetwork. The
scientific issues concerned in this article are mainly studied
from the perspective of sparse representation methods. Based
on the sparse representation method, different problems can be
solved using different norm regularizations, such as the existing
tree structure problem (Liu and Ye, 2010) and group structure
problem (Ma et al., 2007) in the field of bioinformatics. In
the current study, we mainly focused on whether the existence
of group structures and different solutions of group structures
will improve the diagnosis of brain diseases. Considering the
existence of a potential group structure among the brain regions,
we extended Guo et al.’s research (Guo et al., 2018) and further
introduced the sparse group lasso (Friedman et al., 2010; Ogutu
and Piepho, 2014; Matsui, 2018) method to solve the sparse
regression model, improve the hypernetwork construction, and
solve the group structure problem. The sparse group lasso
method is a method of mixing lasso and group lasso, selecting
both intergroup variables and variables in the group, which is
a bi-level selection method. This method can effectively remove
unimportant groups as well as unimportant individual variables
within important groups (Friedman et al., 2010; Ogutu and
Piepho, 2014). In other words, if there is a strong correlation
between a specific brain region and several brain regions in a
group, the specific brain region will not select the entire group,
rather it will have several brain regions that are truly highly
correlated. Thus, to prove the effectiveness of the proposed

method, this article introduces the traditional lasso method,
group lasso method, and sparse group lasso method to construct
hypernetworks for related comparison.

Besides, in the previous study, only the clustering coefficient
of a single node was involved as a feature extraction method,
which is similar to the definition of the clustering coefficient
in the conventional graph. However, multiple studies have
shown a significant overlap between real network neighborhoods,
wherein not only are neighbor nodes around individual vertices
more likely to overlap but also that single sides have greater
cohesiveness around individual edges (Goldberg and Roth, 2003;
Latapy et al., 2008; Gallagher and Goldberg, 2013). Therefore,
to more accurately clarify the mechanism of neuropsychiatric
diseases and comprehensively evaluate disease performance, this
study introduced the mutual clustering coefficients (clustering
coefficients defined on a pair of nodes) that are widely used in
hypernetworks as another feature extraction method (Goldberg
and Roth, 2003; Estrada and Rodr Guez-Vel Zquez, 2006;
Latapy et al., 2008; Gallagher and Goldberg, 2013). Subsequently,
the non-parametric test method was used to select features
with significant difference between the two types of clustering
coefficient indicators, and the two sets of significant difference
indicators were combined for multi-kernel learning, thereby
improving the classification performance and providing more
accurate and relevant imaging markers.

The main focus of this paper includes: (1) construction
of the brain function hypernetwork by using the traditional
lasso method, group lasso method, and sparse group lasso
method; (2) extraction of features by using two types of
hypernetwork clustering coefficients that express the brain
functional network topology more fully, wherein features with
differences were selected using non-parametric tests; and (3) use
of multi-kernel SVM to classify significantly different features.
The classification results revealed that the sparse group lasso
method achieved the highest accuracy among these methods.
In addition, based on these three methods, we analyzed the
network topology and comparative analysis by using features
with significant differences. Furthermore, we analyzed the
influence of model parameters and classifier parameters on
classification performance.

MATERIALS AND METHODS

Method Framework
The process framework and the construction and analysis of
brain functional hypernetwork based on the sparse group lasso,
traditional lasso, and group lasso methods mainly includes data
collection and preprocessing, construction of the hypernetwork,
feature extraction, feature selection, and classification. Figure 1
shows the entire flowchart. Specifically, this process consists of
the following steps:

(1) Data collection and preprocessing.
(2) Construction of the hypernetwork: for each subject, we used

a sparse linear regression model to create a hypernetwork,
i.e., sparse learning (sparse group lasso method) was used
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FIGURE 1 | The flowchart of experimental process, including (A) data acquisition and preprocessing, (B) brain functional hypernetwork construction, (C) feature
extraction based on two types of features, and (D) feature selection and classification.

to optimize the objective function and the selected region
was represented by a linear combination of time series of
other regions.

(3) Feature extraction and selection.

(3.1) We calculated the clustering coefficients defined on a single
node using the definition in the traditional graph; in other
words, we evaluated the proportion that node neighbors are
neighbors of each other. The concept was applied to the
hypernetwork in the same manner, and the local clustering
coefficient of each node was obtained.

(3.2) Next, we calculated the clustering coefficients defined
on pairs of nodes by using the definition of clustering
coefficients commonly used in hypernetworks, i.e., we
determined how many common edges are shared by
a pair of nodes.

(3.3) Non-parametric tests were used to select brain regions from
two different types of local clustering coefficients.

(4) Classification model construction.

(4.1) The corresponding classifier was constructed by
classification features that combined the features with
significant differences selected by two different types of
local clustering coefficients.

(4.2) The cross-validation method was used to test the classifier
and obtain the final classification result.

Data Acquisition and Preprocessing
This study was performed according to the recommendations of
the medical ethics committee of the Shanxi Province (reference
number: 2012013). All participants signed a written agreement
in light of the tenets of the Helsinki Declaration. A total of 66
participants were recruited, including 38 first-episode, drug-free
patients with depression (15 male; mean age: 28.4 ± 9.68 years,
range: 17–49 years) and 28 healthy subjects (13 male; mean age:
26.6 ± 9.4 years, range: 17–51 years). All subjects were right-
handed. A resting-state fMRI scan was carried out for all subjects
with a 3T magnetic resonance scanner (Siemens Trio 3-Tesla
scanner, Siemens, Erlangen, Germany) (see Table 1 for details on
subject’s information).

Data acquisition was carried out at the First Hospital of Shanxi
Medical University by radiologists familiar with MRI. During the
scan, subjects were asked to relax and close their eyes, but remain
awake. The scan parameters were set as follows: axial slices = 33,
repetition time (TR) = 2000 ms, echo time (TE) = 30 ms,
thickness/skip = 4 /0 mm, field of view (FOV) = 192 × 192 mm,
matrix = 64× 64 mm, flip angle = 90◦, and volumes = 248. Owing
to the instability of the initial magnetic resonance signal and the
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TABLE 1 | Demographics and clinical characteristics of the study subjects.

NC (n = 28) MDD (n = 38) P-value

Age (years) 17–51 (26.6 ± 9.35) 17–49 (28.4 ± 8.99) 0.41a

Gender (male/female) 13/15 15/23 0.55b

Handedness (R/L) 28/0 38/0 –

HAMD NA 15-42 (22.8 ± 13.19) –

Data are presented as the range (mean ± SD). HAMD, Hamilton Depression Rating
Scale; MDD, major depressive disorder. NA, not applicable; NC, normal controls.
aP-values was calculated by two-sample two-tailed t-test; bP-value was computed
by two-tailed Pearson’s χ 2 test.

adaptability of the subject to the environment, the time series of
the first 10 functional images were discarded (see Supplementary
Text S1 for detailed scan parameters).

The dataset was preprocessed using the SPM8 package1.
Time slice correction and head movement correction were first
performed. Then, two patient samples and two normal samples
were discarded because of more than 3-mm head movement or
3 degrees of rotation during the correction process, which were
not included in the 66 subjects’ dataset. The corrected image was
obtained by 12-dimensional optimization affine transformation,
which normalized to 3 mm × 3 mm × 3 mm voxels in the
Montreal Neurological Institute (MNI) standard space. Linear
dimensionality reduction and bandpass filtering (0.01–0.10 Hz)
were finally performed to avoid low-frequency drift and high-
frequency bio-noise.

Construction of Hypernetwork
Hypergraph Graph
In neuroimaging, graph theory as a branch of mathematics
has been widely used in brain network analysis, mainly to
discretize the brain into different nodes and their interconnection
edges (Sporns, 2012; Fornito et al., 2013). Most previous studies
constructed network models using simple graphs, where the
brain region was represented by nodes and the connections
between two nodes was represented by an edge; this can only
express pairwise correlation between brain regions. However, an
increasing number of studies have proven that there is a higher-
order relationship in the brain regions’ interactions. Therefore,
to overcome this limitation, we introduced a hypernetwork,
different from the single graph, where one hyperedge can connect
more than two nodes. A simple graph was a special case of
hypergraph, where every edge only connected two vertices. In
brief, a hypergraph is an extension of a traditional graph model
in which each hyperedge can be connected to any number
of vertices. Compared with traditional graphs, hypergraphs
focus more on relationships than nodes. This property of the
hypergraph makes it easier to express multivariate relationships
in complex networks. Hypergraphs have been applied in many
fields such as social networks, food webs, reaction and metabolic
networks, neural networks, protein-protein interaction networks,
collaboration network, and other application fields because of the
advantages it offers of exploring complex variable relationships
(Mäkinen, 1990). In real network, a large number of data objects

1http://www.fil.ion.ucl.ac.uk/spm

are not independent and have complex and diverse associations
among them. Several studies have found that multivariate
relationships can more naturally express the hidden internal
connections and patterns in information (Estrada and Rodr
Guez-Vel Zquez, 2006). Supplementary Figure S1 shows an
example of a hypergraph.

