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Abstract

Acute pulmonary embolism is the third most common cause of cardiovascular death. Pulmonary embolism increases right ven-

tricular afterload, which causes right ventricular failure, circulatory collapse and death. Most treatments focus on removal of the

mechanical obstruction caused by the embolism, but pulmonary vasoconstriction is a significant contributor to the increased right

ventricular afterload and is often left untreated. Pulmonary thromboembolism causes mechanical obstruction of the pulmonary

vasculature coupled with a complex interaction between humoral factors from the activated platelets, endothelial effects, reflexes

and hypoxia to cause pulmonary vasoconstriction that worsens right ventricular afterload. Vasoconstrictors include serotonin,

thromboxane, prostaglandins and endothelins, counterbalanced by vasodilators such as nitric oxide and prostacyclins. Exogenous

administration of pulmonary vasodilators in acute pulmonary embolism seems attractive but all come with a risk of systemic

vasodilation or worsening of pulmonary ventilation-perfusion mismatch. In animal models of acute pulmonary embolism, modu-

lators of the nitric oxide-cyclic guanosine monophosphate-protein kinase G pathway, endothelin pathway and prostaglandin

pathway have been investigated. But only a small number of clinical case reports and prospective clinical trials exist. The aim of

this review is to give an overview of the causes of pulmonary embolism-induced pulmonary vasoconstriction and of experimental

and human investigations of pulmonary vasodilation in acute pulmonary embolism.
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Introduction

Acute pulmonary embolism (PE) occurs in about 1 in 1000
persons per year and is associated with a high morbidity and
mortality,1,2 making PE the third most common cause of
cardiovascular death in Europe. Cause of death in PE is
right ventricular (RV) failure caused by a combination of
mechanical obstruction and pulmonary vasoconstriction,
which both increases RV afterload.3,4

In PE, the thrombus lodges in the pulmonary arteries and
causes immediate mechanical obstruction. The embolism
activates the coagulation system, damages the endothelium,
stagnate pulmonary blood flow and accordingly initiate sec-
ondary pulmonary thrombosis which worsens the mechan-
ical obstruction.5,6

RV dysfunction is related to short-term clinical deterior-
ation7 and prognosis.4,8–10 Mechanical obstruction alone
cannot explain the increased RV afterload and consequent
RV dysfunction in PE (Fig. 1). Pulmonary vascular resist-
ance (PVR) does not increase until approximately 50% of
the pulmonary vasculature is embolized,6 and thrombus
mass and percentage of pulmonary vascular obstruction
alone correlate poorly to the hemodynamic compromise11,12

and prognosis in PE.13–15
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This mismatch between thrombus mass and hemo-
dynamic compromise raises the hypothesis that humoral
responses and reflexes activated by the thrombus induce
pulmonary vasoconstriction.

Key element in the treatment of PE is reduction of the
thrombus mass. But this strategy only targets the mechan-
ical component of the RV afterload increase. According to
current guidelines, there are no recommended treatments
targeting pulmonary vasoconstriction4,16 and its use is not
reported in large registries,17 leaving a significant contribu-
tor to the adverse outcome in PE untreated.

Several experimental PE studies have shown a signifi-
cant reduction in PVR using pulmonary vasodilators
that targets a variety of pathways involved in pulmon-
ary vascular tone.18 Despite evidence from pre-clinical
studies, the clinical literature is dominated by case series
and few small clinical trials using pulmonary
vasodilators in PE.

We aim to provide a clinically relevant introduction
to the mechanisms that induce pulmonary vasoconstric-
tion in PE and a comprehensive review of both pre-clinical
and clinical studies using pulmonary vasodilators in
acute PE.

Methods

We searched MEDLINE via PubMed and Embase for rele-
vant articles with latest update 13 September 2019 (see
Appendix 1 for full search strategies).

Articles describing a medical intervention causing pul-
monary vasodilation in acute PE using a clinically relevant
drug were included. Both human and animal studies were
included no matter the year of publication.

Exclusion criteria included especially studies on chronic
thromboembolic pulmonary hypertension (CTEPH) and the
other causes of pulmonary hypertension (PH) within the
World Health Organization classification of PH. Please see
Appendix 1 for full list of inclusion and exclusion criteria.

Pulmonary vasoconstriction in acute PE

Pulmonary vasoconstriction is a significant contributor to
the increase of PVR in PE. This happens through a number
of pathways which are not understood completely. The
mechanisms are summarized in Fig. 1.

