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Abstract

Background: Hexavalent chromium [Cr(VI)], an environmental pollutant that originates mostly from anthropogenic sources, is
a serious threat to human health. After entering into cells, Cr(VI) is capable of producing excessive free radicals and causing
tissue damage. The present study aims to reveal the toxic manifestation of Cr(VI) on the metabolic activity of renal tissue.

Methods: Male Swiss albino mice were treated orally with potassium dichromate (K2Cr2O7) at a dose of 10 mg/kg body
weight for a period of 30 days. Important tricarboxylic acid (TCA) cycle enzyme activities like isocitrate dehydrogenase, suc-
cinate dehydrogenase and malate dehydrogenase, as well as the activities of enzymes involved in oxidative phosphoryla-
tion such as Nicotinamide adenine dinucleotide (NADH) dehydrogenase, were measured. Additionally, transaminase and
protease (pronase, cathepsin and trypsin) activities, tissue protein and free amino nitrogen were estimated in renal tissue.
Glucose-6-phosphatase, glucose-6-phosphate dehydrogenase and alkaline phosphatase activities, as well as lactic acid, pyr-
uvic acid and chromium contents, of kidneys were determined following standard protocols. Kidney histology was per-
formed by hematoxylin and eosin staining.

Results: Cr(VI) suppresses the rate-limiting enzymes of the TCA cycle and oxidative phosphorylation indicating an inhibi-
tion of renal ATP production. It decreases protease activity by eliminating the protein substrates and alters the gluconeo-
genic pathway. Cr(VI) worsens the normophysiological attributes of renal tissue by enhancing the activity of alkaline phos-
phatase, pointing towards kidney disease. Histopathological observations confirmed these biochemical results through the
presence of chronic tubular nephritis and altered glomerular structure. Cr(VI) retention occurs to a greater extent in renal
tissue, which intensifies the toxic manifestation of this pollutant in the kidney.

Conclusions: Cr(VI) disrupts the metabolic interaction between carbohydrates and proteins in mammalian renal tissue.
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Introduction

Heavy metal toxicity is a serious threat to living creatures across
the globe. Overpopulation, rapid urbanization, excessive burn-
ing of fossil fuels, greedy industrialization and exhaustive open-
cast mining are anthropogenic activities that lead to pollution

caused by heavy metals, including chromium. Chromium is an
abundant trace element in the Earth’s crust and exists in the
environment at different valance states, ranging from hexava-
lent (VI) to trivalent (III) forms [1]. The former easily
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accumulates in cells and causes irreversible toxic damage to
their cellular conformation resulting in devastating effects on
the surrounding tissue [2]. The diffusible form of chromium
[hexavalent chromium, Cr(VI)] accumulates in various tissues of
the exposed organism and forms an executive pattern of cellu-
lar toxicity that includes the disruption of normal morphophy-
siological cellular integrity. As a consequence, biochemical and
enzymological functions related to metabolic processes are seri-
ously disturbed [3]. India is the third most important exporter of
chromium ore worldwide, contributing 19% of the total amount
produced globally, of which 99% is mined from Odisha with the
rest coming from other open-cast chromium mines [4, 5]. Cr(VI)
leaches into water bodies and penetrates to ground water level,
causing health complications among nearby inhabitants that
range from chronic skin complaints to malignant cancer [6].
Cr(VI), being a potent oxidative stress modulator and apoptotic
signal enhancer in renal tissue, has been shown to cause signifi-
cant acute renal damage and advanced tubular necrosis in
mammalian animal model systems [7]. The genotoxicity of
Cr(VI) is evident as an excessive amount of free radicals and the
production of DNA crosslinking, DNA–protein crossbinding,
chromosomal aberrations and genomic instability in the
nuclear environment of affected cells [8].

Although some functional aspects of the kidney’s response
to toxic insult have been well studied, to our knowledge there
are no reports to date on protein and carbohydrate bioener-
getics in renal tissue following exposure to chromium. The
present study aims to identify the specific mechanism of the
metabolic interactions of Cr(VI) in renal tissue with respect to
protein and carbohydrate bioenergetics.