From the point of view of a mathematical expression, the
hypergraph can be represented by H = (V ,E) (Kaufmann et al.,
2016), in which V = {v} represents the set of vertices, E = {e}
represents the hyperedge set, and the hyperedge e ∈ E is a subset
of V. The hypergraph can be represented by a | V| × | E|
incidence matrix H and is defined as follows:

H(v, e) =
{

1, if v ∈ e
0, if v /∈ e

(1)

where H(v, e) represents the corresponding element in the
incidence matrix, v ∈ V represents the node, e ∈ E represents
the hyperedge, row element of the incidence matrix refers to the
node, and the column element refers to the hyperedge. If the node
v belongs to the hyperedge e, then H(v, e) = 1, and conversely, if
the node v does not belong to hyperedge e, then H(v, e) = 0.

For vertex v ∈ V , its node degree based on H is defined as:

d(v) =
∑
e∈E

H(v, e) (2)

Similarly, the edge degree of the hyperedge e ∈ E is expressed as:

δ(e) =
∑
v∈V

H(v, e) (3)

Dv and De represent the diagonal matrices of node degrees d(v)
and hyperedge degrees δ(e), respectively.

Sparse Linear Regression Model
In this study, the brain region was divided into 90 anatomical
regions of interest (ROIs) according to the anatomical automatic
labeling (AAL) (Tzourio-Mazoyer et al., 2002) template (45
ROIs per hemisphere), with each ROI representing a node in
the functional brain network (except for the cerebellum). The
average time series for each region was obtained by regression
of mean cerebrospinal fluid (CSF) and white matter signals as
well as six parameters from motion correction. The functional
hypernetwork was constructed using linear regression methods
(Jie et al., 2016) based on rs-fMRI time series. By using a
sparse linear regression model, one region could be represented
as a linear combination of other regions, which exhibited an
interaction of a particular region with other regions, while forcing
a meaningless or false interaction to be zero.

The average time series of m-th ROI for n-th subject, xn
m =

An
mαn

m + τn
m, can be viewed as a response vector, which can

be estimated as a linear combination of time series of other
ROIs. The sparse linear regression model is specifically expressed
as follows:

xn
m = Amn ∗ αmn + τnm (4)

where xnm = [xnm(1); xnm(2); ...; xnm(T)] refers to the average
time series of the m-th ROI for n-th subjects, with T
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being the number of time points in the time series; An
m =

[xn1, ..., xn(m−1), 0, xn(m+1)..., xnM] denotes the data matrix of
the m-th ROI (all the average time series except for the
m-th brain region, and the average time series of the m-th
ROI being set to 0); αnm = [αn1, ..., αn(m−1), 0, αn(m+1)..., αnM]

denotes the coefficient vector that quantifies the degree of
influence from the other ROI to the m-th ROI; and τm
denotes a noise term, being Gaussian. The ROIs corresponding
to the non-zero element in αnm are the ROIs interacting
with the particular ROI; by contrast, the corresponding ROI
of the zero element is conditionally independent with the
m-th ROI.

Construction of Hypernetwork Based on Lasso
Method
In existing literature, the brain function hypernetwork is
constructed by using the lasso method to solve the sparse linear
regression model (Jie et al., 2016), and its optimization objective
function is as follows:

minαm ||x
n
m − An

mαn
m||2 + λ||αn

m||1 (5)

This is a well-known NP problem, which is usually estimated
by solving the l1 norm problem, and xn

m, An
m, and αn

m have the
same meaning as in equation (4). ||.||2 refers to the l2 norm,
||.||1 refers to the l1 norm, and λ > 0 refers to a regularization
parameter to control the sparsity of the connection matrix. It
is worth noting that different λ values correspond to different
sparsity. If the λ value is larger, the connection network is
sparser; that is, there are more zeros in the αn

m. On the contrary,
the connection network is denser when the λ value is smaller;
in other words, there are more non-zeros in the αn

m. Thus, λ

requires a range. However, different experimental data will have
different λ ranges. In our experiment, the lasso, gLasso, and
sgLasso methods in the SLEP package (Liu et al., 2013) were used
to solve the optimization problem. In this software package, in
order to avoid the difficulty of regularization parameter selection,
parameter control is added to λ value. The λ should be specified
as a ratio whose value lies in the interval (Zeng et al., 2012),
but the actual regularization value is λ = λ × λmax, where
λmax is computed such that 0 resides in the subgradient (set)
at 0; that is, the solution is all zeros. λmax is different under
different methods, which is dependent on the regularization used.
Based on the average time series, the lasso method is executed
to indicate the interaction between this node and its neighbors.
Specifically, for a specific brain region, based on the time series,
by fixing λ value, and a weight vector αn

m will be generated, the
brain region corresponding to non-zero elements in αn

m and this
brain region form a hyperedge. Further, in order to reflect the
multi-level interactive information of the brain regions, for a
centroid ROI, the λ value (0.1, 0.9) is changed to generate a set
of hyperedges. Then each brain region is regarded respectively
as a specific brain region to calculate their corresponding
hyperedges. Finally, the hyperedges corresponding to all brain
regions constitute a hypernetwork, which is a matrix of 90 ∗ 810
for each subject.

Construction of Hypernetworks Based on the Group
Lasso Method
Although the lasso method has been successfully applied in many
fields, it has limitations. The lasso often randomly chooses only
one variable from a group of several highly correlated variables
(Zou and Trevor, 2005). To elaborate, when choosing a group of
more relevant brain regions, the particular brain region tends to
choose one brain region with a group structure and regardless
of which one, which results in some correlated brain regions not
being selected, eventually leading to a poor ability to interpret
group structure information. The ideal hyperedge construction
method should be able to select the interacting brain regions as
accurately as possible. To solve this problem, we considered the
group structure problem among brain regions in our previous
research, and introduced the group lasso method to improve
construction of the hypernetwork.

The group lasso method is a generalization of the lasso method
(represented by gLasso) and is based on a linear regression model.
This method efficiently carries out variable selection on the basis
of a predefined set of variables (Meier et al., 2008) to solve the
limitation that only selects a single variable based on the lasso
method. Because the gLasso method selects variables based on
group level, a clustering method was needed to distinguish the
strongly related brains into a group before using the gLasso
method to create a hypernetwork; the method was then used to
construct the hyperedge. In other words, when the hypernetwork
is constructed, we must first cluster according to the average
time series of ROIs to obtain the grouping relationship of 90
brain regions. Here, we used the k-medoids algorithm (Park
and Jun, 2009), where the pairwise similarity between brain
regions was first computed: the larger the value, the more similar
the two samples are. When clustering, all brain regions were
divided into k groups, where each group meant a class of objects
and the relationship between objects and groups had to satisfy
the following conditions: (1) each group implied at least one
object and (2) each object belonged to a group. Moreover, the
k-means++ (Arthur and Vassilvitskii, 2007) was adopted to
select the k initial cluster centers to ensure the stability of the
cluster. A point was randomly selected as the first initial cluster
center, and then the replacement center was randomly selected
from the remaining data points with a probability that was
proportional to the distance of the data point from the nearest
cluster center point. Clustering was repeated 10 times to select
the best clustering effect as the final result. It is noteworthy
that the setting of k in clustering affects network topology and
classification performance. In this study, we observed that the
gLasso method achieved the highest classification accuracy when
k was set to 48 (detailed analysis mentioned in Methodology
section). Then, the gLasso method was used to construct the
hypernetwork by solving the sparse linear regression model. The
following is the optimization objective function:

minαm ||x
n
m − An

mαn
m||2 + β

k∑
i=1

||αn
mGi||2,1 (6)

where β is l2,1-norm regularization parameter, which is a critical
value of l1-norm and l2-norm penalty that can be used to
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make variable selections at the group level (Yuan and Lin, 2006;
Friedman et al., 2010). Different β values correspond to different
sparsity. If the β value is larger, the model is sparser and fewer
groups are selected. To elaborate, in case of a group of brain
regions where their pairwise correlations are comparatively high,
the gLasso model tends to regard all brain regions of the group
as a whole to decide whether it is important for the problem.
αn

m s classified into k non-overlapping groups by clustering, and
αn

mGi indicates the i-th group. In the same way, the hyperedges
were constructed based on the ROIs corresponding to the non-
zero elements in αn

m; that is, hyperedges denote the centroid
ROI and fewer other ROIs, and the node was represented by
ROI. A hyperedge was produced in a selected ROI, and a
group of hyperedges were generated by varying the lambda
value from 0.1 to 0.9 in increments of 0.1 for a particular ROI.
Accordingly, the hypernetwork was constructed based on the
gLasso method by considering every ROI as a centroid ROI.
Finally, a 90∗810 matrix is generated; that is, a hypernetwork is
constructed for a subject.