Hematogenous thromboembolism increases pulmon-
ary arterial pressure (PAP) more effectively than

Fig. 1. On the left, a schematic pathway showing acute pulmonary embolism (PE) to cause both mechanical obstruction of pulmonary arteries

and pulmonary vasoconstriction. Both increases right ventricular (RV) afterload causing acute RV dilatation and interventricular septal shift which

have been associated specifically with severe, acute PE. The RV may enter a vicious circle of right ventricular failure, circulatory collapse and death.

On the right, focus on pulmonary vasoconstriction induced by a pulmonary embolism. Several mechanisms are potential underlying causes:

vasoactive substances from the thrombus, hemolysis, activated platelets, endothelial damage, reflexes, and hypoxia. Please see the text for further

details.

ET: endothelins; NO: nitric oxide; PEC: pulmonary endothelial cell; RBC: red blood cell; SMC: smooth muscle cell; TXA2: thromboxane A2.
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non-hematogenous material,19 emphasizing the importance
of PE-released vasoconstrictors. Evidence of these humoral
or other chemicals was shown more than half a century
ago.20 Activated platelets and the thrombus mass21–23

secrete thromboxane-A2, prostaglandins, adenosine, throm-
bin, and serotonin19,23–27 which induce platelet aggregation
and pulmonary vasoconstriction.5,19,28 Platelet-activating
factor is also increased with acute PE.29 Pulmonary endo-
thelial cells inactivate serotonin and certain prostaglandins30

to maintain homeostasis.
Endothelins (ET) are produced by the pulmonary vascu-

lar endothelium when stimulated by thrombin, endothelial
injury and hypoxia. ET target the ETA and ETB receptors in
the smooth muscle cells, and pulmonary vasoconstriction is
induced by activation of phospholipase C that increases
inositol triphosphate, diacylglycerol and intracellular cal-
cium.31,32 ET have been estimated to be in charge of 25%
of the PE-induced increase in PVR,33 but findings are vari-
able.34 ET also induce bronchoconstriction and release of
TxA2 which further potentate the pulmonary vasocon-
strictor effect.35

Prostaglandins cause either smooth muscle contraction or
relaxation, depending on the prostaglandin subtype and
receptor subtype.19 Smooth muscle contraction and subse-
quent vasoconstriction are mediated through receptor cou-
pling with the phospholipase C pathway.36 In acute PE,
elevated levels of prostaglandins that induce vasoconstric-
tion have been observed,26,37 but prostaglandins may pre-
vent the release of other vasoconstrictors.38 The clinical
significance and the net pulmonary vasoconstrictor effect
after vasodilation triggered by concomitant prostacyclin
release are not known in acute PE.39,40

Histamine release may also play a role in acute pulmon-
ary embolism but have only been sparsely investigated
making the clinical significance unknown.41,42

Hemolysis is present in PE causing a release of arginase
which converts L-arginine to L-orthinine and urea.
Otherwise, L-arginine would have had potential to produce
L-citrulline and nitric oxide (NO) catalyzed by nitric oxide
synthase. The consequence is reduced availability of NO as
vasodilator.43 Additionally, released free heme and hemo-
globin (Hb) reacts fast and irreversible with NO and further
limits bioavailability of NO.44,45 This is normally counter-
acted by heme oxygenase-145 and by haptoglobin, but hapto-
globin is decreased in PE patients.46 As NO causes
pulmonary vasodilation, hemolysis can be an indirect cause
of vasoconstriction.47 Hemolysis-released adenosine di-phos-
phate and free Hb enhance platelet activation48 which may
cause further obstruction of the pulmonary vessels.

Furthermore, PE-induced vasoconstriction is augmented
by local and neurogenic reflexes that might be dependent on
localization of the PE.19,49,50 Sympathetic activity seems to
be increased in both embolized and non-embolized parts of
the lung.51 PE-released substances also cause bronchocon-
striction of the small airways,23,42,52 leading to hypoxia and

pulmonary vasoconstriction.53 Hypoxia in the lung tissue
will inhibit synthesis of vasodilating prostanoids and
worsen vasoconstriction.38

For a summary, see Fig. 1. The different mechanisms of
pulmonary vasoconstrictors in PE have been reviewed in
details previously.6,18,19,35,54

Results

Literature search resulted in 1510 papers and additional five
were found by hand search. See Fig. 2 for flow chart on the
screening process. A total of 92 papers were included in this
review (summarized in Tables 1 to 4).

