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Abstract
Purple coneflower (Echinacea purpurea (L.) Moench) is a widely used medicinal and ornamental plant. In the present study, 
the callus embryogenesis was examined using benzyl adenine (BA) at three levels (3, 4, 5 mg  L−1), 1-Naphthalene acetic 
acid (NAA) at three levels (0.1, 0.2 and 0.5 mg  L−1) with or without activated charcoal (1 g  L−1), coconut milk (50 ml  L−1) 
and casein hydrolysate (50 mg  L−1) in the MS (Murashige and Skoog 1962) medium. The embryogenesis indirectly occurred 
with the production of callus. The calli were observed in three forms: undifferentiated, embryogenic and organogenic. The 
embryogenic calli were dark green and coherent with a faster growth rate. The highest embryogenesis (100%) and embryonic 
regeneration (plantlet production) were obtained in the combined BA + NAA treatments with the activated charcoal, coconut 
milk and casein hydrolysate. However, the combined treatments of growth regulators failed to produce somatic embryos 
without the use of coconut milk and casein hydrolysate. The maximum amount of protein, peroxidase and catalase activity of 
embryogenic calli (2.02, 1.79 and 6.62ΔOD/Min/mg.protein, respectively), and highest percentage of acclimatization success 
(29.3% of plants) were obtained in the combined treatment of 5 mg  L−1 BA + 0.5 mg  L−1 NAA + activated charcoal + coco-
nut milk + casein hydrolysate. The highest amount of chlorophyll content (33.3 SPAD value) and growth characteristics of 
acclimatized plantlets were observed in the media containing 3 mg  L−1 BA + 0.1 and 0.2 mg  L−1 NAA + 1 g.  L−1 combined 
activated charcoal, coconut milk, casein hydrolysate. The histological studies confirmed the somatic embryogenesis in pur-
ple coneflower. Generally, it was found that the somatic embryogenesis of E. purpurea occurs at high levels of BA and low 
levels of NAA with the addition of coconut milk and casein hydrolysate.
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Introduction

Purple coneflower (Echinacea purpurea (L.) Moench) is a 
perennial plant of the Asteraceae family that is widely used 
in the pharmaceutical, cosmetic and health industries. The 
medicinal products derived from the plant root and shoots 
are used to prevent and treat the colds, coughs, bronchitis, 
pulmonary infections, and chronic immunodeficiency dis-
eases owing to the immune-enhancing properties [1].

The in vitro propagation of medicinal plants is signifi-
cantly related to the production of high quality plant mate-
rials and pathogen-free plants and increasing number of 
plant species [2]. In addition, the in vitro techniques can 
facilitate the genetic manipulation of secondary metabo-
lites production [3, 4]. The cultivation in an optimized 
medium under the controlled in vitro conditions is a viable 
alternative to the ex vitro cultivation of purple coneflower 
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[5, 6]. The regeneration of E. purpurea can occur through 
the embryogenesis followed by the organogenesis [3, 5, 6]. 
Somatic embryogenesis is one of the advanced techniques 
for the mass plant propagation from somatic (asexual) cells 
in vitro [7]. Somatic embryogenesis is a suitable propaga-
tion method due to the further production and continuous 
proliferation of the embryogenic mass [8]. Also, in some 
cases, it is superior to other methods of asexual propa-
gation, as it allows the mass propagation of plants using 
the bioreactors [9, 10]. Plant growth regulators (PGRs) 
play an important role in the induction and development 
of somatic embryogenesis [11]. Auxin is often required 
for the induction of somatic embryogenesis from differ-
ent explants, and the process of somatic embryogenesis is 
generally initiated on the culture medium supplemented 
with high concentrations of auxins [11]. However, somatic 
embryogenesis has been induced on auxin-free media in 
various plants [12–14]. In several plants, a combination of 
auxin and cytokinin stimulates the development of somatic 
embryogenesis [11]. The use of 2,4-D (4.5 μM) and BA 
(0.45 μM) for the induction of somatic embryogenesis has 
been reported for yacon [Smallanthus sonchifolius (Poepp. 
and Endl.) H. Robinson] [15].The sensitivity of the explant 
tissue to the PGRs may have been altered by the dark treat-
ment, thereby resulting in a higher frequency of embryo-
genesis [12, 16].