Construction of Hypernetwork Based on the Sparse
Group Lasso Method
From the above research mentioned, gLasso considers the entire
group as a whole and determines whether it is essential to
the problem. Although the gLasso method lists a set of sparse
groups, if a group is included in the model, all coefficients
in that group will be non-zero. Sometimes, we preferred to
include both groupwise sparsity and intragroup sparsity. For
example, if an ROI is used as the predictor, some particularly
“important” brain regions in multiple brain region interactions
should be identified as accurately as possible. However, this
method does not generate sparsity within a group. That is,
several brain regions with a group structure in the brain
functional hypernetwork have a high correlation with the
selected brain regions, but the gLasso method considers that
all brain regions in the group are non-zero; in other words,
all brain regions were believed to have a high correlation
with selected brain regions in the gLasso method. Thus,
the hypernetwork based on the gLasso method is rather
loose, there are likely many fake connections, or some useful
connections are lost.

Therefore, the sparse group lasso (represented by sgLasso)
(Friedman et al., 2010) method was introduced to create a
hypernetwork. This method is still based on a linear regression
model. The variable in this method was selected not only at the
group level but also at a single variable level; that is, variables
within groups and groups can be freely chosen. In a functional
brain hypernetwork, if a particular ROI is correlated highly with
one or several brain regions with a group structure, the method
does not select all ROIs in the group, rather only one or more
brain regions of the group associated with a selected ROI. Indeed,
if the group is highly correlated with a centroid ROI, the entire
group will be selected, such that some fake or false connections
can be filtered out and some useful connections retained.

Similar to the gLasso method, clustering was adopted before
creating the hyperedge, and then the sgLasso method was
used to construct the hyperedge by solving the sparse linear

regression model. The method is represented by the optimization
objective function:

minαm ||x
n
m − An

mαn
m||2 + λ1||α

n
m||1+λ2

k∑
i=1

||αn
mGi||2 (7)

αnm is divided into k non-overlapping tree groups
(αnmG1 ,αnmG2 , . . . , αnmGk) by clustering, and Gi is a node
with tree structure. λ1 and λ2 are regression parameters, with
λ1 being used to adjust the sparsity of intra-groups to control
the number of non-zero coefficients in non-zero groups, and
λ2 being used to adjust group level sparsity (Yuan and Lin,
2006; Friedman et al., 2010) to control the number of groups
with non-zero coefficients. This model is a combination of
traditional lasso and gLasso. The gLasso estimate is obtained
when λ1 = 0, and the lasso estimate is acquired when λ2 = 0.
It should be noted that the model looks somewhat similar to
the elastic net model, but it is different because the l2 penalty is
not differentiated at 0, so some groups are completely zeroed.
However, in each non-zero group, it performs an elastic net fit
(Simon et al., 2013). Like the gLasso method, a hypernetwork
was constructed for each subject, where the ROI was regarded
as the node, and the hyperedge comprised the m-th ROI and
the ROIs corresponding to the zero elements in αnm. For each
ROI, a set of hyperedges were produced by fixing the λ2 value
and varying the λ1 value from 0.1 to 0.9 in increments of 0.1.
Finally, a hypernetwork is a 90∗810 matrix. In this experiment,
the sgLasso method achieved the highest accuracy (87.12%) of
all three models, when λ2 was equal to 0.4 (see the Methodology
Section about relative analysis).

Feature Extraction and Selection
After the functional connection hypernetwork being created, it
was necessary to select a representative feature set that could
identify the target. This required feature definition and selection
of the property value of each vertex in the hypernetwork as
the feature. In the hypernetwork analysis of brain function,
there are many indicators that can reflect the characteristics
of nodes and the whole network. However, in the field of
medical imaging, most studies use the clustering coefficient
as a local attribute index to improve diagnostic performance
and identify biomarkers associated with disease pathology. In
our previous study, the clustering coefficient defined on a
single node was only involved as a feature extraction method.
However, according to several studies, there is a significant
overlap between neighborhoods in the real network, meaning in
addition to the neighboring nodes between individual vertices
being more likely to overlap, the individual edges also show
greater cohesiveness (Goldberg and Roth, 2003; Latapy et al.,
2008; Gallagher and Goldberg, 2013). Therefore, to accurately
and comprehensively evaluate disease performance, this study
introduced the mutual clustering coefficient defined on pairs
of nodes that have been widely applied in the hypernetwork
as another feature extraction method. The specific definition is
as follows:
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Feature Extraction Based on Clustering Coefficients
Defined by Single Nodes
After the hypernetwork model was completed by using the
above three methods, feature extraction was required for
three hypernetworks. From different views, we introduced the
clustering coefficients (HCC1, HCC2, HCC3) of three different
definitions in the hypergraph to describe the local aggregation of
the hypernetwork (Gallagher and Goldberg, 2013). The clustering
coefficients were defined on a single vertex, which was the same
as that of the traditional graph; specifically, we determined what
proportion of a node’s neighbors are neighbors of each other.
The first type of clustering coefficient, HCC1 (v), captures the
number of adjacent nodes that have connections not facilitated
by node v. The second type, HCC2 (v), emphasizes the number
of adjacent nodes that have connections facilitated by node
v. The third type, HCC3 (v), denotes the amount of overlap
amongst adjacent hyperedges of node v. The formula is as follows:

HCC1(v) =
2
∑

u,t∈N(v) I(u, t,¬v)
|N(v)| (|N(v)− 1|)

(8)

HCC2(v) =
2
∑

u,t∈N(v) I′(u, t, v)
|N(v)| (|N(v)| − 1)

(9)

HCC3(v) =
2
∑

e∈S(v) (|e| − 1)− |N(v)|
|N(v)| (|S(v)| − 1)

(10)

where u, t, and v represent nodes; N(v) = {u ∈ V : ∃e ∈
E, u, v ∈ e}, where V refers to the set of nodes, E refers
to the set of hyperedges, e refers to hyperedge, and N(v)
refers to a set of other nodes included in the hyperedge
containing node v; when ∃ei ∈ E and u, t ∈ ei, but v /∈ ei,
then I(u, t,¬v) = 1, if not, then I(u, t,¬v) = 0; S(v) = {ei ∈

E : v ∈ ei}, in which v represents a node, ei represents a
hyperedge, and S(v) represents the set of hyperedges containing
node v.

These three clustering coefficients reflect the local clustering
properties based on a single vertex of the hypernetwork from
different angles. For each clustering coefficient definition,
we separately extracted features from the connectivity
hypernetwork. Multiple linear regression analyses were
performed to measure the influence of confounding variables
such as age, sex, and educational status on each network property.
As the three clustering coefficients refer to local attributes of
hypernetwork, for the sake of simplicity, the average clustering
coefficient (average HCC1, average HCC2, and average HCC3)
of each subject (averaged for 90 brain regions) was calculated as
an independent variable for the multivariate linear regression,
where insignificant correlation was expressed between network
indicators and confounding variables (see Supplementary Text
S2 for details).

Feature Extraction Based on Clustering Coefficients
Defined by Pairs of Nodes
Multiple studies have demonstrated that real networks can be
represented by small world network, and there is a significant
overlap between their neighbors. In this real network, not

only are neighbor nodes between individual vertices more
likely to overlap, but they also show greater neighborhood
cohesiveness around individual edges (Goldberg and Roth,
2003; Latapy et al., 2008; Gallagher and Goldberg, 2013).
Therefore, clustering coefficients between pairs of nodes are
defined by the extension of traditional clustering coefficients;
that is, the number of how many common edges a pair of
nodes share. This method has been widely applied in the
fields of hypernetworks (Gallagher and Goldberg, 2013). In the
hypergraph analysis, several methods have been proposed to
calculate the clustering coefficients based on pairs of nodes
(Goldberg and Roth, 2003; Estrada and Rodr Guez-Vel Zquez,
2006; Latapy et al., 2008; Gallagher and Goldberg, 2013). In
our study, we introduced several clustering coefficients based
on pairs of nodes that have been widely used in hypergraph
research to comprehensively assess diagnostic performance and
better identify biomarkers associated with disease pathology.
Table 2 presents the definitions and calculation formulae for
these characteristics.

After calculating the clustering coefficients of the pairs of
nodes, the clustering coefficients of the single node are obtained
by averaging the clustering coefficients of the node and all its
neighboring nodes (Latapy et al., 2008).

COMHCC (v) =

∑
u∈N(v) COMHCC(u, v)

|N(v)|
(11)

COMHCC(u,v) refers to the clustering coefficient between pairs
of nodes by the above method. N(v) = {u ∈ V : ∃e ∈ E, u, v ∈ e},
where V represents the set of nodes, E represents the set of edges,
e represents a hyperedge, and N(v) represents the collection of
other nodes contained in the hyperedge included in the node v.