Materials and methods
Chemicals

Potassium dichromate (K2Cr2O7, molecular weight 294.185), and
chemicals including sodium succinate, triethanolamine,
sodium citrate, sucrose, diethylether, bovine serum albumin
(BSA), potassium hydroxide, ethanol, sulphuric acid (H2SO4),
phenol, Tris-HCl, dichlorophenolindophenol (DCPIP) and ethyle-
nediaminetetraacetic acid (EDTA) were of analytical grade and
bought from Merck (Kolkata, India), SRL (Kolkata, India) and
Sigma-Aldrich (Kolkata, India). All reagents were prepared using
ultra-pure Millipore water to prevent unwanted metal contami-
nation and to maintain experimental standards.

Animals

Swiss albino male mice (n¼ 6, number of animals per group)
weighing 30–35 g were procured from Chakraborty Enterprise,
Kolkata, India, an authorized animal supplier (Reg. No. 1443/PO/
b/11/CPCSEA) nominated by the Control and Supervision of
Experiments on Animals, Ministry of Environment and Forests,
Govt of India. All procedures for animal maintenance, treat-
ment and experimentation were in accordance with the ethical
standards of the Institutional Animal Ethical Committee,
Tripura University and were approved by the committee (Ref.
No. TU/IAEC/2015/XI/2-3). Animals were housed in polypropy-
lene cages and acclimatized to laboratory conditions for 1 week
prior to the start of the experiment. Animals were provided
with a standard protein diet (18% casein diet) and supplied with
drinking water ad libitum throughout the experiment. The
animal house maintained standard air conditions of tempera-
ture (22–25�C) with a 12 h alternating light and dark cycle.

Experimental design

Animals were divided into two groups of equal average body
weight: the control and Cr(VI)-treated groups. Each group con-
sisted of six animals (n¼ 6) that were subjected to the following
treatment protocols.

Control group: animals received Millipore water orally.
Cr(VI)-treated group: animals were treated with Cr(VI) (as

K2Cr2O7) at a dose of 10 mg/kg body weight/day orally for 30 days.

Animal sacrifice

After the treatment period, all animals were sacrificed by cervi-
cal dislocation following the guidelines of the Institutional
Animal Ethical Committee.

Separation of tissue

Subsequent to animal sacrifice, kidneys were removed from all
animals, washed in ice-cold saline (0.9%), blotted dry, weighed
and kept at �20�C for biochemical analyses.

Preparation of tissue homogenate

Tissue homogenates were prepared in suitable buffer solution
(e.g. 0.1 M phosphate buffer, pH 7.4 and 0.25 M sucrose solution)
as required for different analytical methods using a Potter
Elvenjem glass homogenizer (Belco Glass Inc., Vineland, NJ, USA).

Preparation of mitochondrial suspension from renal
tissue

Kidney tissue mitochondria were isolated according to the
method of Dutta et al. [9]. A portion of the kidney was cleaned
and cut into small pieces. Next, 500 mg of the tissue was incu-
bated with 10 mL sucrose buffer solution [0.25 M sucrose, 0.001
M EDTA and 0.05 M Tris-HCl (pH 7.8)] at 25�C for 5 min. The tis-
sue was then homogenized in a cold environment for 1 min at
low speed using a Potter Elvenjem glass homogenizer. The
homogenate was centrifuged at 1500 rpm for 10 min at 4�C and
the resulting supernatant centrifuged at 4000 rpm for 5 min at
4�C. The supernatant, thus obtained, was further centrifuged at
14 000 rpm for 20 min at 4�C. The final supernatant was dis-
carded and the pellet was resuspended in sucrose buffer. Most
of the enzymatic assays were carried out with freshly prepared
mitochondrial suspension, but suspensions were stored
at� 20�C until further analysis if necessary.

Body weight and kidney-somatic index

The body weight of each animal of each group was recorded on
the day that treatment commenced and was also noted periodi-
cally until sacrifice to observe the changes in body weight in dif-
ferent groups. The organ weights (both kidneys) of the animals
were also recorded after sacrifice. The kidney-somatic index
(KSI) was calculated according to the following formula of
Krishnaiah and Reddy [10].

KSI ¼ Weight of the organ ðgÞ
Day 30th total body weight

� 100

Pyruvic acid content

The pyruvic acid content of kidney tissue was estimated accord-
ing to the protocol of Segal et al. [11]. Briefly, 10% tissue
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homogenate was centrifuged at 3000 rpm for 10 min with 5%
tricarboxylic acid (TCA). The resulting supernatant was mixed
with 1 mL distilled water and 0.5 mL 2,4 Dinitrophenylhydrazine
(DNPH) and shaken for 3 min. Then, toluene was added and
mixed vigorously by hand shaking for a few minutes. After that,
2 mL each of sodium carbonate and NaOH solution was added
to measure the optical density of the colored product at 420 nm.
The observed result was expressed as mg/g of tissue.