The somatic embryogenesis of E. purpurea was first 
observed by Choffe et al. [17] in the petiole explants cul-
tured in the MS [18] medium containing 5 μM 6-Benzyl 
Amino Purine (BAP), Thidiazuron (TDZ), or TDZ and 
Indole-3-acetic acid (IAA). The histological observations 
of the cultures showed that the protoderm was well made 
of rectangular cells and there was no evidence of vascular 
association with native vessels. In addition, the cultivation 
of purple coneflower leaf explants for 14 days in darkness in 
the MS medium containing the combination of cytokinin BA 
(5 μM) with auxin Indole-3-Butyric Acid (IBA) (2.5 μM) 
and then in the light resulted in the occurrence of somatic 
embryogenesis [16]. Ahmad et al. [19] investigated the 
effect of different levels of growth regulators on the somatic 
embryogenesis of purple coneflower. The highest average 
number of embryos (24.03  explant−1) was obtained in the 
MS medium containing vitamin B5 [20] with 5 μM BAP 
and 2.5 μM IBA.

Lema-Rumińska et al. [6] used the MS medium con-
taining BAP and α-Naphthalene Acetic Acid (NAA) for 
the somatic embryogenesis of E. purpurea that had been 
kept in darkness for 14 days. To stimulate the shoot pro-
liferation of the embryos, the MS medium without auxin 
but containing cytokinin kinetin was used. In another study, 
Lakshmanan et al. [21] used the hypocotyl of four species 
of Echinacea (E. purpurea, E. pallida, E. paradoxa and E. 
angustifolia) for the induction of somatic embryogenesis in 

the MS medium containing 9 μM 3,6-dichloro-o-anisic acid 
(dicamba, DC) or 2,4-Dichlorophenoxyacetic acid (2,4-D). 
The embryos were obtained from all the cultures. E. pal-
lida and E. angustifolia showed better embryogenesis than 
E. paradoxa and E. purpurea. The results were in contrast 
to the culture of the E. purpurea petiole [17] where 2,4-D 
inhibited the embryogenesis.

Since different concentrations of growth regulators have 
different effects on the somatic embryogenesis of E. purpu-
rea, the present study was conducted to examine the effect 
of different growth regulators on the somatic embryogen-
esis and shoot induction in the leaf explants of E. purpurea. 
Moreover, to find out more about the microscopic changes 
during the embryogenesis, the embryogenic calli were his-
tologically evaluated. Also, for the biochemical analysis, the 
protein concentration and the catalase and peroxidase activ-
ity of embryogenic, organogenic and undifferentiated calli 
were measured and finally, the survival rate of E. purpurea 
somatic embryos in the ex vitro conditions was evaluated.

Materials and methods

Establishment of aseptic seedlings

The seeds of Echinacea purpurea (L.) Moench were pur-
chased from Pakan Bazr Company (Isfahan, Iran), washed 
using the sterile distilled water, and then were transferred 
to a solution containing 0.05% citric acid + 0.1% mercury 
chloride and disinfected for three minutes. Finally, they were 
transferred to the 0.05% citric acid solution and washed for 
three minutes. The seeds were placed in the half-strength 
(1/2) MS medium containing 7 g  l−1 agar and 30 g  l−1 
sucrose at pH = 5.7. The culture medium was sterilized in 
an autoclave at 121 °C and 1.2 kg cm−2 for 20 min. The 
glass jars of 10 cm height and 6 cm diameter were used for 
the seed cultivation and eight seeds were placed in each jar. 
After the cultivation, the jars were incubated in the growth 
chamber with 16:8 h light /dark period, the temperature of 
23 ± 2 °C in the light and 18 ± 2 °C in the dark period and 
the light intensity of photosynthetic photon flux density 
(PPFD) of 34–40 μmol m−2 s−1.