The clustering coefficients defined on pairs of nodes reflected
the neighborhood cohesiveness around individual edges from
different angles; next, the clustering coefficient of each node
was calculated to more fully express the local clustering
property of the hypernetwork. According to the clustering
coefficient definition, we separately extracted the features
from the connectivity hypernetwork. Similarly, multiple linear
regression analyses were carried out to evaluate the effects
of confounding variables (age, sex, and educational status)
for each network index. To simply calculate, the average
clustering coefficients were computed (mean COMHCC1, mean
COMHCC2, mean COMHCC3, mean COMHCC4, and mean
COMHCC5) for each subject (averaged for 90 brain regions) as
independent variables for further multivariate linear regression.
The results showed that significant correlation had not been
found between the clustering coefficients based on two nodes
and confounding variables (see Supplementary Text S3 for
relative results).

Feature Extraction
Features extracted from a hypernetwork may contain some
irrelevant or redundant information. Therefore, to select key
features for classification, the most discriminative features
were selected according to different statistical analysis. For
patients with major depressive disorder (MDD) patients

Frontiers in Neuroscience | www.frontiersin.org 8 February 2020 | Volume 14 | Article 60

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00060 February 10, 2020 Time: 14:58 # 9

Li et al. Classification Method for Brain Functional Network

TABLE 2 | Definitions and calculation formulae of clustering coefficients defined on a pair of nodes.

Properties Definitions Formulas

COMHCC1 COMHCC1 (u, v) emphasizes the overlap between neighborhoods of
nodes: when u and v have no adjacent edges in common, then
COMHCC1 (u, v) = 0. When they have the same adjacent edges, then
COMHCC1(u, v) = 1. When their adjacent edges partially overlap, then
the value is in between 0 and 1 (Latapy et al., 2008).

COMHCC1 (u, v) =
|S(u)∩ S(v)|
|S(u)∪ S(v)|

COMHCC2 COMHCC2 (u, v) emphasizes the fact that neighborhoods (both small
or large ones) may overlap very significantly: it is 1 only when the two
neighborhoods are the same and it often decreases rapidly if the
degree of one of the involved nodes increases. It captures the fact that
nodes with similar degrees have high neighborhood overlaps (Latapy
et al., 2008).

COMHCC2 (u, v) =
|S(u)∩ S(v)|

max {|S (u)| , |S (v)|}

COMHCC3 COMHCC3 (u, v) captures the fact that small neighborhoods may
intersect significantly large ones; it is equal to 1 whenever one of the
neighborhoods is included in the other (Latapy et al., 2008).

COMHCC3 (u, v) =
|S(u)∩ S(v)|

min {|S (u)| , |S (v)|}

COMHCC4 COMHCC4 (u, v) is an intermediate between the meet/max and the
meet/min standards (Gallagher and Goldberg, 2013). COMHCC4 (u, v) =

|S(u)∩ S(v)|√
|S (u) ||S (v) |

COMHCC5 COMHCC5 (u, v) can be interpreted as a p-value; the probability of
obtaining a number of mutual neighbors between vertices v and w at or
above the observed number by chance (Gallagher and Goldberg, 2013)

COMHCC5 (u, v) =

−log
min{|S(u)|,|S(v)|}∑

i=|S(u)∩ S(v)|

 |S(u)|
i


 Total − |S(u)|

|S (v)| − i


 Total

|S(v)|


u and v represent nodes, S(v) = {ei ∈ E : v ∈ ei}, where v represents a node, ei represents a hyperedge, S(v) represents the set of hyperedges containing node v and
Total represents total number of hyperedges.

and normal control (NC) subjects, the Kolmogorov–
Smirnov non-parametric test was performed (Fasano and
Franceschini, 1987) for 270 and 450 node attributes generated
by clustering coefficients extracted by two different types,
which was further corrected using the Benjamini and
Hochberg false-discovery rate (FDR) method (q = 0.05)
(Benjamini and Hochberg, 1995). After the Kolmogorov–
Smirnov (KS) non-parametric permutation test, the local
properties with significant difference were fused by multi-
kernel learning as a classification feature to construct the
classification model.

Classification and Feature Validation
The classification model was constructed by using the local
attributes of the hypernetworks with significant differences,
which were regarded as input features in the classification model
construction process. In this paper, we combined the selected
classification input features and used the support vector machine
(SVM) classification algorithm to construct the classifier model
and classify the experimental data. Subsequently, we used cross-
validation to evaluate the classification performance.

The MDD classification was performed by providing
complementary information each other by two different types
of clustering coefficients. Technically, integrating multi-features
can improve the classification performance (Huang et al., 2019).
As mentioned in Zhang et al. (2011), kernel based feature
combinations using multi-kernel learning provide more flexible
feature fusion by estimating different weights of features from
different modalities, which can provide better methods from

different types of clustering coefficients (De Bie et al., 2007).
Typically, kernel integration uses a linear combination of
multiple kernels:

k
(
x, y

)
=

M∑
i=1

aiki(x, y) s.t
M∑

i=1

ai = 1 (12)

where ki(x, y) represents the centered kernel function between
subjects x and y in the clustering coefficient of the i-th type.
M denotes the number of kernel matrices we built (M = 2),
and ai denotes a non-negative weight parameter. Here, multi-
kernel learning was adopted to effectively fuse features from
two different types of clustering coefficients by combining
multiple kernels into one mixed kernel. Then, traditional a SVM
classifier was used to classify the mixed kernel based on the
libsvm package2.

The leave-one-out cross-validation (LOO-CV) method was
used to evaluate classification performance. For example, if there
were N samples, each sample was used as a test set, and the
remaining N−1 samples were used as the training set. The
classification set was finalized by establishing different models
(N), and the average of the classification accuracy of the N
models was considered the classification result. It should be
noted that classification features need to be normalized before
obtaining the classification model. In the gLasso or sgLasso-based
methods, because the initial random selection of the seed points
during clustering might affect the final classification result, we

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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performed 50 experiments to select the arithmetic mean as the
final classification result.

RESULTS

Functional Network Topology
Comparison Among Three Methods
To infer whether there were significant differences among the
hypernetworks constructed based on the traditional lasso, gLasso,
and sgLasso methods, we carried out the following analysis:

The subjects were selected from both the normal and MDD
groups, in which hyperedges were analyzed. The degree of
edges of the hyperedges was calculated based on the three
methods, whose distributions are shown in Figure 2. The results
revealed that the ratio of the hyperedge degree distribution
among three methods was different, both in the MDD and
normal control groups. The hyperedges constructed by the lasso
method are mostly distributed in the range of 2–7 (NC group:
2–7[92%], 8–13[7%]; MDD group: 2–7[91%], 8–13[8%]), where
the distribution is relatively narrow. On the contrary, the range
of hyperedge degree distribution in the gLasso method is mainly
2–19 (NC group: 2–7[33%], 8–13[47%], 14–19[15%]; MDD
group: 2–7[36%], 8–13[43%], 14–19[16%]). The results showed
that some hyperedges usually contain more nodes and their
network is relatively loose. But the edge degree in the sgLasso
method mostly lay in the range 2–13 (NC group: 2–7[72%], 8–
13[21%]; MDD group: 2–7[75%], 8–13[19%]), which showed the
distribution is relatively temperate.

The average clustering coefficient (HCC1-HCC3 and
COMHCC1-COMHCC5; averaged for 90 brain regions) was
computed for each subject, and non-parametric permutation
tests were implemented to compare hypernetwork differences
among the three methods by using the average clustering
coefficient (HCC1-HCC3, COMHCC1-COMHCC5) in the
MDD and NC groups separately, which was further corrected
by the FDR method. Figures 3, 4 show the average clustering
coefficients of the three hypernetworks in the two groups’ feature
extraction methods, respectively, which showed that there were
differences in the three functional hypernetworks.

For each brain region, the mean cluster coefficient of each
group of (NC and MDD) subjects under the hyper-network
constructed by the three methods was calculated for each type
of cluster coefficient, and the obtained data was normalized.
Regression analysis was performed by the sgLasso and other
two methods to verify the association of the network indicators
obtained by all three methods. The results indicated that the
sgLasso method had the strongest correlation with the traditional
gLasso method and a weak association with the traditional lasso
method (Figures 5, 6).

Differential Brain Region
After hypernetwork construction and features extraction based
on the traditional lasso, gLasso, and sgLasso methods, a non-
parametric permutation test was performed using the extracted
features to evaluate differences between the MDD and NC
groups, and the result was corrected using the FDR method.