Here we provide a detailed review of experimental and
clinical studies investigating the effects of pulmonary vaso-
dilators in PE. For clarity of presentation, we divided these
into four categories based on mechanism of action which
will be presented first. The included articles will be presented
with the experimental research followed by case reports and
clinical studies. Tables 1 to 4 summarize the effects of pul-
monary vasodilation in PE according to our review of the
literature divided by pathway or mechanism.

NO-sGC-cGMP pathway

The nitric oxide (NO)-soluble guanulate cyclase (sGC)-
cyclic guanosine monophosphate (cGMP) pathway exerts
its pulmonary vasodilatory effects through paracrine inter-
action between the pulmonary endothelial cells (PEC) and
the underlying smooth muscle cells (SMC). In the PEC,
either shear stress or a humoral activator (e.g. serotonin,
thrombin) causes increasing cytosolic levels of Ca2þ which
activates the NO synthase.55,56 The active enzyme deaminates
L-arginine to L-citrulline and NO. NO diffuses to the SMC
where it activates sGC that dephosphorylates guanosine
tri-phosphate (GTP) to cGMP which again activates
cGMP-dependent protein kinase. Subsequently, sarcoplas-
matic Ca2þ-pumps are activated causing decreased cytosolic
Ca2þ levels57 and decreased activation of calmodulin that
otherwise is essential in the activation of myosin light-
chain kinase and the myosin-actin cross-bridge cycle.58 As
this is interrupted, the SMC relaxes and vasodilation occurs.

Nitric oxide. Inhaled NO (iNO) acts as a selective pulmonary
agent. It has been suggested to have dual effects, i.e. pul-
monary vasodilation through the above-mentioned mechan-
ism in ventilated regions and pulmonary vasoconstriction
through inhibition of endogenous NO synthase, most pro-
nounced in hypoxic regions. Therefore, iNO can attenuate
ventilation-perfusion mismatch and improve oxygenation.57

iNO can dilate the non-constricted pulmonary vasculature
and works in combination with inhaled prostacyclin.59 NO
protects (partly) from PE-induced changes in hemo-
dynamics and both expression of endothelial NO synthase
mRNA and the fraction of expiratory NO increases in
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PE.60–62 NO consumption increases in both animals and
humans with PE,63 and the endogenous NO production
seems lifesaving in PE as antagonism of NO synthase
causes death in PE-animals.62,64 Accordingly, iNO has a
potential therapeutic role in PE.

In general, iNO lowered PAP and PVR in animal
models65–76 and increased cardiac output (CO) in some stu-
dies.70,72 The effect is possibly caused by reduced pulmonary
vascular tone in the periphery of the pulmonary artery tree,
especially regions with distally localized emboli.73 The
reduced RV afterload might explain less myocardial
damage evident by lowered cardiac troponins.65,76,77 One
study using fat-emboli in a canine model did, however,
not detect any effects on pulmonary or cardiac function.78

Due to the rationale of inhaled administration, only one
study noticed effect on the systemic vasculature with
decreased mean arterial pressure (MAP).68 Some studies
investigated dose–response relationship without consistent
results,67,68 suggesting low-dose treatment to be favorable.
iNO can be useful in combination with other treatment

strategies where the agents showed additive effects on
PAP, PVR or vessel diameter.59,72 The effects of iNO seem
to be without prolonged effects.69

Other NO-donors have also been tested in animal models
of PE. Both nitroglycerin, nitrite and nitroprusside lower
mean PAP51,79–81 and PVR80,82–86 but not always.87 One
must be aware that systemic administration of NO-donors
increases the risk of systemic side effects with decrease in
MAP, systemic vascular resistance (SVR) or stroke
volume,79,82,83,85,88 but not consistently.51,81,84,87

Combination of NO-donor and other vasodilators may be
even more efficient but increases the risk of side effects.86

NO-donor lowered sympathetic activity in the lungs, low-
ered ET-1 levels and increased NO levels.51

NO has additional non-hemodynamic effects. iNO lowers
von Willebrand factor and glycoprotein IIb/IIIa as central
parts in endothelial function and thrombosis.76 NO affects
apoptotic pneumocytes,74 and both endogenous and
exogenous NO inhibits platelet aggregation in animals and
humans67,89–91 which might be relevant in PE.

Fig. 2. Flow diagram of the review selection process.

CTEPH: chronic thromboembolic pulmonary hypertension; PE: pulmonary embolism.
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NO has been used clinically in acute PE inspired by the
experimental results and by the experience from using NO as
a pulmonary vasodilator in acute respiratory distress syn-
drome and pulmonary hypertension.