Somatic embryogenesis and plant regeneration

Six weeks after the seed culture, the 1 × 1 cm leaf explants 
were isolated from the plantlets of E. purpurea and cul-
tivated in the MS medium containing 30 g.  L−1 sucrose 
and 7 g.  L−1 agar with the pH of 5.7 containing different 
growth regulator compounds provided by BA and NAA 
Table 1. In this experiment, the interaction of different 
levels of BA (3, 4 and 5 mg  L−1) and NAA (0.1, 0.2 and 
0.5 mg  L−1) with or without 1 g  L−1 active charcoal, 50 ml 
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 L−1 coconut milk and 50 mg  L−1 casein hydrolysate were 
evaluated Table 1. To induce embryogenic callus forma-
tion from the leaf explants, the jars were incubated in the 
dark for 14 days and then transferred to the growth cham-
ber in the aforementioned conditions. After four weeks, 
the explants began to develop embryos or organogene-
sis in the callus of leaf explants, and the percentage of 
organogenic and embryogenic calli, as well as those that 
failed to regenerate were measured. After eight weeks, 
the embryos began the organogenesis (root and shoot for-
mation) (Fig. 1). At this time, the number of leaves was 
counted. The regenerated plants were removed with the 
attached callus and transferred to the MS medium con-
taining 0.1 mg  L−1 BA for the shoot proliferation (Fig. 1).

Adaptation and acclimatization of plantlets

The root initiation occurred in the base of shoot explants in 
the MS medium containing 0.1 mg  L−1 BA after six weeks. 
After six weeks, the rooting, leaf chlorophyll, root length, 
number and length of plantlet leaves were measured. The 
plantlets were transferred for the acclimatization after the 
initial preparation in the culture medium to the pots contain-
ing 70% peat moss and 30% perlite, which were previously 
moistened with the distilled water and soaked with the beno-
myl fungicide at a ratio of 1.5:1000. The culture substrate 
was poured into the plastic pots with a diameter of 7 cm. A 
sub-irrigation system was used to irrigate the pots (Fig. 2). 

A transparent plastic cup was placed on the top of each pot 
and was removed after two weeks (Fig. 2). Six weeks after 
transferring the plants to the pots, the percentage of accli-
matized plants was measured.

Measurement of protein, catalase and peroxidase

The embryogenic callus culture in the fourth week and the 
organogenic and undifferentiated callus culture in the eighth 
week were used to measure the protein concentration and 
the catalase and peroxidase activity. To measure the protein, 
the Bradford reagent was first prepared and then, the protein 
was extracted [22].

To measure the activity of peroxidase, 2 ml of reaction 
mixture including 50 mg of protein (this value calculated 
using standard curve), 5  mM guaiacol and a sufficient 
amount of 25 mM phosphate buffer (pH = 7) were mixed 
to reach the final volume of 2 ml. The spectrophotometer 
(CECIL 9500, England) was zeroed at the wavelength of 
470 nm using this mixture, and then 5 µl of 30% hydrogen 
peroxide  (H2O2) was added to this mixture, and the light 
absorption changes were rapidly measured for one minute at 
a time interval of 10 s. The amount of enzyme activity was 
expressed in terms of light absorption changes per minute 
per milligram of protein (ΔOD/min/mg protein) [23].

To measure the activity of catalase, the reaction mixture 
included 50 mM potassium phosphate buffer (pH = 7) and 
15 mM hydrogen peroxide. The reaction was started by 

Fig. 1  Different calli types developing on leaf explants of E. pur-
purea cultured on MS medium after four weeks: a Dark green and 
compact embryogenic calli induced by 3 mg  L−1 BA and 0.5 mg  L−1 
NAA combination, 1 g  L−1 active charcoal, 50 ml  L−1 coconut milk 
and 50 mg  L−1 casein hydrolysate after four weeks on MS medium. 
b Light green, soft, loose and puffy organogenic calli induced on MS 

medium supplemented with 3 mg  L−1 BA and 0.5 mg  L−1 NAA after 
four weeks. c White and light undifferentiated and hyperhydrated calli 
induced on MS medium supplemented with 3 mg  L−1 BA and 0.1 mg 
 L−1 NAA after four weeks. and d Browned and dark undifferentiated 
calli induced on MS medium supplemented with 3 mg  L−1 BA and 
0.2 mg  L−1 NAA after four weeks. Bars = 10 mm

