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A slow-cycling subpopulation of melanoma cells with highly
invasive properties
M Perego1, M Maurer2, JX Wang1, S Shaffer3, AC Müller4, K Parapatics4, L Li1, D Hristova1, S Shin1, F Keeney1, S Liu5, X Xu5, A Raj3,
JK Jensen6, KL Bennett4, SN Wagner2, R Somasundaram1 and M Herlyn1

Melanoma is a heterogeneous tumor with different subpopulations showing different proliferation rates. Slow-cycling cells were
previously identified in melanoma, but not fully biologically characterized. Using the label-retention method, we identified a
subpopulation of slow-cycling cells, defined as label-retaining cells (LRC), with strong invasive properties. We demonstrate through
live imaging that LRC are leaving the primary tumor mass at a very early stage and disseminate to peripheral organs. Through
global proteome analyses, we identified the secreted protein SerpinE2/protease nexin-1 as causative for the highly invasive
potential of LRC in melanomas.
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INTRODUCTION
Melanoma accounts for ~ 4% of all skin cancer cases but for
470% of all skin cancer deaths. Although tumor development
and progression, from benign proliferative lesions to dysplasia to
overt malignancy, typically follow a stepwise pattern, metastatic
dissemination remains difficult to predict and treat because of the
heterogeneity in this disease. Heterogeneity manifests both at the
genetic and epigenetic/phenotypic levels. Of all human cancers,
melanomas have the highest mutational load with hundreds to
thousands of mutations per tumor. While the field has identified
~ 20 driver mutations in this disease,1–9 the different combinations
of driver mutations that are possible make it challenging to
identify genetic subgroups for outcome prediction of continuous
growth, invasion and dissemination, or, in advanced metastatic
disease, immunotherapy or targeted therapy.
Heterogeneity of melanoma is displayed not only between

tumors but also within tumors. Differences manifest in growth
rates, pigmentation, differentiation states to other cell types,
structural cellular elements, matrix formation, or host cellular
infiltrates. While most cancers contain unique cell populations
generally described as cancer-initiating cells, melanoma does not
follow this pattern. Instead, melanomas contain subpopulations
whose presence is dynamically regulated by microenvironmental
signals. We previously defined a slowly-cycling subpopulation in
melanoma that is important for tumor maintenance and drug
resistance. This subpopulation, which proliferates at a much
slower rate than the main population, was defined by expression
of the H3K4 demethylase JARID1B10 and represents only 0.5 to 5%
of all cells. It is regulated by hypoxia, growth factors, and cytokines
such as IGF-1 or TNF-α.10–12 Expression of the transcription factor
microphtalmia-associated transcription factor (MITF) has been
used as biomarker to distinguish populations of melanoma cells
that are highly proliferative and poorly invasive (MITFHigh) or
slowly proliferative and highly invasive (MITFLow).13–15 MITF is a

master regulator for melanocytes and melanoma cells and
essential for the survival of all pigmented cells whereas JARID1B
expression characterizes a subpopulation within slow-cycling
melanoma cells, since not all the slow-cycling melanoma cells
express JARID1B. We focused in the presented experiments on
slow-proliferating melanoma cells that included both JARID1B-
posive and -negative melanoma cells.
All cells can take up a membrane-staining dye, but after two to

three cell divisions the dye is diluted and becomes undetectable
by fluorescence microscopy whereas label-retaining cells (LRC)
retain the dye for longer periods of time, which defines melanoma
slow-cycling cells as biologically LRC. Similar dye-retaining
experiments are well described for stem cells with high turnover
of the main population. For example, epithelial stem cells in the
skin were defined by retention of bromo-deoxy-uridine.19,20

Here we characterize the invasive properties of slowly-cycling
melanoma cells both in vitro and in vivo. We demonstrate that
human melanoma LRC are highly invasive and disseminate more
rapidly in immunodeficient mice to lymph nodes, lungs, liver and
spleen than non-LRC. After dissemination, significantly larger
metastases are observed in LRC-injected mice. We then identified
a secreted protein, SerpinE2/Protease nexin-1 (PN-1) or
glia-derived nexin, as causative for the highly invasive potential
of LRC. SerpinE2 is a member of the Serpin gene superfamily with
anti-serine protease activity and acts as major regulator for both
tissue-type and urokinase plasminogen activators.