Lactic acid content

Lactic acid content of the kidney tissue was determined by the
colorimetric method of Taylor [12]. In brief, a 0.5 mL tissue ali-
quot was placed in a screw-capped borosilicate tube with 3 mL
of concentrated H2SO4, heated to boiling temperature for 10 min
and then cooled in a water bath. After that, 50 ml 4% CuSO4 and
100 ml of 1.5% p-phenylphenol (prepared with ethanol) were
added one after another, mixed thoroughly and the tube was
incubated for 30 min at 30�C until all of the precipitate had dis-
solved. The absorbance was measured at 570 nm and the result
expressed in terms of mg/g of tissue.

Lactate dehydrogenase activity

Lactate dehydrogenase (LDH) activity was estimated via the
method of Bergmeyer [13], which measures the activity of the
enzyme by the rate of consumption of pyruvate and reduced Di-
phospho pyridine nucleotide (DPNH) in the tissue homogenate.
Decreased optical density at 340 nm was measured in an UV-vis
spectrophotometer for oxidation of DPNH at 10 s intervals for
5 min. Enzyme activity was expressed as unit/min/mg of
protein.

Pyruvate dehydrogenase activity

Pyruvate dehydrogenase activity was measured via the method
of Liu and Bisswanger [14]. The required assay mixture for
enzyme estimation contained triethanolamine buffer with 0.1
M MgCl2, 0.1 M pyruvate, 0.01 M DCPIP at pH 7.8 and a specific
amount of tissue homogenate. Kinetic changes were recorded
at 597 nm and the results expressed as mmol/min/mg of
protein.

Glucose-6-phosphatase activity

To measure Glucose-6-phosphatase (G6Pase) activity, 5% kidney
tissue homogenate was mixed with 1.8 mL of buffer substrate,
then incubated at 37�C for 10 min. After incubation, 1 mL of ice-
cold TCA was added and centrifuged at 3000 rpm for 10 min. The
resulting supernatant was taken for the estimation of liberated
inorganic phosphate. Optical density was measured at 880 nm
according to the method of Plummer [15]. The activity of G6Pase
was expressed as mg phosphate liberated/min/mg of protein.

Glucose-6-phosphate dehydrogenase activity

Glucose-6-phosphate dehydrogenase (G6PD) activity was meas-
ured via the technique of Bergmeyer [16]. For the determination
of enzymatic activity, the assay mixture was prepared with 0.1
M triethnolamine, 0.1 M glucose-6-phosphate, 0.1 M MgCl2 and
0.04 M NADH. Then, 0.98 mL of assay mixture was added to
0.02 mL tissue homogenate. The increase in absorbance was
measured at 30 s intervals at 340 nm at 25�C for 5–8 min.
Enzyme activity was expressed as mmol of NADH reduced/min/
mg of protein.

Isocitrate dehydrogenase activity

Mitochondrial isocitrate dehydrogenase (IDH) activity was
measured according to the method of King [17]. The reaction
mixture contained 0.1 mL of Tris-HCl, 0.2 mL of trisodium isoci-
trate, 0.3 mL of manganese chloride, 0.2 mL of mitochondrial
suspension and 0.2 mL of NADP (0.2 mL of saline for control).
After incubation, 0.001 M of DNPH was added followed by the
addition of 0.005 M of EDTA and 0.4 N NaOH. Optical density
was taken at 420 nm in an UV-vis spectrophotometer. Enzyme
activity was expressed as unit/min/mg of protein.

Succinate dehydrogenase activity

Succinate dehydrogenase (SDH) activity was measured spectro-
photometrically in a mitochondrial suspension following the
reduction of K3Fe(CN)6 at 420 nm according to the method of
Dutta et al. [9]. Each 1 mL of assay mixture contained 50 mM
phosphate buffer (pH 7.4), 2% (w/v) BSA, 4 mM succinate, 2.5 mM
K3Fe(CN)6 and a suitable aliquot of the enzyme. Enzyme activity
was expressed as unit/min/mg of protein.