Table 1  Different treatments for somatic embryogenesis induction in E. purpurea 

Treatments T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

BA ( mg  L−1) 3 3 3 4 4 4 5 5 5 3 3 3 4 4 4 5 5 5
NAA ( mg  L−1) 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5
Casein hydrolysate ( mg  L−1) 0 0 0 0 0 0 0 0 0 50 50 50 50 50 50 50 50 50
Active charchoal (mg  L−1) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
Coconut milk ( ml  L−1) 0 0 0 0 0 0 0 0 0 50 50 50 50 50 50 50 50 50
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adding 100 µl of the enzyme extract to a final volume of 
3 ml. The absorption changes were recorded at 240 nm for 

three minutes based on the millimolar of hydrogen peroxide 
per milligram of protein (ΔOD/min/mg protein) [24].
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Fig. 2  Effect of different treatments on induction of different calli types developing on leaf explant calli of E. purpurea cultured on MS medium 
after four weeks a embryogenic, b organogenic, and c undifferentiated calli
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Histological study

The calli and morphology of the embryos were visually 
inspected (Fig. 3). The histological studies were performed 
to evaluate the somatic embryogenesis, where the embryo-
genic calli were placed for 24 h in the fixative FAA (formal-
dehyde, acetic acid and 100% ethanol solution with ratios 
of 17:1:2). After washing, they were dehydrated with the 
increasing degrees of ethanol and finally saturated with 

toluene-paraffin mixture and then pure paraffin. The samples 
were molded in paraffin and the 7–8 μm tissue slices were 
prepared using a microtome. The slices were glued onto the 
glass slides and the toluene was used as a paraffin solvent. 
After removing the paraffin, hematoxylin–eosin was used 
for staining the samples. Then, the slides were observed by 
light microscope (Eclipse 80i, Nikon, Japan) and the sam-
ples were photographed.
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Fig. 3  Effect of different treatments affecting number of regenerated leaves of E. purpurea cultured on MS medium after eight weeks

Fig. 4  Production steps of plantlet in E. purpurea a somatic embryos 
(white arrows) regenerated from leaf explant callus of E. purpurea 
derived from combination of 3  mg  L−1 BA and 0.5  mg  L−1 NAA 
with 1  g  L−1 active charcoal, 50  ml  L−1 coconut milk and 50  mg 
 L−1 casein hydrolysate cultured on MS medium. Bars = 10  mm, b 

shoots regenerated from somatic embryos. Bars = 10  mm, c leaf 
production from embryogenic callus. Bars = 20  mm, d organogenic 
calli. Bars = 10  mm, e shoot regenerated from organogenic callus. 
Bars = 10 mm, and f microshoot production from organogenic callus. 
Bars = 20 cm
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Experimental design and statistical analysis

The experiment was conducted in a completely randomized 
design with three repetitions. Three leaf explants were cul-
tured on each jar and each jar was considered as a single 
repetition. The analysis of variance was performed for all 
data using SAS 9.1 statistical software and the Duncan’s 
multiple range test (DMRT) was used for the comparison of 
means at 5% probability level.

Results

In the present study, the calli were classified into three 
groups: undifferentiated, embryogenic and organogenic 
(Fig. 3). The embryogenic calli were dark green and coher-
ent with a faster growth rate (Fig. 3a). The use of activated 
charcoal, casein hydrolysate, and coconut milk combined 
with growth regulator treatments significantly increased 
callus embryogenesis compared to the treatments only with 
BA and NAA combination (Fig. 4a). The highest share of 
explants with embryogenic calli (100%) were observed in 
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T10, T11, T12, T17 and T18 treatments (88.7% of explants) 
(Fig. 4a). The somatic embryos were also observed in T5 
and T9 (33% of explants), T6 (11% of explants), and T7 
(44% of explants) treatments (Fig. 4a). The combination of 
BA and NAA treatments without coconut milk and casein 
hydrolysate failed to produce embryos in T1, T2, T3, T4 and 
T8 treatments (Fig. 4a). The organogenic calli were observed 
in T13, T14 and T15 treatments (20–44% explants) (Fig. 4b). 
The calli were soft, loose and puffy in light green with low 
growth rate (Fig. 3b).