Table 3 lists the brain regions computed by two different
types of clustering coefficients based on these three methods
that showed significant differences. There were fewer overlapping
regions obtained by two sets of clustering coefficients in
every method. The Lasso method mainly focuses on the left
central sulcus, partial limbic lobe (right parahippocampal gyrus),
partial occipital lobe (right inferior occipital gyrus), and partial
temporal lobe (right middle temporal gyrus). The gLasso method
mainly concentrates on the partial frontal lobe (left inferior
frontal gyrus); partial limbic lobe (left median cingulate and
paracingulate gyri, right median cingulate and paracingulate
gyri, right parahippocampal gyrus, left precuneus); and partial
occipital lobe (right lingual gyrus); while the sgLasso method
mainly focuses on the partial parietal lobe (right central
sulcus), part of the limbic lobe (right posterior cingulate gyrus),
and bilateral thalamus (Figure 7). Meanwhile, all different
brain regions obtained by the two clustering coefficients were
compared, in which the sgLasso and gLasso methods showed
greater overlap, including in the partial frontal lobe (left inferior
frontal gyrus) and partial parietal lobe (right central sulcus);
partial limbic lobe (left median cingulate and paracingulate
gyri, right median cingulate and paracingulate gyri, right
posterior cingulate gyrus, left temporal pole: middle temporal
gyrus); partial occipital lobe (left lingual gyrus, left paracentral
lobule, right parahippocampal gyrus); and left thalamus. As the
sgLasso method was based on the gLasso method for within-
group selection, more overlap areas were obtained. In contrast,
compared with the traditional lasso method, the sgLasso method
had fewer overlapping regions, mainly concentrated in the partial
parietal lobe (right central sulcus), left bilateral thalamus, partial
frontal lobe (left superior frontal gyrus, medial), partial limbic
lobe (right parahippocampal gyrus), and partial occipital lobe
(left lingual gyrus). The results are shown in Figure 8.

Classification Performance
Classification performance was evaluated by measuring accuracy
(ratio of correctly distinguished subjects), sensitivity (ratio of
correctly distinguished patients), specificity (ratio of correctly
distinguished normal persons), and balanced accuracy (BAC).
Additionally, BAC is defined as the mean of sensitivity and
specificity to avoid the expansion performance of unbalanced
data sets (Velez et al., 2007).

We assessed the classification performance based on these
three hypernetwork classification methods and compared them
with traditional connectivity network (TCN) methods. The TCN
method uses Pearson’s correlation to construct the functional
brain network under a sparsity of 5–40%. The basic local metrics
including degree, betweenness centrality, and node efficiency
were calculated for all the subjects, and the area under the curve
(AUC) value of each metric was computed to characterize the
integrity properties of the index in the complete sparsity space.
Then, the K-S non-parametric permutation test was done to
select the local properties with significant intergroup differences
as the classification feature. The classification results of these
methods are summarized in Table 4.

To compare the extent of the selected features of the three
methods (the degree of contribution to the classification), the
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FIGURE 2 | The distribution of the edge degree about hypernetwork obtained by three methods.

ReliefF algorithm was used to measure the classification weights
of the corresponding different brain regions obtained by all
three methods. The results are shown in Figure 9A, which
identify that the weights of the features based on the sgLasso
method are higher than the other two methods. Moreover, the
sgLasso-based method showed the highest classification accuracy
in the current study; hence, in the sgLasso method, we adopted
the ReliefF algorithm to compute the corresponding feature
weight based on the single node clustering coefficient feature,
the mutual clustering coefficient feature, and the multi-features
of the sgLasso method, respectively. The results indicate that the
classification weights obtained by the multiple features are higher
than the classification weights of the single features (Figure 9B).

DISCUSSION

Network construction is critical in the classification of brain
networks based on hypergraph. Hypernetwork construction

methods have been proposed in existing research, while some
related brain regions cannot be selected in the construction of
hyperedges owing to group structure problems among brain
regions. In the lasso-based hypernetwork construction method
proposed by Jie et al. (2016), the optimization objective function
for solving the sparse linear regression model includes the loss
function and the l1 norm penalty term. This penalty performs
continuous compression and variable selection to render the
network sparse. Considering the group structure problem, Guo
et al. (2018) introduced the elastic net method and group lasso
method to create a hypernetwork. The elastic net method used
the l1, l2 penalty terms to make the model automatically select
related variable groups; however, this does not generally mean
that highly related variables belong to the active set in the group
(Sjöstrand et al., 2018). The group lasso method employed the
l2,1 norm to select variables on the basis of the predefined
variable group (Yuan and Lin, 2006; Friedman et al., 2010),
but it only carried out a selection of variables at the group
level. Here, this study extended this research and proposed a

Frontiers in Neuroscience | www.frontiersin.org 11 February 2020 | Volume 14 | Article 60

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00060 February 10, 2020 Time: 14:58 # 12

Li et al. Classification Method for Brain Functional Network

FIGURE 3 | Comparison among three hypernetworks based on three kinds of average clustering coefficient for HCC properties. Error bars indicate standard
deviation. Asterisks represent a significant difference; *p < 0.05, **p < 0.01. Green histograms denote lasso method; Red histograms denote gLasso method; Blue
histograms denote sgLasso method. NC, normal control; MDD, major depressive disorder.

FIGURE 4 | Comparison among three hypernetworks about three kinds of average clustering coefficient for COMHCC properties. Error bars indicate standard
deviation. Asterisks represent a significant difference; *p < 0.05, **p < 0.01. Green histograms denote lasso method; Red histograms denote gLasso method; Blue
histograms denote sgLasso method. NC, normal control; MDD, major depressive disorder.

new hypernetwork construction method based on the sgLasso
method. In this method, the l1, l2 norm penalty term was
introduced, i.e., its penalty was mixed into the lasso and group
lasso penalty to perform the groupwise selection and intragroup
variable selection. This is the bi-level selection that can be selected
at the group level or at the level of individual covariates, which
is different from the group level selection. In other words, using
this method we could select not only important groups but also
important variables within these important groups.

Hypernetworks are differences based on the three methods.
Analysis of hyperedges showed a similar distribution between

the MDD and NC groups. The hyperedge degree range based
on the lasso method was distributed in the range of 2–13, and
most of the hyperedges contained fewer nodes in the range of
2–7, being relatively tight. In the gLasso method, the range of
hyperedge degree was distributed in 2–19, in that most of the
hyperedges contained more nodes in the range of 8–19, being
relatively loose. The edge degree in the sgLasso method mostly
lay in 2–13. But it does not show a stronger ratio in the range of
2–7 (about 3/4 in MDD and NC group); that is, not most of the
hyperedges connect a small number of nodes, but a considerable
part of the hyperedge connects multiple nodes, which shows the
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FIGURE 5 | Regression analysis about the standardized metric values about the HCC metrics. (A) Regression analysis from that obtained by sparse group lasso and
lasso method in the MDD group. (B) Regression analysis from that obtained by sparse group lasso and group lasso method in the MDD group. (C) Regression
analysis from that obtained by sparse group lasso and lasso method in the NC group. (D) Regression analysis from that obtained by sparse group lasso and group
lasso method in the NC group.

network is intermediary. When building a hyperedge, the lasso
method can only be used to select one of the brain regions in
which a group structure exists. The gLasso method considers
that all brain regions in the group are related when one brain
region in the group is selected. However, the proposed method
(sgLasso method) selects some brain regions associated with the
group structure, mixing the lasso with the gLasso penalty term.
Therefore, hypernetworks exit differences among three methods,
in which the lasso method is the strictest; gLasso, the most lenient;
and the sgLasso, moderate.

In addition, there were topological differences among the
three methods of network construction with respect to the
analysis of two different types of average clustering coefficients
(mean HCC1-HCC3, mean COMHCC1-COMHCC5), regardless
of the MDD or NC group. In the HCC indicator statistics, all
statistical analysis showed that there was a significant difference
between the average HCC1 and HCC2 based on the three
hypernetwork construction methods. Significant differences were

observed in the NC group in the lasso-based method and the
other two methods, only no significant difference (p > 0.05 FDR
corrected, q = 0.05) was found only in the gLasso and sgLasso
methods in the mean HCC3. Meanwhile, statistical analysis
showed significant differences in the average COMHCC1,
COMHCC2, and COMHCC4 in the COMHCC properties. For
the mean COMHCC3 and COMHCC5, there was no significant
difference (p > 0.05 FDR corrected, q = 0.05) only in the
sgLasso-based and gLasso-based approaches in the MDD group.
Therefore, the results of both sets of indicators state that there
are topological differences in the hypernetwork construction of
these three methods.