A large variety of case reports have been published on the
use of iNO, ranging from iNO administered to patients with
RV failure (including PE-induced) as primary indication; as
bridge to embolectomy or thrombolysis; with acute-on-
chronic PE; during PE-induced cardiac arrest; on extra-cor-
poral membrane oxygenation (ECMO) support or in case of
contraindication to thrombolysis.92–98 Some cases describe
the use of iNO to treat increased PAP after embolectomy of
acute PE99–101 though not all with impressive hemodynamic
responses.102 iNO has been used in children and even infants
with PE without success.103–105 The influence of hemolysis
on pulmonary vasoconstriction was evident in a case of
autoimmune hemolytic anaemia, where PAP was signifi-
cantly elevated despite only small clot burden, and iNO
had impressive effect.47 One case described how iNO
closed a persistent foramen ovale in a patient with PE and
multiple cerebral infarcts.106

A number of case reports describe significant or even
dramatic positive hemodynamic effects of iNO, and the
effects seem to be present shortly after beginning of treat-
ment47,93–95,99,107–109 and at low doses.97–99,108 Whether
these temporal improvements represent the direct effect of
iNO remain uncertain.

iNO might also have negative effects. Case report data
suggest that iNO-induced pulmonary vasodilation might
worsen ventilation-perfusion mismatch and decrease oxy-
genation. Bhorade et al.92 only saw two of four PE patients
with RV failure to respond to iNO. Tulleken et al.110

reported a case with a patient in cardiogenic shock due to
PE and even low-dose iNO rapidly worsened PaO2 and sat-
uration. The side effects disappeared when iNO was with-
drawn. This patient may have had undiagnosed CTEPH,
but the risk must be taken into consideration. Conversely,
three of four patients reported by Capellier et al.94 presented
with acute PE and a history of PE, and iNO showed positive
effects in all cases.

Clinicians must remember that iNO does carry a risk of
toxicity and adverse effects. NO can result in formation of
methemoglobin or the oxidants NO2 or ONOO� causing
oxidant damage to lung tissue.57 However, in 38 patients
receiving 50 ppm iNO by nasal cannula for 24 h, methemo-
globin never increased111 showing that side effects are avoid-
able by use of low dose iNO and close clinical surveillance.
Withdrawal of iNO can result in rebound pulmonary hyper-
tension which is why cessation must be preceded by gradual
down titration of the dose.57

The experimental studies and case reports led to a more
systematic testing of a protocol to administer iNO in eight
patients with acute PE. The protocol was deemed safe and
there was a trend toward improvement in Borg dyspnea
score.112 This single arm, phase I study was followed by
the phase II, iNOPE trial:113 a double-blinded, randomized,
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multicenter trial where 76 patients with intermediate-high
risk PE were randomized 1:1 to iNO (up to 50 ppm, deliv-
ered by nasal cannula) plus oxygen or nitrogen placebo at
50 ppm.111 The composite endpoint was complete normal-
ization of troponins and RV function on echocardiogram
after 24 h. The study was neutral on its primary and second-
ary endpoints but did show positive effects on RV hypokin-
esis and dilatation.111

For summary, please see Table 1.

Soluble guanylate cyclase. The dimeric enzyme, soluble guany-
late cyclase (sGC) is activated by NO and catalyzes the
second messenger cGMP from GTP.114 From a pharmaco-
logical perspective, the sCG enzyme has two oxidative states
that determine its ability to produce cGMP. The constitu-
tive, non-oxidized sGC enzyme contains a prosthetic heme
moiety that binds NO and allows cGMP production, and
can also increase cGMP production in the presence of spe-
cifically designed organic molecules known as ‘‘sGC stimu-
lators’’. For example, the sGC stimulator Riociguat is
approved for the treatment of CTEPH but not acute PE.
However, when exposed to oxidant stress, the sGC enzyme
discharges the NO-binding the heme moiety and therefore
cannot bind NO, but can be activated by an exosite with
specifically designed organic molecules known as ‘‘sGC acti-
vators’’.115 One commercially available activator is cinacig-
uate, which has been tested in humans with heart failure, but
not in humans with PE. An important hypothetical consid-
eration is that acute PE appears to produce an oxidative
state in circulating platelets116 suggesting the possibility of

pulmonary arterial endothelial sGC oxidation, which may
impair effectiveness of iNO. PE-induced platelet hyperactiv-
ity (evident by increased cytosolic concentration of Ca2þ)
was not affected by iNO, but the Ca2þ concentration was
suppressed by activation, but not stimulation, of sGC
(unpublished data).