The combined treatments of NAA and BA without any 
additives (activated charcoal, casein hydrolysate and coco-
nut milk) produced undifferentiated soft callus (in 50% 
– 100% of explants) (Fig. 4c). As such, the addition of 
casein hydrolysate, coconut milk and activated charcoal 
caused both differentiation and embryogenesis of calli, and 
in the free media of these compounds (casein hydrolysate, 
coconut milk and activated charcoal), the undifferentiated 
callus was observed. The highest amount of undifferenti-
ated calli (100%) was observed in T1, T2, T3 and T8 treat-
ments (Fig. 4c). The undifferentiated calli were white and 
light (Fig. 3c) or brown and dark (Fig. 3d) and appeared 
after six weeks.

After eight weeks of in vitro culture, the calli began to 
regenerate leaves (Figs. 5, 1). The results showed that in 
all of the treatments containing a combination of BA and 
NAA growth regulators, the embryos failed to regenerate 
and produce leaves (Fig. 5). However, in all treatments 
containing the activated charcoal, coconut milk and casein 
hydrolysate (together with BA and NAA), the embryos 
were regenerated and produced the leaves (Figs. 5 and 1). 
The highest leaf number (43.3 per jar) was observed in 
T10 treatment (Fig. 5). The leaves were produced on the 
both embryogenic and organogenic calli (Fig. 1b–f).

The protein content and the activity of catalase and per-
oxidase in callus were evaluated in all treatments (Fig. 6). 
The highest amount of protein and the peroxidase and 
catalase activity (2.02, 1.79 and 6.62 ΔOD/min/mg. pro-
tein) were obtained in T18 treatment (Fig. 6). Based on the 
results, with increasing the BA and NAA concentration, 
the protein content and the peroxidase and catalase activity 
of calli significantly increased (Fig. 6). The lowest amount 
of protein was obtained in T1 and T2 treatments (0.9 and 
0.93 ΔOD/min/mg. protein) (Fig. 6a) and the lowest per-
oxidase and catalase activity in T1 (0.36 and 1.92 ΔOD/
min/mg. protein) (Fig. 6b and c).
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Fig. 6  Effect of different treatments on acclimatization of E. purpurea plantlets six weeks after transferring plants to pots

Table 2  Effect of different treatments on some growth traits of purple coneflower plantlets after removing from in vitro culture medium and 
before acclimatization

Characteristics T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

Length of Roots (mm) 0b 0b 0b 0b 0b 0b 0b 0b 0b 63.45a 78.84a 0b 60.13a 0b 24.92b 19.99b 0b 52.95a

Height of plantlets (mm) 0b 0b 0b 0b 0b 0b 0b 0b 0b 87.71a 102.49a 0b 92.19a 0b 19.01b 33.91b 0b 73.85a

Length of biggest leaf (mm) 0b 0b 0b 0b 0b 0b 0b 0b 0b 27.04ab 27.01ab 0b 31.84ab 0b 38.94a 11.87ab 0b 27.07ab