RESULTS
Melanoma LRC are slow-cycling and invasive in vitro
Slow-cycling melanoma cells have been identified by us and
others10,21,22 but knowledge of their biological properties has
been limited to growth and drug resistance. When cultured cells
from human metastatic melanomas are labeled with membrane
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dyes such as CellTrace Violet (Molecular Probes, Eugene, OR, USA)
or PKH26, they dilute the dyes with each cell division. Thus, only
non-proliferating or slow-dividing cells retain the label for
prolonged periods of time, defining this subpopulation as LRC.
In vitro, using CellTrace Violet, LRC were found in all metastatic
melanoma cell lines analyzed (Figures 1a and b). In each cell line
this LRC subpopulation emerged after 4 days in culture and could
be detected for up to 3 weeks, at which point the membrane dye
could no longer be detected due to cell divisions (Figure 1b;
Supplementary Figure 1A). Their presence was not associated with
any genetic subgroups of melanomas such as those representing
mutant BRAF, NRAS or BRAF/NRAS wild type. Of all cell surface
markers previously used to define melanoma-initiating cells,
including CD20, CD271 or CD13322–24 we saw no distinct
expression patterns in the LRC populations except that CD20
was upregulated in LRC of 4/8 melanoma cell lines
(Supplementary Figure 1B). Most, but not all, LRC express the
H3K4 demethylase JARID1B,10 which we confirmed at the single-
cell level by mRNA fluorescence in situ hybridization (FISH;
Figure 1d). LRC are enriched in G2/M of the cell cycle (Figure 1c;
Supplementary Figure 1C) and no differences were observed
between LRC and non-LRC in S phase (Supplementary Figure 1D).
LRC are highly invasive through basement membrane matrix,
Matrigel

®

(Corning, Tewksbury, MA, USA), when tested in
Boyden chamber assays. Differences in invasiveness varied
among cell lines with LRC being 2- to 8-fold more invasive
than their respective non-LRC populations (Figure 1e;
Supplementary Table 6).

Melanoma LRC exit the primary tumor mass and disseminate in
mouse tissues
We then investigated in vivo the growth and invasive dynamics of
LRC originally isolated from metastatic lesions. Figure 2a provides a
schematic for the experiment, in which we labeled melanoma cells
in vitro with the membrane dye PKH26 and injected 106 cells
subcutaneously into SCID Hairless Outbred (SHO

®

; Charles River
Laboratories, Wilmington, MA, USA) mice. PKH26 was chosen
because the fluorescence allows scanning of labeled cells by IVIS

®

(PerkinElmer, Waltham, MA, USA) in vivo. SHO mice were selected
because they are hairless and have thin skin, allowing better
scanning of internal organs than other mouse strains with fur. We
monitored the mice weekly for fluorescent signals by placing them
in dorsal, ventral, and lateral positions to test the hypothesis that the
normally proliferating cells at the injection site (primary tumor)
would rapidly lose the fluorescent signal, whereas LRC would readily
disseminate, retain the signal, and remain visible at a distant site.
Indeed, PKH26 was detected in the primary tumors only at the
beginning of the experiment and it was diluted when tumors
expanded in size (Figures 2b and c). Demonstrating the consistency
of the technique, the PKH26 dilution followed the same kinetics,
whether tumors grew faster (451Lu) or slower (WM989). The dye was
no longer detectable when tumors reached ~500 mm3 in size.
Over time, as the primary tumor grew, the signal disappeared

from it, but appeared at distal locations. Signal was detected in
mice injected with WM989 cells and scanned in the ventral (5/5
positive) and lateral (4/5 positive) positions; for 451Lu cells, 2/5
mice were positive when imaged in the ventral position
(Figures 2c and d). When ND238 cells were injected into 10 mice,
8/10 showed positive signal in their peritoneal cavities
(Supplementary Figure 2A). Similarly, after injection of WM3942
cells, we detected positive PKH26 signal in 4/4 mice left flank and
in 4/4 peritoneal cavities (Supplementary Figure 2B). Thus in all 4
models analyzed we could observe the same general dissemina-
tion LRC. When the primary tumors reached ~ 1000 mm3 in size,
mice were sacrificed and tumors and organs (lungs, liver, spleen
and detectable lymph nodes) were harvested and analyzed by
flow cytometry for melanoma LRC. Confirming that LRC migrated

from the primary tumor, we found that the percentage of LRC
(mouse lineage negative, CD146+, PKH26+) was higher in all distal
organs compared with the primary tumor (Figure 2e;
Supplementary Figure 2C). A representative example is shown in
the Zebra plots of Figure 2e, with LRC represented by the upper
right quadrants. Results were confirmed by immunohistochem-
istry of tissue sections from lungs and spleen (Figure 2f). We were
able to monitor LRC in the same location for the same animal for
up to 20 (5–20) days after the initial detection of signal. These
observations indicate that the majority of LRC do not begin
proliferation immediately after entering an organ but can remain
dormant for extended time periods (Supplementary Figure 2D).
To directly compare the ability of LRC and non-LRC to