Furthermore, we did a correlation analysis of indicators. The
properties of all subjects in both the MDD and NC groups were
averaged for every brain region. The linear regression analysis
was performed based on the sgLasso method and traditional
methods for the two sets of indicators, respectively. It was also
observed that the sgLasso method was significantly correlated
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FIGURE 6 | Regression analysis about the standardized metric values about the COMHCC metrics. (A) Regression analysis from that obtained by sparse group
lasso and lasso method in the MDD group. (B) Regression analysis from that obtained by sparse group lasso and group lasso method in the MDD group.
(C) Regression analysis from that obtained by sparse group lasso and lasso method in the NC group. (D) Regression analysis from that obtained by sparse group
lasso and group lasso method in the NC group.

with the gLasso method (HCC indicator: Adj_Rsqr = 0.727 [NC
group], Adj_Rsqr = 0.708 [MDD group]; COMHCC indicator:
Adj_Rsqr = 0.864 [NC group], Adj_Rsqr = 0.832 [MDD group]),
and the difference was larger than those obtained with the
traditional lasso method (HCC indicator: Adj_Rsqr = 0.512
[NC group], Adj_Rsqr = 0.516 [MDD group]; COMHCC
indicator: Adj_Rsqr = 0.523 [NC group], Adj_Rsqr = 0.491
[MDD group]). The potential reason is mainly because the
sgLasso method selects variables from group level to groupwise,
selecting important groups and further selecting important
variables from within the group. This conclusion has also been
verified in the analysis of significant difference regions. Upon
comparison, hypernetwork topology by the sgLasso method
was similar to the gLasso method but showed a difference by
the lasso method. Meanwhile, hypernetwork differences were
proved to exit in three methods, where the hypernetwork
using the lasso method was the strictest; the group lasso,
most lenient; and the sgLasso method, moderate. The potential

reasons are likely the existence of the group structure and
different degree of resolution about the group structure that
led to this phenomenon. Besides, it is also proven that the
constructed hypernetwork is not necessarily the best when only
the group structure is selected. But if the group structure
is appropriately extended, a relatively efficient hypernetwork
topology can be obtained.

The significant difference regions obtained by statistical
analysis are not the same for all three methods. There are
more overlaps between the sgLasso and gLasso methods in
comparison. The main reason is, like the gLasso method, groups
needed to be divided before executing the sgLasso method, and
then selected important groups and further selected important
variables from within the group. Thus, overlapping regions
are more in these two methods and less with the traditional
lasso method. Moreover, three methods had fewer overlapping
regions obtained from the two groups of clustering coefficients.
This explained that biomarkers related to disease pathology
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were obtained more comprehensively. In conclusion, from the
perspectives of edge distribution, topological data analysis, and
significant difference regions, the article proved that the three
networks are different and the network structures of sgLasso and

gLasso are similar and different from lasso. The network created
by the lasso method is strict, the network created by the gLasso
method is relatively loose, and the network created by the sgLasso
method is relatively moderate.

TABLE 3 | Brain regions that are significantly different computed by two different types of clustering coefficients.

(A) Brain regions that are significantly different computed by clustering coefficients defined on a single node.

ROIs P-value (HCC)

I II III

Lasso

Left supramarginal gyrus 0.048 0.214 0.118

Left rolandic operculum 0.118 0.118 0.007

Right rolandic operculum 0.303 0.094 0.045

Left superior frontal gyrus, medial 0.207 0.055 0.007

Right parahippocampal gyrus 0.638 0.015 0.005

Left thalamus 0.294 0.049 0.252

Left putamen 0.214 0.122 0.047

Right middle frontal gyrus 0.019 0.157 0.169

Left lingual gyrus 0.017 0.260 0.109

Right inferior occipital gyrus 0.060 0.039 0.045

Right fusiform gyrus 0.792 0.047 0.612

Right Paracentral lobule 0.393 0.049 0.090

Left middle temporal gyrus 0.804 0.037 0.181

gLasso

Left inferior frontal gyrus, triangular part 0.007 0.968 0.063

Left inferior frontal gyrus, orbital part 0.017 0.817 0.007

Right rolandic operculum 0.265 0.991 0.003

Left median cingulate and paracingulate gyri 0.038 0.461 0.005

Right median cingulate and paracingulate gyri 0.012 0.201 0.001

Right posterior cingulate gyrus 0.303 0.341 0.001

Right hippocampus 0.001 0.058 0.017

Right parahippocampal gyrus 0.006 0.586 0.016

Right lingual gyrus 0.351 0.006 0.665

Right angular gyrus 0.004 0.045 0.080

Left precuneus 0.252 0.322 0.005

Left Paracentral lobule 0.094 0.147 0.009

Right Paracentral lobule 0.252 0.586 0.002

Left thalamus 0.087 0.002 0.404

sgLasso

Right rolandic operculum 0.332 0.043 0.244

Right supplementary motor area 0.003 0.033 0.158

Left superior frontal gyrus, medial 0.142 0.404 0.012

Left median cingulate and paracingulate gyri 0.084 0.012 0.010

Right median cingulate and paracingulate gyri 0.229 0.043 0.038

Right posterior cingulate gyrus 0.164 0.013 0.045

Right parahippocampal gyrus 0.045 0.294 0.586

Left lingual gyrus 0.164 0.497 0.005

Left superior occipital gyrus 0.114 0.127 0.032

Left paracentral lobule 0.032 0.014 0.023

Left thalamus 0.008 0.351 0.208

Right thalamus 0.025 0.485 0.181

Left temporal pole: superior temporal gyrus 0.019 0.001 0.016

(Continued)
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TABLE 3 | Continued

(B) Brain regions that are significantly different computed by clustering coefficients defined on a pair of nodes.

ROIs P-value (COMHCC)

I II III IV V

Lasso

Left precentral gyrus 0.229 0.019 0.029 0.2365 0.599

Right precentral gyrus 0.033 0.102 0.098 0.449 0.047

Left superior frontal gyrus, dorsolateral 0.201 0.612 0.331 0.461 0.014

Right middle frontal gyrus, orbital part 0.077 0.222 0.341 0.098 0.003

Left rolandic operculum 0.106 0.341 0.077 0.016 0.415

Left superior frontal gyrus, medial orbital 0.020 0.169 0.704 0.743 0.147

Right parahippocampal gyrus 0.294 0.164 0.449 0.019 0.900

Left amygdala 0.004 0.106 0.025 0.222 0.033

Left inferior occipital gyrus 0.152 0.023 0.002 0.839 0.244

Right inferior occipital gyrus 0.986 0.017 0.045 0.351 0.041

Right postcentral gyrus 0.252 0.047 0.215 0.900 0.188

Right angular gyrus 0.018 0.023 0.201 0.756 0.091

Right middle temporal gyrus 0.201 0.006 0.030 0.252 0.237

gLasso

Left precentral gyrus 0.011 0.009 0.003 0.011 0.968

Left inferior frontal gyrus, orbital part 0.066 0.015 0.030 0.073 0.426

Left median cingulate and paracingulate gyri 0.049 0.123 0.053 0.087 0.181

Right median cingulate and paracingulate gyri 0.041 0.011 0.017 0.032 0.181

Right parahippocampal gyrus 0.056 0.142 0.047 0.052 0.268

Left cuneus 0.094 0.036 0.009 0.025 0.473

Left lingual gyrus 0.485 0.013 0.063 0.061 0.497

Right lingual gyrus 0.612 0.025 0.063 0.372 0.215

Left superior parietal gyrus 0.004 0.032 0.026 0.049 0.056

Left precuneus 0.252 0.158 0.142 0.047 0.312

Right superior temporal gyrus 0.049 0.147 0.023 0.029 0.121

Left temporal pole: middle temporal gyrus 0.151 0.011 0.098 0.158 0.910

sgLasso

Left middle frontal gyrus 0.035 0.063 0.152 0.188 0.871

Right middle frontal gyrus 0.041 0.181 0.043 0.035 0.020

Left inferior frontal gyrus, orbital part 0.215 0.053 0.062 0.033 0.158

Right rolandic operculum 0.134 0.076 0.245 0.042 0.253

Right olfactory cortex 0.047 0.060 0.510 0.691 0.599

Right posterior cingulate gyrus 0.018 0.382 0.122 0.208 0.438

Right calcarine fissure and surrounding cortex 0.029 0.066 0.118 0.393 0.839

Left cuneus 0.098 0.084 0.313 0.828 0.029

Left thalamus 0.175 0.032 0.038 0.071 0.021

Right thalamus 0.181 0.014 0.026 0.817 0.002

Left temporal pole: middle temporal gyrus 0.004 0.026 0.025 0.118 0.573

The bold values indicate the significant difference at p < 0.05.

The best classification performance can be obtained in
the sgLasso method. Therefore, we analyzed the abnormal
brain region obtained by this method. After constructing
the hypernetwork, different abnormal brain regions (HCC
properties and COMHCC properties, including overlapping
regions) were obtained by statistical calculation methods for
two different types of clustering coefficients, including the
partial parietal lobe (right central sulcus); right supplementary
motor area; bilateral thalamus; partial frontal lobe (left superior
frontal gyrus, medial, middle frontal gyrus, left inferior frontal

gyrus, orbital part); partial limbic lobe (median cingulate
and paracingulate gyri, right parahippocampal gyrus, right
posterior cingulate gyrus, right olfactory cortex, right calcarine
fissure, and surrounding cortex); partial occipital lobe (left
cuneus, left lingual gyrus, left superior occipital gyrus, left
paracentral lobule); and partial temporal lobe (left temporal
pole: superior temporal gyrus, left temporal pole: middle
temporal gyrus). These brain regions are consistent with the
results mentioned in some of the previous literature (see
Supplementary Table S1).
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FIGURE 7 | Abnormal brain regions were mapped onto the cortical surfaces using BrainNet viewer software. (A) Abnormal brain regions calculated by HCC
properties in lasso method. (B) Abnormal brain regions calculated by COMHCC properties in lasso method. (C) Abnormal brain regions calculated by HCC
properties in gLasso method. (D) Abnormal brain regions calculated by COMHCC properties in gLasso method. (E) Abnormal brain regions calculated by HCC
properties in sgLasso method. (F) Abnormal brain regions calculated by COMHCC properties in sgLasso method.