Cholorophyll (SPAD value) 0b 0b 0b 0b 0b 0b 0b 0b 0b 33.33a 28.36a 0b 28.40a 0b 13.06b 4.30ab 0b 26.56a
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The plantlet production and rooting occurred only in 
T10, T11, T13, T15, T16 and T18 treatments (Table 2). The 
failure to use casein hydrolysate, activated charcoal and 
coconut milk did not lead to the plantlet regeneration and 
production (Table 2). The highest root length was obtained 
in T10 (63.5 mm), T11 (78.7 mm), T13 (60.1 mm) and T18 
(53 mm) treatments (Table 2). The maximum shoot height 
after removing from the in vitro culture medium and before 
the acclimatization was obtained in T10 (78.7 mm), T11 
(102 mm), T13 (92.2 mm) and T18 (73.9 mm) treatments 
(Table 2). The highest leaf length (38.9 mm) was obtained 
in T15 treatment (Table 2). The highest amount of chloro-
phyll was obtained in T10 (33.3 SPAD value), T11, T13 
(28.4 SPAD value) and T18 (26.6 SPAD value) treatments 
(Table 2).

The percentage of acclimatized plantlets six weeks after 
transferring the plants to the pots is shown in Fig. 2. Only 
the plants obtained from T10 (22.7% of plants), T11 (21%), 
T13 (16%), T15 (8.66%), T16 (15%) and T18 (29.3%) treat-
ments survived the acclimatization (Fig. 7). The highest per-
centage of acclimatization success (29.3% of plants) was 
observed in T18 treatment (Fig. 7).

The histological studies confirmed the different stages of 
somatic embryogenesis. The different embryogenic stages 
were visible in the embryogenic masses, which were the 
pro-embryo, globular, heart, torpedo and cotyledon stages, 
and the heart and globular stages were histologically stud-
ied (Fig. 8 b and c). The non-embryonic cells were large 

with small nuclei and low cytoplasm density compared to 
the embryonic cells (Fig. 8a). In contrast, the embryogenic 
cells were compact and small with large nuclei and dense 
cytoplasm (Fig. 8b and c).

The histological study revealed that the organogenic 
calli were characterized by prominent parenchymal cells 
without a distinct nucleus (Fig. 8a). The meristem cells 
were smaller than the surrounding cells (Fig. 8a). Fig-
ure 8b shows the globular embryonic masses within the 
callus cells, and the heart embryos were formed by contin-
uing the cell divisions (Fig. 8c). The differentiated leaves 
were formed from the surface of organogenic calli, show-
ing vascular association with leaf explant. The cells in the 
embryogenic calli showed dense cytoplasm, large nuclei, 
and starch storage granules (Fig. 8d). The cell proliferation 
was also observed in the embryogenic callus tissue.

On the margins of the embryogenic callus, the areas 
with meristematic activity were visible, where the suc-
cessive divisions resulted in the development of somatic 
embryos (Fig. 8c). The embryonic cells in the slices were 
small, compacted cells whose cytoplasm was highly 
stained and clearly had high nucleus volume. The embryos 
were not easily detachable from the callus tissue. With 
the cell divisions at the two embryo poles, the globular 
embryos gradually began to stretch toward the bipolarity, 
and thus, the basic structure of cotyledons was developed 
and the embryos took a heart form (Fig. 8c).

Fig. 7  Different adaptation stages of plantlets a plantlets obtained 
from embryogenic callus. b plantlets transferred to small pots con-
taining 70% peat moss and 30% perlite for acclimatization and irri-

gation of pots by underground (sub) irrigation method. c sample 
plantlets during transfer to pots. and d plantlets after four weeks of 
acclimatization. Bars = 1 cm
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The successive divisions at the two embryo poles led to 
the development of embryos and eventually, to the emer-
gence of mature cotyledons where the cotyledons were 
fully grown. Gradually, the differentiation of cells in the 
formation of vascular bundles was observed in the coty-
ledon embryos, and the mature embryos were separated 
from the native cells by appropriate growth, placed on 
the germination medium, and produced leaves and roots 
(Fig. 1 b and c).