Malate dehydrogenase activity

Malate dehydrogenase (MDH) activity in the mitochondrial sus-
pension was determined via the method of Mehler et al. [18]
using an assay mixture containing potassium phosphate buffer,
0.0076 M oxaloacetic acid and 0.005 M NADH at pH 7.4. The
reduction of NADH was measured at 340 nm for 5 min a 10 s
intervals and activity expressed as mmol of NADH oxidized/
min/mg of protein.

NADH: ubiquinone C oxidoreductase (complex I) activity

The activity of NADH: ubiquinone C oxidoreductase was meas-
ured via the method of Minakami et al. [19]. The reaction mix-
ture contained 1 mL phosphate buffer, 0.1 mL of potassium
ferricyanide and 0.2 mL mitochondrial suspension in a total
reaction volume of 3 mL with distilled water. Freshly prepared
(0.1%) NADH solution was added just before the addition of the
enzyme, except in the control set. The change in optical density
was measured at 420 nm for 3 min and enzyme activity
expressed as mmol of NADH oxidized/min/mg of protein.

Tissue protein content

Protein content was estimated according to the method of
Lowry et al. [20]. First, 0.1 mL of tissue homogenate was mixed
with 0.9 mL distilled water and 4.5 mL alkaline copper reagent
and kept at room temperature for 10 min. To this, 0.5 mL of
Folin’s reagent (1:2) was added. The blue color was allowed to
develop for 20 min and before optical density was read at
640 nm. Protein content was expressed as g/100 g tissue.

Free amino acid nitrogen content

The 5% tissue homogenate (in 0.1 M phosphate buffer, pH 7.4)
was first dissolved in 0.67 (N) H2SO4 and 10% Na-tungstate to
precipitate proteins, then centrifuged to obtain the protein-free
extract. The resultant supernatant was treated with cyanide
acetate buffer and 3% ninhydrin solution as per the protocol
proposed by Rosen [21]. After that, the solution was heated at
100�C in a water bath for 5 min and isopropanol added immedi-
ately after cooling to enable the violet color to develop. Optical
density of the colored solution was measured in a
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spectrophotometer at 570 nm. Free amino nitrogen level was
expressed as mg/g tissue.

Alkaline phosphatase activity

The alkaline phosphatase activity of renal tissue was deter-
mined via the method of Kind and King [22] using tissue homo-
genate prepared with 0.1 M phosphate buffer solution. At
alkaline pH, this enzyme hydrolyses its substrate p-nitrophenyl
phosphate and forms phenol, which further reacts with amino-
antipyrine in the presence of ferricyanide to produce a colored
derivative. The intensity of the colored derivative formed is
directly proportional to the enzymatic activity in the tissue
homogenate. Enzyme activity was expressed as King–
Armstrong unit/mg of tissue.

Glutamate pyruvate transaminase and glutamate
oxaloacetate transaminase activities

Transaminase enzyme activities in the studied tissue were
determined following the method of Reitman and Frankel [23].
For this assay, a standard kit (Coral Clinical Systems, Goa, India)
was used to photometrically measure the color intensity of the
reaction mixture: color forms due to the chemical reaction of
alanine with a-ketoglutarate to form pyruvate in the case of
glutamate pyruvate transaminase (GPT), whereas aspartate
reacts with a-ketoglutarate to form pyruvate in the case of
glutamate oxaloacetate transaminase (GOT). Following the
addition of the reagents, tubes were incubated at 37�C for a spe-
cific period of time and absorption noted at 505 nm. Enzyme
activity was expressed in terms of unit/g of tissue.

Pronase activity

Pronase activity in kidney tissue was estimated following the
method of Barman [24]. A 5% tissue homogenate in sucrose sol-
ution was incubated at 40�C temperature with casein substrate
for 30 min. The reaction was stopped by addition of protein pre-
cipitating reagent solution. The mixture was then centrifuged,
the supernatant collected and its optical density measured at
280 nm wavelength. Pronase activity was expressed as nmol of
tyrosine produced/min/mg of protein.

Trypsin activity

To determine the activity of trypsin in 5% tissue homogenate,
the method of Green and Work [25] was employed. In this
method two separate tubes were taken, one containing a defin-
ed volume of tissue homogenate and 2.5 mL of Hemoglobin (Hb)
substrate (the sample tube) and the other containing 5% TCA
and Hb substrate (buffer blank). Both tubes were incubated at
25�C for 30 min, after which 5% TCA was added to the sample
tube to stop the reaction and 5% tissue homogenate was added
to the buffer blank. Tyrosine content was measured in a spec-
trophotometer at 280 nm wavelength. Enzyme activity was cal-
culated as nmol of tyrosine produced/min/mg of protein.