Three hypernetwork construction methods and correlation-
based methods were applied to 38 patients with MDD and
28 NC subjects for classification. The results showed that

the hypergraph-based brain network classification method can
significantly improve classification performance. Moreover, the
proposed method based on the sgLasso method showed the best
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FIGURE 8 | All abnormal brain regions were mapped onto the cortical surfaces using BrainNet viewer software.

classification performance of 87.12% when the parameter λ2 was
set as 0.4. The classification results obtained by the sgLasso-
based hypernetwork construction method were better than those
obtained using the Lasso and gLasso methods, the potential
reason being that it can perform bi-level selection; that is, both
group level variables and groupwise variables can be selected.
While the classification performance based on the lasso method
was lower than the sgLasso method, whose underlying reason is
perhaps that it can only choose one of the brain regions in the
group structure, and it does not matter which one it chooses;
this, in turn, leads to a very strict network build by lasso causing
it to lose some important connections. This result implies that
a more suitable hypernetwork cannot be constructed without
considering the existence of the group structure. Similarly, the
gLasso-based hypernetwork construction method is not as good
as the sgLasso and lasso methods. The potential reason is that it
does not have the flexibility of within-group variable selection,
i.e., the relevant groups are only selected so that the estimated
coefficients are all zero or all non-zero within each group, which
causes the network built by gLasso to be very loose and lenient,
likely adding some wrong connections. This result expresses
that when constructing the hypernetwork, the group information
should be considered, but the entire group information cannot
be forced to be used and proper expansion of the group structure
may be useful.

Finally, the importance of the feature was evaluated by the
ReliefF algorithm, which is a feature-weighing algorithm. It
assigns different weights according to the correlation of each
feature and category. The greater the weight of the feature, the
stronger the classification ability of the feature and vice versa
(Kira and Rendell, 1992). In this study, the ReliefF algorithm was
used to calculate the classification weights of the features obtained
by different methods. The results showed that the weights of
the features obtained by the sgLasso method were significantly
larger than the other two methods (Figure 9A). This result

suggests that the proper hypernetwork cannot be created without
considering the existence of the group structure and only the
groupwise structure. If the group structure is properly extended–
that is, if a moderately constructed constraint (sgLasso method)
is used–a valid hypernetwork can be obtained resulting in more
effective classification features. Yet, construction strategies that
are too strict (lasso method) or lenient (gLasso method) cannot
achieve satisfactory effects. Apart from this, sgLasso is taken as an
example to verify the validity of the fusion feature. The clustering
coefficient characteristics of a single node and pairs of nodes
and the multi-features are evaluated by the ReliefF algorithm.
The results indicated that the ReliefF weight of the multi-feature
fusion method was significantly higher than the ReliefF weight
of the single feature (Figure 9B). The potential reason is that
the multi-feature method effectively combines two different sets
of information–the clustering coefficient characteristics defined
on single node and that defined on two nodes–which can
more wholly express the interaction information among brain
regions. This result suggests that the multi-feature method
is more suitable for assessing the importance of features. In
addition, power analysis was performed for evaluating if the
samples size was enough (see Supplementary Table S2 and
Supplementary Text S4).

INFLUENCE OF PARAMETER AND
REPEATABILITY VERIFICATION

Hypernetworks are created based on sparse regression models
with penalty terms. Sparse linear regression models can help
categorize a brain region based on a linear combination of other
brain regions. Essentially, from a mathematical point of view, the
most basic operation of the model is still pairwise correlation,
but this is determined by the method itself. In addition, a
penalty is added into the model, which forces some insignificant
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TABLE 4 | Classification performance of the three methods.

Methods Research Accuracy (%) Sensitivity (%) Specificity (%) BAC (%)

TCN Pearson-network 71.00 79 64 71.50

Lasso-based Cluster coefficient based on single node 83.33 84.21 82.14 83.17

Cluster coefficient based on pairs of nodes 74.24 78.95 67.86 73.41

Multi-feature 84.85 89.47 78.57 84.02

gLasso-based Cluster coefficient based on single node 80.30± 0.75 83.94± 0.82 75.35± 0.91 79.65

Cluster coefficient based on pairs of nodes 75.76± 0.61 79.74± 0.63 70.35± 0.97 75.05

Multi-feature 81.74± 0.69 84.74± 0.77 77.68± 0.91 81.21

sgLasso-based Cluster coefficient based on single node 84.85± 0.75 87.89± 0.87 80.71± 0.99 84.30

Cluster coefficient based on pairs of nodes 77.27± 0.82 80.79± 0.86 72.50± 1.13 76.65

Multi-feature 87.12± 0.49 90.13± 0.47 83.03± 0.96 86.58

TCN, traditional connectivity network method; lasso-based, hypernetwork based on lasso method; gLasso-based, hypernetwork based on gLasso method; sgLasso-
based, hypernetwork based on sgLasso method; BAC, balanced accuracy; Multi-feature, the fusion feature between cluster coefficient based on single node
and pairs of nodes.

FIGURE 9 | The ReliefF weight of brain regions feature. (A) The ReliefF weight of the corresponding feature of the divergence brain regions obtained by different
methods. The Y-axis represents the ReliefF weight, and the X-axis indicates different methods used to construct the hypernetworks. Lasso denotes the ReliefF
weight of the corresponding feature of the differential brain regions using the lasso method. gLasso denotes the ReliefF weight of the corresponding feature of the
differential brain regions based on the gLasso method. SgLasso denotes the ReliefF weight of the corresponding feature of the differential brain regions calculated by
the sgLasso method. (B) The ReliefF weight acquired by different feature extraction ways in the sgLasso method. HCC indicates the ReliefF weight obtained by HCC
indicator features. COMHCC indicates the ReliefF weight obtained by COMHCC indicator features. HCC+COMHCC indicates the ReliefF weight by combining HCC
indicators feature and COMHCC indicator features. Besides, ∗∗represents the P values obtained by non-parametric permutation test being less than 0.05, and
∗represents P values obtained by non-parametric permutation test being less than 0.01.

connections to be 0, such that a few brain regions are retained
to interact with the selected brain region. Then, based on each
subject, a few of the brain regions and a given brain region
generated a hyperedge in a specific sparsity (that is, by fixing
λ value, given vertex and all non-zero elements in the weight
vector αn

m formed a hyperedge) and all hyperedges consisted of a
functional hypernetwork. Multivariate expression was performed
in this way to represent the interaction between multiple brain
regions in a brain function hypernetwork topology. Based on the
original research and considering the group structure problem,
we proposed to create a hypernetwork based on the sgLasso
sparse regression models to obtain more effective biomarkers to
more accurately diagnose brain diseases.

The classification performance of the classification method
proposed in this paper depended on the selection of some
parameters, such as the number of clusters k, hypernetwork

construction model parameters λ1 and λ2, optimizing weight
parameters ai. To address this issue, we carried out experiments
based on the proposed (sgLasso) and the original (gLasso and
lasso) brain hypernetwork.

The Effect of the Number of Clusters k
The parameter k is the number of groups clustered in the
gLasso and sgLasso methods. A different k value will result in
different functional network topologies and classification results.
To explore the effect of k value on the classification performance,
the variation range of k was set to 6–90 with the step size
being 6. For each k value, we constructed a hypernetwork,
extracted the features, and selected features based on gLasso and
sgLasso methods. Then, the features of the two different types of
indicators that are significantly different were classified using the
SVM classifier based on multi-kernel learning, and the LOO was
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used to verify the classification effect. As random selection of the
first initial seed point led to a difference in results, 50 experiments
were performed for each method under each k value, and the
average accuracy was selected as the final classification result.
Figure 10 shows the experimental results of the two different
methods. Figure 10A shows that the gLasso method had the
highest classification accuracy of 81.74% when k = 48. Figure 10B
shows that the sgLasso method had the highest accuracy of
87.12% when k = 30.