Regardless of its effect on sGC in the pulmonary vascular
endothelial cells, stimulation of sGC also inactivates plate-
lets and prolongs bleeding time117 which might be salutary
in patients with PE.

A few animal studies have investigated the hemodynamic
effects of sGC in PE, mostly in models of non-autologous
PE material. The sGC stimulator BAY 41-8543 abolished
the PE-induced hemodynamic changes, lowered blood lac-
tate and PVR and increased CO.118,119 The stimulator BAY
41-2272 lowered PAP and PVR84,120 and even showed a
dose–response relationship. However, the highest dose
decreased MAP and SVR, too.120 In a porcine model of
autologous PE, Riociguat lowered PVR in a dose-dependent
manner and increased CO at high doses.75 See Table 1 for
summary.

Our review did not find any clinical reports on the use of
sGC-stimulation in PE in humans.

Phosphodiesterase-5 inhibitors. Cyclic guanosine monopho-
sphate (cGMP) is the active second messenger in relaxation
of SMC and pulmonary vasodilation. cGMP is inactivated
by phosphodiesterase-5 (PDE-5).121 Inhibiting PDE-5 (e.g.
with sildenafil) will increase the level of cGMP and cause
pulmonary vasodilation. Inhibition of PDE-5 prevents

Table 4. Hydralazine-induced pulmonary vasodilation in acute pulmonary embolism.

Treatment

Experimental

microsphere/

glass beads/air PE

Experimental autologous

(blood, fat, muscle,

collagen) PE Case reports

Clinical

trials

Guideline

recommendation

Hydralazine Divergent effects on

PVR.80,185

May improve CO80

Lowers PAP and PVR,

improves CI.79,82,88,184

May lower MAP79

Six PE cases with limited

effect187

One case with postoperative

PE with positive effect186

None No recommendations4,16

Note: Summary of review of the hydralazine-induced pulmonary vasodilation in acute pulmonary embolism. Divided by animal or clinical data and guideline

recommendation. Please see text for further details.

CI: cardiac index; CO: cardiac output; MAP: mean arterial pressure; PAP: pulmonary artery pressure; PE: pulmonary embolism; PVR: pulmonary vascular resistance.

Table 3. Antagonism of endothelin in acute pulmonary embolism.

Treatment

Experimental

microsphere/glass

beads/air PE

Experimental autologous

(blood, fat, muscle, collagen) PE Case reports Clinical trials

Guideline

recommendation

Endothelin

antagonism

Lowers mPAP and

PVR85,173,174,176,177
Lowers mPAP and PVR,

increases CO33,72,171,172,175
None None No recommendations4,16

Note: Summary of review of the endothelin antagonists to cause pulmonary vasodilation in acute pulmonary embolism. Divided by animal or clinical data and

guideline recommendation. Please see text for further details.

CO: cardiac output; mPAP: mean pulmonary arterial pressure; PE: pulmonary embolism; PVR: pulmonary vascular resistance.
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hemodynamic changes in fat-embolism,122 suggesting the
pathway also to be part of PE-pathophysiology. Non-speci-
fic PDE inhibition does reduce PAP and PVR without
effects on MAP in PE.123

In models of autologous PE, sildenafil improved hemo-
dynamics in PE, though with a risk of decreased
SVR.75,124,125 Sildenafil seems to prevent oxidative stress,
nitric oxide consumption and pulmonary arterial endothe-
lial apoptosis; effects that were enhanced by antioxidative
N-acetylcysteine.125

In a number of animal studies with microspheres, silde-
nafil has shown to lower mean PAP (mPAP) and PVR
index.84,86,126–131 There was, in general, no additional
effect on hemodynamics when another pulmonary vasodila-
tor was added to the sildenafil treatment which suggests the
vasodilation from sildenafil to be sufficient. When added
effect was noted, the combination of more vasodilators
came with a risk of systemic vasodilation.86

The risk of increasing ventilation-perfusion mismatch in
PE by vasodilation may also apply to sildenafil. In healthy
pigs, sildenafil increases intrapulmonary shunt flow and
lowers PaO2,

132 and in pigs with single lung ventilation-
induced pulmonary hypertension, sildenafil dose-depen-
dently enhanced desaturation.133 This effect may be species
dependent, as sildenafil actually improves oxygenation in
patients with pulmonary arterial hypertension.134

Sildenafil has been used in PE in a few published case
reports. Sildenafil showed promising effects in both acute
post-operative PE and acute-in-chronic PE.98,135–137 In a
patient with congenital heart disease and acute-in-chronic
PE, sildenafil dramatically improved oxygenation.109 The
use of sildenafil made withdrawal of inotropes possible
shortly after treatment,135,138 whereas another case report
measures the effects of sildenafil on the following day.139

This was, however, a severely ill patient with five-day history
of saddle PE and in cardiogenic shock. The treatment may
also be efficient in children.140

Findings are summarized in Table 1.