Cathepsin activity

The activity of cathepsin in kidney tissue was assayed via the
method of Pokrovsky et al. [26]. According to this procedure, 5%
tissue homogenate was added to Hb substrate (4%) and incu-
bated at 37�C for 1 h. To stop the reaction, 8% TCA was added
and mixed well. In the same manner, a buffer blank was also
prepared in which TCA was added before incubation with the

same ingredients as were in the sample tube. After precipitation
of protein in the mixture, the supernatant was collected by cen-
trifugation at 3500 rpm for 10 min. Optical density was meas-
ured in a UV-vis spectrophotometer at 280 nm. Tissue cathepsin
activity was expressed in terms of nmol of tyrosine produced/
min/mg of protein.

Tissue Cr(VI) analysis

Tissue Cr(VI) content was determined using an atomic absorp-
tion spectrometer (Perkin Elmer A Analyst 700) according to the
method suggested by Sun and Liang [27]. Data were collected
from three pooled samples and expressed as mg/g of tissue.

Histopathological studies

For histopathological analysis of kidney samples, both control
and Cr(VI)-treated tissues were preserved in 10% neutral buf-
fered formalin solution for 24 h. After dehydration in graded
alcohol, clearing, impregnation and embedding, tissue sections
were prepared with a rotary microtome, stained using hematox-
ylin and eosin, and examined by microscopy. Photomicrographs
were taken using a 20� objective.

Statistical analyses

All results were expressed as means 6 standard error of the
mean (SEM). Significance of differences between the two groups
were assessed using a paired Student’s t-test. P< 0.05 was con-
sidered statistically significant.

Results

Body weight: Sub-acute chromium exposure (represented in
Table 1) at the dose and duration utilized in this study had no
significant effect on the body weight of experimental mice.

KSI: Table 1 shows that chromium intoxication affected the
organo-somatic index of kidneys in the treated group of mice as
the KSI increased. In the treated group, KSI increased by 21.72%
(P< 0.05) compared with the control group.

Total protein content: Table 2 demonstrates that kidney pro-
tein content decreased significantly (by 44.49%, P< 0.001)
compared with the control group.

Free amino nitrogen content: The free amino nitrogen level
was elevated fourfold with Cr(VI) intoxication (P< 0.001) as com-
pared with the control group (Table 2).

Pyruvic acid content: Table 2 shows that Cr(VI) exposure
resulted in a significant decrease in the pyruvic acid content of
renal tissue (69%, P< 0.05).

Lactic acid content: Table 2 demonstrates that the observed
increase (20%) in lactic acid content in renal tissue due to chro-
mium exposure was not statistically significant (P> 0.05).

Tissue chromium deposition: Cr(VI) accumulation in renal
tissue was found to be 2.58-fold compared with the control
group (Table 2).

PDH activity: A significant decrease (40.42%, P< 0.001) in
PDH activity was observed in the renal tissue of mice after chro-
mium exposure (Table 3).

Alkaline phosphatase activity: Enzyme activity was signifi-
cantly elevated in renal tissue by approximately twofold
(P< 0.001) after sub-acute Cr(VI) exposure (Table 3).

NADH dehydrogenase (mitochondrial complex I) activity: As
represented in Table 3, chromium intoxication significantly
decreased NADH dehydrogenase activity in treated mice in
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comparison with the control group. The percentage change
observed was 74.92% (P< 0.001).

Protease activity: Table 3 shows that protease activity
decreased in Cr(VI)-exposed renal tissue. Pronase, cathepsin
and trypsin activity decreased by 79.72% (P< 0.001), 67.96%
(P< 0.001) and 62.82.9% (P< 0.001), respectively.

IDH activity: Figure 1 shows that IDH activity in kidney tissue
was decreased by 33.46% (P< 0.001) in the Cr(VI)-treated group.

SDH activity: The results presented in Figure 1 reveal that
CR(VI) treatment significantly decreased SDH activity by 72.14%
(P< 0.001) in mouse kidney tissue compared with the control
group.

MDH activity: Figure 1 shows that MDH activity in kidneys of
treated mice was significantly decreased (36.85%, P< 0.001)
compared with that of the control group.

G6Pase activity: Figure 2 demonstrates that the activity of
G6Pase in the renal tissue of Cr(VI)-exposed mice was decreased
by 39% (P< 0.001) compared with that of the control group.