disseminate, we sorted LRC from non-LRC and injected s.c. both
populations into different recipient mice. Sorted LRC and non-LRC
rapidly re-equilibrated their parental redistribution in vitro
(Supplementary Figure 3A). This dynamic is well established for
JARID1B (Roesch 2010) and we believe it occurs also in vivo. The
total metastatic burden (measured as metastatic spots detected
by live imaging) was higher for mice injected with LRC than non-
LRC (Supplementary Figure 3B). Representative images of mouse
lungs showed larger metastatic areas for those from LRC than
those non-LRC (Supplementary Figure 3C). The ability to regain
proliferative capacity of LRC is underscored by the observation
that LRC and non-LRC generate primary tumors in recipient mice
with comparable growth rates (Supplementary Figure 4A). More-
over, a majority of cells in LRC-derived xenografts is positive for
the Ki67 proliferation marker (Supplementary Figure 4B). Injection
of cells labeled with luciferase, allowed us to image organs at long
delayed time point, and these experiments confirming the
presence of growing metastatic lesions in distant organs
(representative image in Supplementary Figure 5A).

Proteome analyses reveal upregulation of SerpinE2, PDGFRL and
BMP1 in LRC
To understand the invasive phenotype of slowly-proliferating cells,
we performed mass spectrometry based comparative and semi-
quantitative proteomics using tryptic digest of LRC and non-LRC
from five different melanoma cell lines by mass spectrometry.
From this extensive analysis, we selected for further study proteins
preferentially expressed in LRC over non-LRC. Most consistently
overexpressed in LRC, across all cell lines, were three proteins,
SerpinE2, platelet-derived growth factor receptor-like (PDGFRL)
and bone morphogenetic protein 1 (BMP1; Figure 3a;
Supplementary Tables 1–5). We validated only SerpinE2 and
BMP1 because these proteins were more likely to be relevant for
cancer cell aggressiveness (and limited tools were available to
study PDGFRL). We confirmed that SerpinE2 and BMP1 are
expressed at higher levels in LRC than non-LRC by single-cell
mRNA FISH and qRTPCR on LRC and non-LRC total cells (Figure 3b;
Supplementary Figure 6A) and by immunofluorescence
(Figure 3c). To ensure that SerpinE2 and BMP1 expression was
not an in vitro artifact, we validated expression in primary tumor
sites and distal metastatic organs by immunofluorescence and
flow cytometry (Figure 3d; Supplementary Figure 6B). We
additionally observed that human SerpinE2 expression is
increased in mouse spleen compared with primary tumors
(Supplementary Figure 6C). We then investigated whether
SerpinE2 expression is associated with the slow-cycling phenotype
in melanoma and whether it correlated with expression of
JARID1B and MITF. SerpinE2 is enriched ~ 6-fold in slow-cycling
cells identified as double positive for JARID1B and PKH26
compared with fast proliferating cells (JARID1B-/PKH26-;
Supplementary Figure 6D). At the single-cell level SerpinE2
expression is positively correlated to JARID1B expression in the
total LRC and non-LRC fractions (Supplementary Figure 6E).
Conversely, there is no correlation between SerpinE2 and MITF
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Figure 1. Melanoma cells identified as slow-cycling, LRC are predominantly in the G2/M cell cycle phase and are more invasive in vitro. (a) Six
melanoma cell lines were labeled with CellTrace Dye and analyzed at different time points (days 0–4–8–12). Day 0 indicates how the cells
appear directly after CellTrace loading. LRC are defined and gated as shown in the dot plots; numbers indicate % of LRC detected on day 12 in
culture; standard error of the mean (s.e.m.) in parenthesis. (b) Relative dilution of the CellTrace Dye for LRC (red circles), non-LRC (yellow
inverted triangles) and total cells (gray squares). Slopes indicate mean fluorescence intensity ratio between CellTrace-stained and unstained
cells. Mean± s.e.m. are reported. (c) Cells were loaded with CellTrace Dye and stained with propidium iodide for cell cycle analyses after 7 days
in culture. Percentage of cells in each cell cycle stage is shown in the Y-axes. Data represent mean± s.e.m. Three representative cell lines are
shown. (d) LRC (red), non-LRC (orange) and total (gray) were sorted and analyzed by mRNA FISH for JARID1B expression in single cells, with
representative images below (total magnification 100 × ). Data indicate that some but not all LRC are JARID1B-positive. Violin plots depict
mRNA counts (Y-axes); ns= not significant. (e) Invasive capacity of LRC (red bars) and non-LRC (orange) in Boyden chamber assays after
sorting, for three representative cell lines. Data represent mean± s.e.m. of three independent experiments of the fold change of LRC over non-
LRC. All reported P-values were determined using a 2-sided t-student test.
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expression, neither in LRC or non-LRC (Supplementary Figure 6F).
This suggests that SerpinE2 and JARID1B are partially overlapping
markers and enriched in LRC. Their expression is nevertheless not

exclusive for LRC. Non-LRC can express JARID1B and SerpinE2,
albeit at significant lower levels. We then focused on SerpinE2 as a
candidate for highly invasive LRC.