Prostanoid pathway

Prostaglandins are products from arachidonic acid, cata-
lyzed by cyclooxygenase (COX). They are mostly produced
in endothelial cells and act at different receptors on the SMC
with different downstream effects. Some receptors activate
adenylate cyclase which dephosphorylates adenosine tri-
phosphate to cyclic adenosine monophosphate that lowers
cytosolic Ca2þ levels and causes pulmonary vasodilation.
Other receptors inhibit the adenylate cyclase or activate
phospholipase C, both to increase calcium levels and cause
vasoconstriction30,36 which is why the net effect of increased
prostanoid release in PE is complex.

Administration of the drugs can dilate pulmonary
vasculature with both normal and constricted tone.59,141

Different prostanoids are secreted in acute PE.26,37,142,143

Inhibition of the COX enzyme seems to improve

hemodynamics,37,41,144–146 suggesting prostaglandin synthe-
sis to be central in the pathology of PE. PE may even cause
release of negative inotropic agents, which is synthesized
through the COX-pathway147 and might represent prosta-
noids. In one small randomized trial, administration of
diclofenac was associated with a trend toward improved
right ventricular function on echocardiography in humans
with PE.148

Besides hemodynamic effects, prostacyclin is one of the
most potent endogenous inhibitors of platelet aggrega-
tion25,149,150 and may even enhance the effects of thromb-
olysis.151,152 Other prostanoids also prevent platelet
aggregation,38 but platelets in acute thromboembolism
may respond differently to prostanoids than normally.150

For example, on thromboelastography, platelets from
patients with PE had a decreased response to adenosine
diphosphate stimulation compared with platelets from
healthy patients.116

Preclinical studies have shown divergent hemodynamic
effects with both prostacyclin (PGI2) and prostaglandin
E1 (PGE1) with either no relevant response in dogs in
both synthetic and autologous emboli material66,79,88,153 or
a reduction in PVR or PAP.146,151,154–156

More consistently, in porcine models of non-autologous
PE, both PGE1- and PGI2-administration reduce PVR and
mPAP and even better than NO-donors, hydralazine and
calcium channel blockers.80,157 In mice, both a PGI and
PGE1 even reduced PE-related mortality,25 maybe through
protective effects on the pulmonary vasculature in
PE.143,156,158 The effects of PGI2 seem to have rapid onset,
but duration of effects after cessation is more uncer-
tain146,151 (see Table 2).

Risk of side effects must of course be kept in mind and
should not exceed the benefits of treatment. Alpert et al.
showed reduction in PAP in macro-embolism but not in
micro-embolism when treated with PGE1, but in both situ-
ations noted a significant decrease in SVR and MAP.153

Similar reductions in MAP is noted both by PGE1 and
PGI2.79,146,151,152

Clinical case reports on the use of prostaglandins have
been published. One case with CO2 gas emboli showed nor-
malization of PAP only minutes after administration of
inhaled epoprostenol.159 A total of seven cases with sub-
massive PE showed positive effects of inhaled prostacyclin
with a follow-up over weeks,160,161 whereas Webb et al.162

reported positive but transient effects on PAP without
effects on MAP. This was in a PE patient that presented
in shock and hence in a more critical condition. In one
case of a newborn PE patient, epoprostenol showed no
effect.105

One clinical randomized, single-blinded trial has investi-
gated the effects of prostaglandin treatment in acute PE.
Kooter et al.163 randomized 14 PE patients to receive intra-
venous epoprostenol or placebo on top of standard treat-
ment. Endpoints were echocardiographic and biochemical
parameters. They did not find any significant effects of
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epoprostenol compared to placebo.163 The patients included
by Kooter et al. had preserved tricuspid annular plane sys-
tolic excursion (TAPSE) and low right ventricular to left
ventricular ratio at baseline and were perhaps not affected
severely enough by their acute PE for epoprostenol to show
an effect. The chosen prostaglandin or the route of admin-
istration may be another explanation to the lack of positive
results as inhaled and intravenous prostaglandins have
shown convincing effect in both CTEPH and primary pul-
monary hypertension.164–166