G6PD activity: Figure 2 shows that G6PD activity was decreased
by 29.3% (P< 0.001) in mouse renal tissue after Cr(VI) exposure.

Transaminase activity: GPT activity was significantly
increased by 38% (P< 0.001) and GOT activity was also elevated

Table 1. Effect of sub-acute doses of Cr(VI) on body weight and KSI

Groups of
animals
(n ¼ 6)

Final body
weight (g)
after 30 days

Kidney somatic
index kidney weight �
100/body weight (g)

Control 36.75 6 3.07 1.52 6 0.04
Treated 34.29 6 3.31; P> 0.05 1.85 6 0.12; P< 0.05

Values are means 6 SEM. P<0.05 was considered as statistically significant.

Table 2. Effect of sub-acute exposure to Cr(VI) on different metabolic
parameters in renal tissue

Metabolic parameters Kidney tissue

Control Treated

Total protein content
(g/100 g of tissue) (6)

26.34 6 1.32 14.62 6 0.8; P< 0.001

Free amino nitrogen
(mg/g of tissue) (6)

0.086 6 0.007 0.38 6 0.02; P< 0.001

Pyruvic acid content
(lg/g of tissue) (6)

192.38 6 6.36 59.48 6 3.15; P< 0.05

Lactic acid
(mg/g of tissue) (6)

15.26 6 2.06 18.32 6 2.72; P> 0.05

Chromium content
(lg/g tissue) (3)

7.4 19.4

Values are means 6 SEM, except the parameter of chromium content in tissue,

which represents pooled data from three samples. Figures in parentheses indi-

cate number of animals. P<0.05 and P< 0.001 were considered statistically sig-

nificant. P> 0.05 was not significant.

Table 3. Effect of sub-acute exposure to Cr(VI) in kidney on different
enzyme activities

Metabolic enzymes Kidney tissue

Control Treated

PDH (unit/min/mg of protein) (6) 1.88 6 0.10 1.12 6 0.08; P< 0.001
Alkaline phosphatase (King–

Armstrong unit/mg of tissue) (6)
0.64 6 0.04 1.29 6 0.08; P< 0.001

NADH dehydrogenase (mmol of
NADH oxidized/min/mg of
protein) (6)

6.78 6 0.62 1.7 6 0.39; P< 0.001

Pronase activity (nmol of tyrosine/
min/mg of protein) (6)

1.38 6 0.4 0.28 6 0.09; P< 0.001

Cathepsin activity (nmol of tyro-
sine/min/mg of protein) (6)

1.03 6 0.06 0.33 6 0.07; P< 0.001

Trypsin activity (nmol of tyrosine/
min/mg of protein) (6)

35.08 6 3.2 13.04 6 3.33; P< 0.001

Values are means 6 SEM. Figures in parentheses indicate number of animals.

P<0.05 and P<0.001 are considered statistically significant.

Fig. 2. Changes in gluconeogenic enzyme activities of kidney due to Cr(VI) toxic-

ity. Values are expressed as means 6 SEM. Asterisks indicate significant differ-

ence relative to control (***P<0.001). Number of animals in each group of

experimental set was six.

Fig.1. Altered TCA cycle enzyme activities due to hexavalent chromium expo-

sure. Values are expressed as means 6 SEM. Asterisks indicate significant differ-

ence relative to control (***P<0.001). Number of animals in each group of

experimental set was six.

Fig. 3. Altered transaminase activities of the renal tissue after chromium expo-

sure. Values are expressed as means 6 SEM. Asterisks indicate significant differ-

ence relative to control (***P<0.001). Number of animals in each group of

experimental set was six.
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by 80.38% (P< 0.001) in the kidneys of Cr(VI)-treated mice
compared with their respective control groups (Figure 3).

LDH activity: LDH activity was significantly increased in the
kidney tissue of Cr(VI)-treated mice (35.46%, P< 0.001) compared
with that of the control group (Figure 4).

Histopathological micrographs of kidney tissue: Figure 5
shows representative histopathological micrographs of mouse
kidney tissue. There was significant ectopic alteration in the
structure of kidney tissue in Cr(VI)-treated mice, owing to dras-
tic changes in glomerular attributes and tubular conformation.