Figure 2. For caption see page 306.
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SerpinE2 is critical for melanoma invasion and its expression level
correlates with tumor progression
To investigate the role of SerpinE2 in melanoma invasion, we
sorted melanoma LRC and non-LRC and performed an invasion
assay overnight in the presence of human recombinant SerpinE2.
In the presence of exogenous SerpinE2, non-LRC gained the ability
to invade, whereas the invasive capacity of LRC was not
significantly affected (Figure 4a; Supplementary Figure 7A;
Supplementary Table 7).25 For validation, we blocked the anti-
proteolytic activity of SerpinE2 with a specific monoclonal
antibody.26 Neutralization of SerpinE2 reduced melanoma inva-
sion in a dose-dependent manner in all four models tested
(Figure 4b; Supplementary Figure 7B). SerpinE2 knockdown with
shRNA (Supplementary Figure 8; Supplementary Table 8) also
confirmed the inhibition of invasion (Figure 4c). Notably, invasion
was affected only when successful knockdown was achieved
(Sh_13-16), and it was not impaired in the presence of non-
effective Sh_17 (Figure 4c; Supplementary Figure 8). For further
analyses, we chose Sh_14 and Sh_16, showing most effective
knockdown across all cell lines tested (Supplementary Figure 8).
SerpinE2 knockdown specifically affected melanoma invasion,
without impairing cell proliferation or viability (Supplementary
Figure 9).
SerpinE2 is nearly absent in supernatants from the five normal

melanocyte cultures (MC) tested, but is present in supernatants
from all seven melanoma lines tested (WM; Figure 5a). The 2D
finding was confirmed in 3D skin reconstructs, with only
melanoma cells staining positive for SerpinE2 (Figure 5b). SerpinE2
mRNA expression is absent in normal skin as shown by analysis of
a public data set (GEM_1375) and increases with malignant
progression (Figure 5c). Immunohistochemistry analyses on
patient tissues confirmed the association between SerpinE2
expression and melanoma progression, with the strongest
expression in invasive and tumorigenic vertical growth phase
(VGP) primary tumors and metastatic lesions (Figures 5d and e).
Benign lesions (nevi) showed a dotted expression pattern
(Figure 5d, arrows) typical of Golgi-associated localization, which
switches to extracellular staining in malignant lesions, supporting
the involvement of secreted SerpinE2 in invasive progression.
Intriguingly, the variability of SerpinE2 expression in VGP reflects
the known cellular heterogeneity of this type of lesion,27,28

whereas metastatic lesions show more uniform staining, suggest-
ing a possible selection of SerpinE2-high expressing cells during
metastasis formation.

DISCUSSION
We describe a subpopulation of human melanoma cells that
proliferates much slower than the main tumor population but is
highly invasive, both in vitro and in vivo. This subpopulation does

not correlate with any genetic signatures of melanoma cells such
as the status of BRAF, NRAS or PTEN mutations. We defined this
subpopulation as LRC because of the dye-labeling technique used
for their identification. After injection into immunodeficient mice,
LRC migrate from the primary tumor to distal sites (spleen, lungs
and lymph nodes); this migration could be visualized in vivo for
~ 20 days.
While proliferation is considered a hallmark of aggressive

cancers, we demonstrate here that slow-proliferating cells are
more invasive and thus the most dangerous cells (Figures 1 and 2;
Supplementary Figure 2). Our findings are in-line with reports
from cultured tumor cells that LRC have increased invasive
potential, for example in pancreatic adenocarcinoma,29 and that
non-proliferative, senescent-like melanoma cells can be invasive
in vitro.30,31 The secreted protein SerpinE2 strongly augments
LRC’s invasive potential. The identification and characterization of
this slowly-proliferating melanoma subpopulation urges us to
begin adjusting our treatment strategies of biologically early
disease, because we may not detect individual, disseminated
tumor cells with current diagnostic techniques.
Invasion and dissemination are the first steps in the metastatic