Endothelin pathway

ET (mostly ET-1) are produced in the lungs, especially the
endothelium. Their synthesis is upregulated by shear stress,
stretch, thrombin, hypoxia and pH but inhibited by NO and
prostacyclin. ET exert paracrine effect on the SMC, bind to
G-protein coupled ETA and ETB receptors which increases
intracellular inositol triphosphate and calcium167 acting as
potent vasoconstrictors and bronchoconstrictors.35,168 The
effects of ET on the pulmonary vasculature might be com-
plex, as it depends on the concentration of ET, the site of the
receptor, the ongoing pathology and the tone of the pul-
monary vasculature.85,168 ET also affect the release of NO
and prostacyclin and play a role in the regulation of hypoxic
pulmonary vasoconstriction35,167 which adds to the com-
plexity. Whether or not ET concentrations are elevated in
acute PE remains controversial.34,35

Besides hemodynamic effects, ET stimulates platelet
aggregation, cell adhesion and thrombosis,167 and plasma
levels of ET are increased in both humans and in animal
models during acute PE.169,170

Antagonizing the ET receptors in acute PE has been
investigated in a few animal studies (see Table 3). In dogs
with autologous PE, ET-A antagonism lowered PAP and
PVR and increased CO, also in combination with
iNO.72,171,172 Han et al.171 even showed additive effects of
combined ET-A antagonism and urokinase treatment. In
air-embolism models, both non-selective ET-antagonism
and ET-A antagonism lowered PAP and PVR,173,174 sug-
gesting that the ET-A receptor to be responsible for most
of ETs vasoconstrictive properties.85 In piglets, ET antag-
onism decreased PAP but lowered MAP and showed no
effect on oxygenation or ventilation-perfusion mis-
match.33,175 Conversely, in rodents with air-embolism, ET
antagonism improved oxygenation and lowered RV systolic
pressure.176,177

Clinically, ET antagonism is widely used in CTEPH
patients,178 but our review did not find any reports on the
clinical use of ET antagonism in acute PE.

Hydralazine

Hydralazine dilates blood vessels, lowers blood pressure and
is used in hypertension and congestive heart failure.
Hydralazine opens Ca2þ-dependent potassium channels,179

causing hyperpolarization and closure of voltage-dependent
Ca2þ channels which lowers cytosolic Ca2þ levels and causes
relaxation. Mechanisms may also involve the inositol tri-
phosphate pathway and the prostacyclin pathway.180,181 It
appears that hydralazine can lower PVR in both normal and
pathological conditions in animals and humans.182,183

Hydralazine has been tested in experimental PE; please
see Table 4 for a summary. In dogs with autologous PE,
hydralazine lowered PVR and PAP and increased cardiac
output,79,82,88,184 but a reduction in MAP was also
noticed.79 One study did not see a reduction in PAP but
positive effect on the output pressure.185 In a porcine
model of glass bead-induced PE, hydralazine lowered
MAP but was unable to lower mPAP and had the smallest
reduction in PVR compared to PGE-1 and NO-donors.
Hydralazine was, however, the only drug to increase cardiac
output.80

Besides the hemodynamic effects, hydralazine enhanced
the effect of thrombolysis.184

There are only few examples of the use of hydralazine in
acute PE in humans. Bates et al. reported a case on a post-
operative PE patient in shock. Hydralazine lowered PVR
and PAP significantly over 24 h and increased cardiac
index. After withdrawal of hydralazine, the hemodynamics
deteriorated, and the treatment was repeated successfully.186

McGoon et al.187 reported 26 patients with pulmonary
hypertension, of which 6 had PE as the underlying cause. In
the PE-subgroup, hydralazine did not affect PVR nor PAP
but increased pulmonary blood flow and arteriovenous
oxygen difference and lowered SVR. The time frame of
treatment was not reported relative to symptom onset (see
Table 4).

We did not find any prospective, clinical study on the use
of hydralazine in acute PE.

Limitations

This review contains some limitations to consider. Firstly,
the broad diversity of animal models of PE makes it difficult
to compare results directly between them. Species, emboli
material and measurements and outcomes differ signifi-
cantly among the included studies. Interpretation and trans-
lation must be done with caution. Secondly, the vast
majority of the clinical publications are case reports with
possible publication biases and accordingly, the level of evi-
dence is low.