Discussion

Metabolic perturbations in renal tissue following chromium
exposure, including alterations in protein and carbohydrate bio-
energetics, have been addressed in the present study. Exposure
to chromium did not lead to a gain in body weight of treated
mice, indicating that change in body weight is a factor that is
independent of short-term chromium exposure. The slight
increase in KSI observed in chromium-treated mice might be
due to an excess accumulation of chromium in renal tissue or
mild fat deposition. Heavy metals of the transition element
group, such as Cr(VI), are potential generators of oxidative
stress and endocrine-disrupting chemicals, which are able to
disrupt a wide range of biochemical cascades in tissues ranging
from hepatic to muscular tissue [28]. Toxicity-induced prolifer-
ative stress molecules exert an irreversible toxic effect on

kidney tissue [29]. Cr(VI) exerts detrimental effects on the bio-
logical attributes of cells by interfering with the enzymatic proc-
esses of different metabolic systems. Cr(VI) is able to mimic the
active cofactors of some enzymes and bind covalently to them,
resulting in conformational alterations and the subsequent
diminution of their activities [30]. Cr(VI) has also been shown to
cause hepatocyte cytotoxicity and interstitial nephritis in
experimental animals [31]. Being the most stable and easily dif-
fusible chromium compound, Cr(VI) is readily deposited in
cellular structures where it is intensely cytotoxic [32].
Overaccumulation of chromium in renal tissue was evident in
the present study. Histopathological observations also con-
firmed retention of Cr(VI) in renal tissue with the effect of
altered glomerular structure, severe necrosis and hyalinized
cytoplasm, with structural defects visible in the distal and prox-
imal convoluted tubules.

Cr(VI) is an eventual free radical generator and an effective
disintegrator of sequential metabolic pathways in different tis-
sues of exposed organisms [33]. It triggers significant kidney
damage, cellular malfunction, proteinuria, glycosuria and defec-
tive renal reabsorption owing to severe nephrotoxicity [34].
Chromium’s metabolic toxicity results from its effect on
glycolytic activity, evidenced by the suppressed production of
pyruvate and decreased activity of PDH in renal tissue, which
may contribute to disturbance of the metabolic link between
the glycolytic pathway and the TCA cycle, thus hampering
energy production. In the present study, the apparent decrease
in pyruvate in renal tissue due to decreased PDH and increased
LDH activity is not in accordance with the usual mechanism. It
is likely that the increased activity of transaminase may lead to
the conversion of pyruvate to alanine, decreasing the level of
pyruvate in renal tissue after chromium exposure. Such pyru-
vate depletion in renal tissue is evident in acute kidney dis-
eases, [35]. Additionally, in renal complications such as acute
and chronic kidney diseases, pyruvate passes out from renal tis-
sue and either accumulates in the blood or is excreted in the
urine [36]. As Cr(VI) facilitates the perturbation of important bio-
chemical intermediates by toxic manifestation of defensive
antioxidant molecules of the cell, it consequently creates an
environment inside the cell that is unfavorable for the execu-
tion of metabolic functions [31, 37]. This may cause renal disor-
ders such as acute kidney disease, which implies severe
nephron cell damage and functional dysregulation in the renal
tissue [38].

Fig. 5. Histopathological changes in kidney tissue after Cr(VI) exposure. Representative hematoxylin and eosin-stained histological sections from kidney of vehicle-

treated normal renal cortex (Control) (magnification 20�; G, glomerulus; PCT, proximal convoluted tubule; DCT, distal convoluted tubule; CT, collecting tubule); and

(Treated) chromium-treated mice renal cortex [magnification 20�: tubular damage with mild tubular dilatation, necrosis of tubular epithelial cells (N) and increased

interstitial spaces (IS)].

Fig. 4. Effect of Cr(VI) on renal LDH activity. Values are expressed as means 6

SEM. Asterisks indicate significant difference relative to control (***P<0.001).

Number of animals was six in each group of experimental set.
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In our study, all of the key enzymes of the TCA cycle were
affected in the renal tissue of the Cr(VI)-exposed group. The sig-
nificant reduction in the activities of IDH and MDH resulted in
disruption of the TCA cycle and diminished ATP production.
Our findings are supported by a recent study that observed that
the metabolic toxicity of Cr(VI) is partly due to its hampering of
ATP production [39]. Cr(VI) affects the NADH production as well
as disrupting general metabolic processes by interfering with
the production of intermediate metabolic byproducts.
Additionally, Cr(VI) exposure significantly reduces SDH activity
in renal tissue, where it has a retrogressive effect on metabolic
cycles of energy production and hampers normal physiological
functions, which may lead to chronic nephritis. In the present
study, NADH dehydrogenase activity was found to be decreased
in the renal tissue after sub-acute chromium exposure indicat-
ing disturbed function of the mitochondrial electron transport
chain leading to reduced energy production. The ability of Cr(VI)
to suppress mitochondrial enzymes and ATP production has
been noted by previous studies [39, 40].