cascade, with many cells able to survive when circulating in the
lymph and blood vascular systems, but only a small percentage is
able to initiate growth at the new site. Understanding the
biological events at the distal sites is critical for being able to
prevent or slow metastases. We observed that some LRC in
peripheral organs remained detectable for days without any dye
lost, i.e., they remained dormant (Supplementary Figure 2D).
This dynamic resembles clinical patterns, where tumor cells that

disseminate early can remain dormant for extended time periods
but then (via unknown mechanisms) regain proliferative potential
and give rise to clinically detectable tumor masses.
Proliferation at the primary tumor site is associated with

metastasis formation in the regional lymph node,32 but melanoma
can recur much later (45 years) in patients with no/low
proliferation in their primary tumors.33 Even very late recurrences
(410 years), observed in approximately 7% of melanoma patients,
can be associated with negative sentinel lymph node biopsy,34

suggesting that dissemination has occurred through the vascular
system and that the disseminated cells have remained dormant
for extended times. The mechanisms driving the switch between
dormant state and metastasis development are not clear, but
likely result from cues in the microenvironment. The clinical
implication of the LRC phenotype is that if some cells are able to
disseminate in the first phases of tumor growth, they will escape
surgical excision, which is the predominant treatment for primary
melanomas. Therefore, separate strategies are needed to target
these cells for achieving a complete eradication of the tumor.
Using the unbiased approach of directly comparing proteomes

from total extracts of matched LRC and non-LRC, we identified

Figure 2. Melanoma LRC disseminate in vivo early from the primary tumor site. (a) Schematic for detecting LRC in vivo. Melanoma cells
(WM989 and 451Lu) were labeled with PKH26 and subcutaneously injected into SCID Hairless Outbred mice. Mice were imaged weekly using
IVIS (dorsal, ventral and lateral scanning). Between days 0 and 20, the fluorescent signal was detected in the primary tumor at the injection
site; after day 20, proliferating tumor cells lost the dye at the primary site. Instead, fluorescent signals indicating the presence of LRC were
detected in distant sites. (b) Mice on left: dorsal view of mice scanned 7 days post-tumor injection. For the left two mice of each melanoma,
palpable tumors overlapped with fluorescence signals. Graphs on right: tumor growth (black line, left Y-axis) and dilution of PKH26 signal (red
line, right Y-axis) at the primary tumor site (n= 5). Arrows indicate the cross point of the curves. After reaching ~ 500 mm3 tumor size, PKH26
signal is rapidly lost. (c) Dorsal (left), ventral (middle), and lateral (right) views of mice scanned when tumors reached ~ 700 mm3 size. (d)
Scatter plots showing quantification of the fluorescent signals for individual mice at days 0–20 (left plots) and 20–60 (right plots) post injection
(n= 5), for the same two melanoma cell lines as in c. Primary tumors (blue), peritoneal cavities (red), and left flank (black). (e) Bars represent
flow cytometry quantification of melanoma LRC (CD146+/PKH26+ positive cells) in primary tumor (gray), mouse lymph nodes (LN, yellow),
lungs (blue), liver (green) and spleen (purple); Zebra plot (below) are representative examples from lungs. Upper right quadrant: melanoma
LRC double positive for CD146 and PKH26; lower right quadrant: melanoma non-LRC cells (CD146+ positive). Numbers are % of positive cells
after subtraction of the percentage detected in the isotype control (left plot). (f) Representative photomicrographs of immunofluorescence
performed on frozen tissue from lungs and spleen for a combination of melanoma markers (CD146, β3 integrin, MSCP-1). Cells can be
detected as clusters (white square in spleen) or disseminated (white arrows). Bottom panel is the negative antibody control staining.
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SerpinE2, BMP1 and PDGFRL as potential markers for melanoma
LRC (Figure 3; Supplementary Figure 6; Supplementary Tables 1–4).
As PDGFRL has been poorly studied and no antibodies were
available, this protein was not investigated further. BMP1 is a
member of the bone morphogenic protein family that is normally
secreted during cartilage development and has a major role in
proto-collagen and proto-laminin 5 cleavage.35–37 In cancer

development and progression, BMP1 is associated with metastasis
in non-small cell lung cancer38 and structurally analogous
members are associated with colon cancer progression,39 likely
via Src activation,40 but in general the role of BMP1 in cancer is not
well defined.
SerpinE2 is secreted by nerve and vascular cells in physiological