Discussion

The results of the present study showed that the organo-
genesis and somatic embryogenesis of the purple cone-
flower as a medicinal-ornamental plant can be easily 

regulated by the use of BA, NAA, coconut milk, activated 
charcoal, and casein hydrolysate. In the indirect organo-
genesis, the combination of BA and NAA was effective 
in the shoot induction. The highest production of organo-
genic callus (44% of explants) was obtained in 4 mg  L−1 
BA and 0.1 or 0.2 mg  L−1 NAA + coconut milk + activated 
charcoal + casein hydrolysate supplemented medium. The 
organogenesis of calli began three weeks after the estab-
lishment of leaf explant culture. The results were consist-
ent with those of Zhang et al. [25] on Lilium pumilum 
DC. They reported that the shoot induction rate increased 
with increasing the BA/NAA ratio and 92.5% of the scales 
were managed to produce the shoots after 6 weeks in the 
MS medium containing 2 mg  L−1 BA and 0.2 mg  L−1 
NAA. One of the reasons may be due to the more effec-
tive role of BA than NAA in differentiating the cambium 

Fig. 8  Histological study of embryogenic and organogenic calli in 
E. Purpurea after four weeks; a parenchymal (pc) and meristematic 
(mc) cells in organogenic callus induced on MS medium supple-
mented with 3  mg  L−1 BA and 0.5  mg  L−1 NAA after four weeks, 
Bars = 1 µm, b embryogenic callus and presence of globular embryo 
(red arrows) induced by 3 mg  L−1 BA and 0.5 mg  L−1 NAA combi-

nation, 1 g.  L−1 active charcoal, 50 ml  L−1 coconut milk and 50 mg 
 L−1 casein hydrolysate after four weeks on MS medium, Bars = 5 µm, 
c embryo in heart stage (red arrows) after five weeks on MS medium, 
Bars = 5 µm, d embryonic cells of dense cytoplasm, large nucleus and 
starch (st) granules, Bars = 10 µm
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[26]. Bakhshaie et al. [27] obtained the highest percentage 
(65.5%) of somatic embryogenesis in Lilium ledebourii 
in the medium containing 0.54 μM NAA and 0.44 μm 
BA. Auxin seems to cause further DNA methylation than 
normal and may be required for the reprogramming of 
differentiated cells [28]. Hence, the tissue-specific pro-
grams, especially with differentiation, can be eliminated 
by hypermethylation, reaching the final site of differentia-
tion perhaps with a small fragment of cells, and eventually 
will be capable of organogenesis or embryogenesis [28].

It is important to note in this study that the somatic 
embryos were indirectly produced. The callus was first 
developed on some leaf explants of purple coneflower and 
then, the shoots emerged from the embryogenic calli. As a 
result, the vascular relationship between shoots and plant 
tissue (explant) was fairly clear in the embryogenic callus 
mass. In other parts, the lower epidermis cells were undif-
ferentiated and the somatic embryos were produced in the 
epidermal cells. The obtained results were consistent with 
those of Choffe et al. [17]. In a histological analysis Correa 
et al. [15], revealed that embryogenic calli were more friable 
and yellowish in appearance than the non-embryogenic calli. 
However, the embryogenic calli of E. purpurea were dark 
green and coherent with a faster growth rate than the non-
embryogenic calli. The organogenic calli were light green, 
soft, loose and puffy with low growth rate.

In this study, the somatic embryos were obtained from the 
leaf explant in purple coneflower. The positive effect of add-
ing casein hydrolysate to culture medium was determined 
for the differentiation of somatic embryo in purple cone-
flower. Therefore, by adding casein hydrolysate to culture 
medium, the somatic embryo production was promoted. Our 
observations are consistent with the findings of Mauro et al. 
[29] and Mahmood et al. [30] on the grape. Although the 
treatments (T5, T6, T7, and T9) lacking casein hydrolysate, 
coconut milk and activated charcoal produced embryogenic 
calli, they were not able to regenerate the leaves. In addition, 
the T12, T14 and T17 treatments with the above-mentioned 
compounds failed to regenerate the leaves. The regenerated 
plants began to acclimatize after moving to the ex vitro 
medium. The T10 (22.7%), T11 (21%) and T18 (29.3%) 
treatments showed the highest acclimatization efficiency in 
this respect. The presence of casein hydrolysate and acti-
vated charcoal had a positive effect on the embryogenesis, as 
the results showed that beside the use of plant growth regu-
lators, the treatments containing casein hydrolysate, acti-
vated charcoal and coconut milk showed significantly higher 
embryogenesis than the media without these compounds. 
Casein hydrolysate contains the amino acids necessary for 
the embryogenesis, such as glutamine, proline, alanine, ser-
ine and glycine. The proline and serine amino acids increase 
the mitotic activities of cells by increasing the levels of 
internal hormones, thereby enhancing the development of 