Cr(VI) exposure can have detrimental effects on the activities
of gluconeogenic enzymes by combining with them in a way that
disrupts their normal conformation [41]. In the present study,
Cr(VI) downregulated the activities of two important enzymes of
the gluconeogenic pathway, G6Pase and G6PD, in renal tissue.
The increased amount of free amino acid nitrogen in the renal
tissue found in the present study also indicates suppression of
gluconeogenic mechanisms. Additionally, Cr(VI) increased the
transaminase activity and resulted in histopathological changes
such as tubular inflammation and degenerative vacuolization of
renal tissue. It is well-known that, in mammalian systems, Cr(VI)
exposure can induce inflammation in renal tissue that signifi-
cantly increases the activities GPT and GOT [42]. Transaminase
activity might also be increased to neutralize the nephrotoxic
effects caused by Cr(VI). Deterioration in renal health was
reflected in terms of increased alkaline phosphatase activity [43].
In the present study, this enzyme’s activity was significantly
elevated due to Cr(VI) toxicity. Histological presentation also
denoted hyalinization and disintegration of glomerular architec-
ture, tubular dilatation and tissue necrosis, which further
indicates the perturbation of renal health.

Chromium salt is known to cause glycosuria and proteinuria
in mice and also induces cellular damage, excessive reactive
oxygen species production, DNA damage and inflammatory
responses [44, 45]. In the present study, synthesis of tissue pro-
tein and important proteases were suppressed in renal tissue
due to sub-acute Cr(VI) toxicity. Total protein may have been
depleted from renal tissue as a consequence of Cr(VI)-induced
proteinuria, whereas protease activities (cathepsin, trypsin and
pronase) were decreased due to a scarcity of suitable substrates
or enzymatic defects. As Cr(VI) is accountable for protein–
protein cross linking, protein-DNA cross binding and retrogres-
sive translational modification, it may affect the compatibility
of enzymes’ active sites with their ligands thus prevent normal
renal function [46]. Trypsin is an important protease that
degrades polypeptides and peptones into different amino acids
according to the biochemical and physiological requirements of
the organism. In the present study, sub-acute exposure to Cr(VI)
resulted in a significant decrease in trypsin activity in renal tis-
sue that may result either from the depletion of specific sub-
strates of the enzyme or malformation of the enzyme due to
genotoxic structural trans-modification. Pronase and cathepsin
are two cellular proteases that are responsible for the break-
down of peptides into small intermediates for utilization in cel-
lular processes such as development and energy production

[47]. Here, we noted significant disturbance of the activities of
pronase and cathepsin following Cr(VI) intoxication due to
functional modification of the enzymes.

Conclusion

Cr(VI) exposure seriously impairs certain renal metabolic proc-
esses and cellular uniformity leading to renal tissue damage. It
has a negative effect on the kinetics of the cooperative assimila-
tion of carbohydrate and protein metabolism in renal tissue.
Additionally, Cr(VI) persistently disrupts cellular bioenergetics
via its toxic effects on the TCA cycle and oxidative phosphoryla-
tion. Excessive deposition of elemental chromium suggests sig-
nificant tissue damage promoting altered tissue architecture.
The reduction in total protein content in Cr(VI)-treated mice is
indicative of severe renal tissue damage that may result from
proteinuria. Additionally, the observed decrease in protease
activities after chromium intoxication reflects disturbance of
the normal protein metabolic machinery in renal tissue.
Interstitial inflammation and cellular vacuolization may be cor-
related with the increased activities of transaminases and LDH
during Cr(VI) intoxication. Histopathological observation identi-
fied glomerulonephritis and tubular necrosis with cellular
vacuolization. Gluconeogenic progression was affected by the
decreased activity of G6Pase and G6PD, which concurrently
restricts glucose formation. Thus, Cr(VI)-induced sub-acute tox-
icity disrupts normal renal bioenergetics and metabolic cooper-
ation between important ATP-generating biomolecules in the
renal tissue of experimental animals.
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