conditions and by platelets upon activation at tissue injury sites.41

Figure 3. Label-retaining, disseminated melanoma cells express high levels of SerpinE2. (a) Table lists proteins identified after whole-cell
proteomic analyses of LRC and non-LRC. The last column lists the cell lines with differential expression of the indicated protein. (b) Violin plots
(left panels) illustrate quantification of SerpinE2 (white spot, top) and BMP1 (white spots, bottom) as determined by mRNA FISH. mRNA counts
for single cells are shown on the Y-axes. Note differences in Y-axes. Representative photomicrographs are shown on the right (total
magnification: 100 × ). (c) Protein expression was analyzed by immunofluorescence and quantified at single-cell levels (scatter plots on left and
representative images on right). LRC (red), non-LRC (orange), total cells (gray). (d) Flow cytometry of disseminated WM989 melanoma cells
detected in three mouse organs (top panel). The percentage of cells double positive for CD146 and SerpinE2 is shown in the upper right
quadrants; the lower right quadrants indicate the percentage of cells singly positive for CD146. Micrographs show examples of disseminated
SerpinE2-positive cells (arrows, middle and right panels) in mouse lungs. Left panel: negative control.
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It has anti-serine protease activity to many proteases but its main
function is to regulate the plasminogen-plasmin axis, functioning
as a plasminogen activator inhibitor.42–44 SerpinE2 inhibits
its targets by the standard serpin inhibitory mechanism, involving
protease binding and cleavage of the reactive center loop,
triggering a large conformational change to the serpin molecule
trapping the targeted protease in a covalent inactive complex.45,46

In mammalian cells, serpin-protease complexes bind to
members of the low-density lipoprotein receptor family such as
low-density lipoprotein receptor-related protein 1 (alpha2-macro-
globulin receptor or CD91), triggering a variety of signaling
events.47

SerpinE2 has a pro-invasive role in cancer.48 Earlier reports
found that SerpinE2 promotes invasion of pancreatic, testicular,
mammary, prostate, and lung cancers and gliomas.49–55 SerpinE2
is upregulated in epithelial cells after oncogenic activation56 and
during the progression from pre-neoplastic lesions to
medulloblastoma.57 SerpinE2 has not been studied in detail in
melanoma, except a recent report associates SerpinE2 to
melanoma invasiveness.58 It is not clear how serpins and SerpinE2
contribute to metastasis formation; two recent reports suggest
two different mechanisms of action. Serpins could shield
metastatic cells from Fas-mediated killing activated by

plasminogen-plasmin, providing a pro-metastatic advantage,59 or
serpins could act as anticoagulants at the vascular/extravascular
interface in the tumor, increasing vascular leakiness favoring
extravasation.60 One possible scenario is that LRC, through active
secretion of SerpinE2, could direct modulate non-LRC properties,
making them more invasive similarly to report in a Zebrafish
melanoma model.61 Our data confirm the findings in the
fish models that non-LRC express SerpinE2 receptors
(Supplementary Figure 5B) and that recombinant SerpinE2 in
culture media can directly stimulate non-LRC invasion (Figure 4a;
Supplementary Figure 7A). We can also postulate that SerpinE2
contributes to both invasion and survival of LRC. For example,
several SerpinE2-associated processes may contribute to LRC
extravasation, invasion, and survival in the newly-seeded tissue:
cell cycle exit promotion and integrin inactivation achieved in an
urokinase Plasminogen activator receptor-dependent manner,62,63

induction of metalloproteinase release,53,55 or apoptosis
prevention.64

We directly linked SerpinE2 to melanoma invasiveness by first
showing that SerpinE2-positive cells have disseminated to mouse
lungs, liver and lymph nodes (Figure 3d; Supplementary Figures
6B, C), and then showing that exogenous SerpinE2 stimulates
invasion of non-LRC and its neutralization prevents invasion by
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LRC (Figure 4; Supplementary Figure 7). Moreover, our data
confirm that SerpinE2 is exclusively linked to melanoma cells’
invasive capacities. SerpinE2 does not control melanoma cell
proliferation, since its abrogation does not change proliferation