The Effect of Regulation Parameters λ1
and λ2
Previous studies have demonstrated that parameter λ affected
the topology of the hypernetwork. The sparsity and scale of the
network were determined by the regularization parameter λ. If
the λ value is too small, the network model constructed will be
very rough and cause too much noise; on the contrary, if the
λ value is too large, the network model will be comparatively
sparse (Lv et al., 2015). It is worth noting that the sparsity of the
network dominated by the λ value will affect the reliability of the
network topology, especially modularity (Li and Wang, 2015).
Besides, λ also had an impact on classification performance,
which was sensitive to the final classification accuracy (Qiao et al.,
2016). However, there is no gold standard on how to choose
λ, so selecting the appropriate λ parameter is important for
the construction and classification of the hypernetwork model.
Some methods of selecting λ have also been used to optimize
the network topology and classification performance in recent
studies (Braun et al., 2012; Li and Wang, 2015; Qiao et al., 2016),
but it was observed that it is difficult to achieve a highly reliable
network structure by setting a single λ. Some studies have shown
that the network can obtain relatively high reliability when λ is
only 0.01 (very close to 0, which means that almost all nodes are
connected at a hyperedge). In other cases, it performs modestly
(Li and Wang, 2015). Therefore, multi-level λ is proposed (Jie
et al., 2016). Unlike the single λ setting, the multi-level λ setting
method sets a combination of several λ values, providing more
network structure topology information than the setting of single
λ method. The multi-level λ setting method can avoid any
selection of a single λ setting method and drop the impact of a
single network structure on low reliability. In the current study,
the parameter λ1 is a regularization parameter of the l1 norm
term, which controls within-group sparsity of the model, when
the step size is set to 0.1. The parameter λ2 is a regularization
parameter of the l2 norm term, which controls groupwise
sparsity of the model, same as λ1, the step size is set to 0.1.
Different choices of λ1 and λ2 will result in different solutions,
which will cause different group variables being selected by
the model, different group structures are arisen and then affect
classification performance.

For the setting of multi-level λ, it is important to determine
how to obtain an optimized combination of λ. If every possibility
is enumerated, the computational cost will be large. Therefore,
a set of hyperedges were generated by having a fixed λ2
value and varying the λ1 value within a specific range in
the construction of a hypernetwork based on the sgLasso

methods. Meanwhile, to investigate the influence of λ1 and
λ2 on the classification performance, λ2 was set to 0.1, 0.2,
..., 0.9 respectively, and λ1 used a series of ascending order
combinations, namely { 0.1 }, { 0.1, 0.2 }, { 0.1, 0.2, 0.3
}, ..., { 0.1, 0.2, ..., 0.9 }, to create different hypernetworks.
In this study, the small λ values in the combinations were
maintained as much as possible so that more nodes are
connected in the hyperedge of the construction. This is
because the hyperedge with many nodes can describe the
potential information among several brain regions. Next, the
features were extracted for the classification, which was then
judged. The classification results are shown in Figure 11.
The results show that the best accuracy is 87.12%, when
λ2 = 0.4 and λ1 adopted { 0.1, 0.2, ..., 0.9 } in the sgLasso
method. When λ1 was {0.1}, the classification accuracy was
lower than 60%, because some nodes were only included
in one hyperedge. At this time, the denominator was zero
in the HCC3 formula, so it was not effective to create the
classification model.

The Effect of Weight ai
In multi-kernel learning, the important step is the selection of
weight parameters ai, which directly affects the way of data fusion
and has a considerable effect on the classification performance.
Here, a grid search method was adopted by obtaining the
optimized weight in three methods, using the range from 0 to 1
with the step being 0.1. The accuracies of the lasso, gLasso, and
sgLasso methods reached maximum values of 84.85, 81.74, and
87.12%, respectively, when the respective a1 and a2 values were
0.2 and 0.8, 0.3 and 0.7, and 0.2 and 0.8.

Interpretability of SVM Classifier
Because the sgLasso method has the highest accuracy rate, the
interpretability of SVM was discussed based on this method.
LIME (Local Interpretable Model-agnostic Explanations)
represents a local interpretation of agnostic models (Ribeiro
et al., 2016). It is a tool that helps us understand and explain
how complex machine learning models make decisions, which
can explain multiple classifiers, including the SVM classifier. It
mainly explains each sample individually. In this study, for each
experiment, all samples were interpreted using LIME, so that
features with higher weights are obtained, that is, features are
obtained that contribute more to classification. After statistics,
the conclusion was found that for each subject, LIME showed
roughly the same features that make outstanding contributions
to the diagnosis of the disease. These features are mainly
HCC_123, HCC_40, HCC_229, HCC_77, COMHCC_285,
HCC_227, HCC_78, HCC_83, COMHCC_87, where the
corresponding brain regions of features are left median cingulate
and paracingulate gyri, right parahippocampal gyrus, left
superior occipital gyrus, left thalamus, Left inferior frontal gyrus,
orbital part, left lingual gyrus, right thalamus, left temporal pole:
superior temporal gyrus, and left temporal pole: middle temporal
gyrus. Furthermore, via LIME analysis, the mean and confidence
interval of the probability of the prediction results is listed for
each subject in 50 experiments, see Supplementary Table S3.
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FIGURE 10 | Classification accuracy of different k values based on gLasso and sgLasso methods. (A) Classification accuracy of different k values in gLasso method.
(B) Classification accuracy of different k values in sgLasso method.

Repetitive Verification
To further validate the effectiveness of the above method,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set3 was adopted to perform experiments in this study.
Normal subjects and patients with Alzheimer’s disease were

3http://adni.loni.usc.edu/

selected from the database, including 30 normal subjects
and 29 Alzheimer’s patients. A preprocessing process that
was similar to the above-described MDD data set was used,
which comprised time layer correction, head motion correction,
spatial normalization, linear dimensionality reduction, and
band pass filtering and smoothing. The brain space was
divided into 90 ROIs by the AAL template, and the average
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FIGURE 11 | Classification accuracy of different regulation parameters (λ1, λ2).

time series was extracted. Based on the average time series,
three methods were used to construct the hypernetwork, and
two different types of clustering coefficients were extracted
as features. The non-parametric permutation test was used
to select features, and the selected features were fused and
classified by SVM. The classification performances of all
three methods are summarized in Supplementary Table S4.
The results showed that the sgLasso method achieved the
best classification performance. This proved again that the
proposed method is more advantageous and robust than the
traditional hypernetwork construction method in describing
brain function connections.

Limitations
Our study has several limitations. First, the hypernetwork model
parameters used in the experiment are the ratio for solving the
sparse solutions. It is challenging to obtain the precise values
due to technical limitations. Second, the random selection of
initial seed points in the clustering and the difference of clusters
k may have led to inaccurate functional network topology and
classification results based on gLasso and sgLasso methods.
For example, different clustering methods, such as a unified
probabilistic model (Monti and Hyv Rinen, 2018), can be
adopted for grouping, to ensure that a more stable hyperedge
is established to further improve the hypernetwork. Finally, we
used different templates for assigning brain regions to explore

the impact of hypernetworks created by different templates on
classification performance.

CONCLUSION

The traditional brain function hypernetwork was created based
on the lasso method. The main limitation of this method is
that the group structure problem among the brain regions
was not considered, and some correlated brain regions could
not be selected. Therefore, the elastic net method and group
lasso method were introduced to construct the hypernetwork
in our previous study to solve this problem, and the result
showed that the elastic net method obtained higher classification
performance and could select highly correlated brain regions
more accurately, but this does not generally mean that
the active set (highly correlated variable) in the group is
selected. Therefore, for solving the group structure problem,
the previous method was extended and the sgLasso method
introduced, to improve the hypernetwork creation in this study.
At the same time, in the brain function hypernetwork, the
previous research only involved the clustering coefficient of
a single node as the feature extraction. However, according
to several studies, the real network not only overlaps the
neighbor nodes of a single vertex, but also has significant
overlaps with neighborhood cohesiveness around the edges.
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Thus, in order to comprehensively assess disease performance
and accurately identify biomarkers associated with pathology,
clustering coefficients defined on two-node were introduced
as feature extraction. Finally, the two sets of features were
merged into a mixed kernel via multi-kernel learning for
classification diagnosis.

Results of the analysis of the hyperedge, indicators of
brain regions, and average indicators suggested that there
are differences in the hypernetwork constructed by the three
methods. The hypernetwork topology based on the gLasso
method was similar to the sgLasso method, and conversely was
different from the Lasso method. For network constraints, the
lasso method was the most restrictive, gLasso method was the
most relaxed, and the sgLasso method was moderate. This study
analyzed the underlying causes and suggested that the existence
of the group structure and degree of resolution of the group
structure were responsible for the results obtained. Different
constraints caused the change of classification accuracy, which
showed that the classification performance based on the sgLasso
method (87.12%) was better than the gLasso (81.74%) and lasso
methods (84.85%). Moreover, evaluation of the different features
of the two groups of clustering coefficients showed that the
classification weights based on the sgLasso method are better than
the gLasso and lasso methods, and the classification weights of
multi-features are better than the classification weights of single
features. This meant that a satisfactory effect cannot be obtained
when there is no group structure (strict network construction)
or only group level structure (loose network construction). If
the group structure is appropriately extended (moderate network
construction), efficient hypernetwork topology can be achieved.
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