Summary

Several mechanisms of PE-induced pulmonary vasoconstric-
tion are well described and represent potential therapeutic
targets for pulmonary vasodilation in PE. Many of those
were tested in animal models, which differ substantially in
the choice of species and embolic material. Only a small
number of case reports and clinical trials exist despite the
treatment options have been available for decades.
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Further research in pulmonary vasodilation as an adjunct
to anticoagulation in acute PE is warranted but needs to be
in pathophysiological relevant models and prospective clin-
ical trials.
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Appendix 1. Search strategy

We searched MEDLINE via PubMed and Embase for rele-
vant articles with latest update September 13th 2019.
We used the following search strategies for PubMed:
(acute pulmonary embolism OR ‘‘Pulmonary
Embolism’’[Mesh]) AND (‘‘Vasodilation’’[Mesh] OR
‘‘Vasodilator Agents’’[Mesh] OR ‘‘Hydralazine’’[Mesh]
OR ‘‘Phosphodiesterase Inhibitors’’[Mesh] OR ‘‘Sildenafil
Citrate’’[Mesh] OR ‘‘Soluble Guanylyl Cyclase’’[Mesh] OR
‘‘Guanylate Cyclase’’[Mesh] OR ‘‘riociguat’’
[Supplementary Concept] OR ‘‘Endothelin Receptor
Antagonists’’[Mesh] OR ‘‘Nitric Oxide’’[Mesh] OR
‘‘Nitroprusside’’[Mesh] OR ‘‘Nitroglycerin’’[Mesh] OR
‘‘Prostaglandins’’[Mesh] OR ‘‘Epoprostenol’’[Mesh] OR
hydralazine OR endothelin receptor antagonist OR bosen-
tan OR tezosentan OR macitentan OR prostacyclin OR
epoprostenol OR prostaglandins OR sildenafil OR tadalafil
OR phosphodiesterase-5 inhibitor OR riociguat OR soluble
guanylyl cyclase OR inhaled nitric oxide) and for Embase:
(‘hydralazine’/exp OR ‘phosphodiesterase inhibitor’/exp OR
‘sildenafil’/exp OR ‘tadalafil’/exp OR ‘riociguat’/exp OR
‘guanylate cyclase activator’/exp OR ‘guanylate cyclase’/
exp OR ‘endothelin receptor antagonist’/exp OR
‘bosentan’/exp OR ‘tezosentan’/exp OR ‘macitentan’/exp
OR ‘nitric oxide’/exp OR ‘inhaled nitric oxide’/exp OR
‘nitroprusside sodium’/exp OR ‘glyceryl trinitrate’/exp OR
‘prostaglandin’/exp OR ‘prostacyclin derivate’/exp OR ‘ilo-
prost’/exp OR ‘prostaglandin h2’/exp OR ‘prostaglandin
e2’/exp OR ‘prostaglandin e1’/exp OR ‘prostaglandin deriv-
ate’/exp) AND (‘acute pulmonary embolism’/exp OR ‘lung
embolism’/exp) AND (‘article’/it OR ‘article in press’/it).
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Titles and abstracts were screened for relevance by MDL.
If eligible, the article was read and deemed for inclusion or
not. References were reviewed for further hits.

Articles were included if they described a medical inter-
vention causing pulmonary vasodilation in acute PE includ-
ing air embolism using a clinically relevant drug. No specific
needs for comparison were required (either control group or
repeated measurements). Any hemodynamic outcome was
accepted. Both human and animal studies were included
no matter the year of publication. Only English papers
were included.

Exclusion criteria included studies on chronic thrombo-
embolic pulmonary hypertension (CTEPH) and the other
causes of pulmonary hypertension (PH) within the World

Health Organization classification of PH; studies that inves-
tigated causes in PE-induced pulmonary vasoconstriction
but did not intervene; and animal models that did not
have an actual embolism (toxins or pharmacologically
induced acute PH, e.g. by a thromboxane analog), and stu-
dies on isolated perfused lungs. We did not include studies
on inodilators in this review. Case reports without sufficient
description of hemodynamic effects of the vasodilatory
agent were excluded. We excluded abstracts, conference
papers, comments, editorials, and reviews.

Due to the broad variety of PE-models and outcome
measures, no specific synthesis of outcome or meta-
analysis was possible. We sum up hemodynamic findings
in Tables 1 to 4.
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