dynamics or cell viability (Supplementary Figure 9). Furthermore,
our data show that there is no direct correlation with MITF
expression (Supplementary Figure 6F) or Ki67 (Supplementary
Figure 4C). In particular in skin reconstruct, SerpinE2-positive cells
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Figure 5. SerpinE2 expression is increased in malignant cells and correlates with tumor progression. (a) Western blot analysis of
SerpinE2 secretion by melanoma cells (n= 21) and human melanocytes (n= 5) into culture supernatants. Recombinant SerpinE2 protein
(500 ng) was used as a positive control and Ponceau’s staining is shown for loading control. Graph shows quantification (right panel).
(b) SerpinE2 staining of 3D skin reconstructs with melanocytes (left) and melanoma cells (right). (c) GEM_1375 data set analysis of SerpinE2
mRNA expression in melanomas, non-malignant nevi and normal skin. (d) Examples of immune histochemistry at two different magnifications
of: normal skin, benign nevi, in situ, vertical growth phase (VGP) and lymph node metastatic melanomas (n= 15 for each group). SerpinE2
protein expression is indicated by purple staining. Arrows indicate the dotted SerpinE2 expression pattern found in benign nevi only.
(e) Intensity score of SerpinE2 expression in normal skin, benign nevi and malignant melanomas (radial growth phase (RGP), VGP and
metastatic). Bars represent mean± SEM of tissue sections of 15 specimens from each group; P-value after t-student test are given.
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were either positive or negative for Ki67. It appears that scattered
SerpinE2+ cells are generally negative for Ki67 (Supplementary
Figure 4C, top lane) while SerpinE2+ cells found in clusters stain
positive for Ki67 (Supplementary Figure 4C, bottom lane). In some
areas it is also possible the co-existence of SerpinE2-positive cells
that are either positive or negative for Ki67 (Supplementary
Figure 4C, middle panel). Unfortunately, there are technical
limitations that do not allow live imaging of single-cell migration
nor can we detect co-expression of SerpinE2 and PKH26 in vivo.
Our in vitro observations (Figures 4 and 5) were confirmed in

patients’ tissues (Figures 5c–e), where SerpinE2 expression
correlated with highly malignant lesions. Normal tissue surround-
ing melanoma lesions is completely negative for SerpinE2. In VGP
primary melanoma, two populations of cells co-exist, those that
are high- and low-expressing the protein. Vertical growth is the
first invasive step of melanomas, in which both invasive and not
invasive cells are present within the tumor mass. Increased
expression of SerpinE2 could favor the selection of invasive cells to
develop a metastatic mass, that is homogenously highly positive
for SerpinE2 (Figure 5f). Once disseminated, LRC regain prolifera-
tion capacity as demonstrated in vitro and in vivo (Supplementary
Figures 3A, 4B and C) and can regenerate the tumor mass. Our
data are in line with clinical reports that describe increased
SerpinE2 in aggressive stages of gastric,65 colon66 and oral
squamous cell carcinomas.67 To complete our study on SerpinE2
role in melanoma, we analyzed SerpinE2 expression in tissue of
patients using publicly available data sets. When the TCGA data
set was analyzed (469 melanoma samples), we found SerpinE2
mRNA expression upregulated in 6% of patients. These patients
show better survival, compared to patients with unvariated
expression of SerpinE2. The differences between relative expres-
sion levels of SerpinE2 and survival may depend on the type of
treatment patients received subsequently to tissue removal.
Expression may also depend on size of lesion, location and
presence of host cells. In a smaller set of 38 patients with mostly
stage 3 melanoma (GSE19234), SerpinE2 expression is associated
with poor survival, when compared to patients with relatively low
expression of SerpinE2. These descrepancies suggest the need for
further correlative studies on SerpinE2 expression with survival,
particularly in VGP primary melanomas and biologically early (i.e.,
regional lymph node) metastases.
In summary, we have shown that melanoma slow-cycling cells

(LRC) exist in vitro and in vivo. They disseminate early during
tumor growth and are able to efficiently give rise to metastatic
lesions at distant sites. We identify a new role for SerpinE2 as
responsible for melanoma LRC invasiveness, by what appears to
directly involve its anti-proteolytic activity; therefore, a potential
new target to prevent or limit melanomas’ early dissemination. We
summarized our hypothesis in Supplementary Figure 10. We
believe that melanoma slow-cycling cells are primed to invade
due to their transcriptional program. Among LRC, SerpinE2high

cells are favored in the dissemination process and are selected
during organ colonization. Once disseminated, LRC-SerpinE2high

cells proliferate and generate non-LRC without losing SerpinE2
expression. Thus, metastases express almost homogenously high
SerpinE2. Since SerpinE2 is expressed exclusively by melanoma
cells, it is potentially a useful tool to detect isolated malignant cells
disseminated in normal organ parenchyma.

MATERIALS AND METHODS
LRC detection
Melanoma cells were stained with CellTrace Violet cell proliferation kit or
with PHK26 Red Fluorescent Cell Linker mini-kit (Sigma-Aldrich, St. Louis,
MO, USA) according to the manufacturer’s protocol. Fluorescence dilution
was measured at indicated time points by flow cytometry (LSRII, Becton
Dickinson, Franklin Lakes, NJ, USA) and analyzed using FlowJo Software
v10.0 (FlowJo, LLC, Ashland, OR, USA) after normalization on unstained

cells. Labeled cells were grown in culture in melanoma media (MCDB154
+L-15+2%FBS) for 10–14 days, harvested and stained with DAPI before
sorting with MoFlo® Astrios™ (Beckman Coulter, Brea, CA, USA).

In vivo studies
Melanoma cells were stained with PHK26 and 1× 106 cells/mouse were
injected subcutaneously with Matrigel in 1:1 ratio in SHO mice. Tumor
growth was measured once to twice a week with manual caliper and mice
were imaged by IVIS200 (PerkinElmer) once a week. Dorsal, ventral and
lateral scanning was performed. Fluorescent signal was quantified through
Living Image 4.3.1 (PerkinElmer), after subtraction of the background.
Because IVIS allows in vivo fluorescence detection below 1 cm depth, we
also harvested organs at the end of the experiment for additional LRC
detection through imaging and flow cytometry.

Proteomic analyses
Proteins at 50 μg/sample were used for proteomic analyses. Proteins were
obtained as described.68,69 Filter-aided sample preparation was performed
as described.70,71 Eluates were vacuum-concentrated and reconstituted in
2 mM ammonia formate buffer and subjected to Tandem Mass Tag™
system (Thermo Fisher Scientific, Waltham, MA, USA) labeling according to
manufacturer’s instructions. Two-dimensional liquid chromatography was
performed by reversed-phase chromatography at high and low pH as
described.72 Mass spectrometry was performed on a hybrid linear trap
quadruple Orbitrap Velos mass spectrometer (Thermo Fisher Scientific)
using Xcalibur software 2.1.0 (Thermo Fisher Scientific) coupled to an
Agilent 1200 HPLC nanoflow system (Proxeon, Odense, Denmark). MS data
files were processed with MSConvert (ProteoWizard Library v2.1.2708) and
converted into Mascot (MatrixScience, London, UK) files. Peak lists were
searched against the human SwissProt database version v2013.01_
2013011073 with the search engines Mascot (v2.3.02) and Phenyx
(v2.5.14, GeneBio, Geneva, Switzerland).74 Proteins with ⩾ 2 unique
peptides above a score T1, or with a single peptide above a score T2,
were selected as unambiguous identifications. Additional peptides for
these validated proteins with score 4T3 were also accepted. For Mascot
and Phenyx, T1, T2 and T3 were equal to 16, 40, 10 and 5.5, 9.5, 3.5,
respectively (P-value o10–3). Following the selection criteria, proteins
were grouped based on shared peptides, and only the group reporters are
considered in the final output of identified proteins. Peptide-spectrum
match conflicts between Mascot and Phenyx were discarded. The entire
procedure was repeated against a reversed database to assess the protein
group false discovery rate (FDR). Peptide and protein group identifications
were o0.1 and o1% FDR, respectively. The R software package Isobar75

was used to calculate protein ratios and assess their significance. Protein
ratios were calculated based on unique peptides. Proteins were denoted as
significantly regulated when their ratio P-value was o0.05, and the ratio
itself was 42.5 times the median absolute deviation from the median.

Immunohistochemistry
Fifteen radial growth phase melanomas, 15 metastatic melanomas, and 10
nevi were analyzed. Formalin-fixed, paraffin-embedded tissue sections (1–
2 μm) were stained with mouse anti-human SerpinE2 antibody (Origene)
followed by polymer staining and Fast-Red for 7 min at RT. Nuclei were
counterstained with Hematoxylin for 5 min at RT. Antigen retrieval was
achieved at 99 °C for 20 min with ER2 solution (Leica Microsystems, Inc.,
Buffalo Grove, IL, USA).

Western blotting
For culture supernatant analyses, 2E6 cells were plated in a 6 cm-diameter
culture dish for 48 h with 8 ml of culture media. Culture media were
harvested, filtered through Millex-GP Syringe-driven Filter Unit (EMD
Millipore, part of Merck KGaA, Darmstadt, Germany) and 40 μl of
supernatant/sample were used. Samples were boiled 10 min in NuPAGE
LDS sample buffer (Thermo Fisher Scientific), loaded on 10% gels,
transferred onto nitrocellulose filters and immunoblotted with mouse
anti-human SerpinE2 antibody (R&D), diluted 1:500. Anti-mouse secondary
antibody was from IRDye (LI-COR Biosciences, Lincoln, NE, USA) and was
used at 1:10 000 dilution and membranes were analyzed by Odyssey
(LI-COR Biosciences). Densitometry analysis was performed using Odyssey
and data were normalized on the total protein detected after Ponceau’s
staining.
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