early embryonic cell masses [31]. The organic amino acids 
in casein hydrolysate can be a good substitute for the inor-
ganic ammonium and a supplement to nitrate. Also, the 
nitrogen uptake through an organic source such as casein 
hydrolysates is much easier and faster than that through an 
inorganic source [32]. The activated charcoal is composed of 
carbon arranged in a quasi-graphitic form in small particle 
size. It is often used in the medium to improve the growth 
and development of cell, tissue, and organ [33]. The acti-
vated charcoal has the potential to absorb some inorganic 
ions, auxins, cytokinins, and phenolics. The positive effect 
of activated charcoal on embryo maturation and conversion 
was probably caused by the adsorption of PGRs [34].

The endosperm products, especially coconut milk, have 
cytokinin activities. These natural products have a reduced 
nitrogen source and a range of complex chemical com-
pounds, which are capable of stimulating the growth and 
organogenesis. The analysis of coconut milk has shown 
that there are different oligosaccharides some of which have 
growth regulating activities [35].

The somatic embryogenesis and the direct or indirect 
organogenesis are mainly used as the micro-propagation 
techniques in the plant tissue culture [36]. In addition, the 
embryogenic callus is a suitable receptor tissue for the 
genetic changes [37]. Somatic embryogenesis is still com-
monly believed to be the most efficient micro-propagation 
technique in genetic transformation [38]. The organogenic 
calli were light green, soft and translucent and produced the 
leaves in response to NAA and BA. They mainly contained 
the parenchymal cells and produced the shoot, which showed 
a vascular relationship with the leaf explant. However, the 
embryogenic calli were dark green, had a strong spherical 
structure, and developed in response to the combination of 
BA and NAA as well as coconut milk, activated charcoal 
and casein hydrolysate. The embryos had dense cytoplasm, 
large nuclei, and storage proteins. The results were consist-
ent with the histomorphological studies on Lilium pumilum 
[26], Pulsatilla koreana [39] and Zea mays [40]. Accord-
ing to the totipotency theory, every living plant cell has 
the potential to regenerate into a complete plant with the 
somatic embryogenesis [41]. However, not all embryogenic 
callus cells are capable of producing somatic embryos in 
E. purpurea. Thus, the shoot and root meristematic cent-
ers of somatic embryos play an important role in improv-
ing the efficiency of somatic embryogenesis [42]. Soundar 
Raju et al. [43] stated that the appearance of protoderm is an 
indicator of true somatic embryogenesis. Also, at the induc-
tion stage (globular somatic embryo stage) of garlic (Allium 
sativum L.) [44] and turmeric (Curcuma longa L.) [43], 
the appearance of protoderm was an indicator of somatic 
embryogenesis.

The in  vitro production of callus tissue is usually 
accompanied by the problem of callus browning due to the 
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accumulation of phenolic compounds and subsequent oxida-
tion (enzymatic or non-enzymatic). Callus browning (callus 
tissue necrosis) has caused a number of serious problems, 
and thus, it is critical to produce healthy, rapidly growing 
callus in the in vitro studies to extract secondary metabolites 
and subsequently, apply on a large scale [45]. The callus 
browning in tissue culture is affected by different factors 
such as species, explant, culture conditions, physiological 
state, pretreatments, medium composition, temperature, and 
subculture frequency [46, 47]. It has been shown that trans-
ferring to fresh medium, activated charcoal, polyvinylpyr-
rolidone (PVP), silver nitrate, and ascorbic acid is used to 
overcome the in vitro browning and to remove phenols or 
reduce their accumulation in the culture media [47].

The callus protein content varied according to the con-
centration of growth regulators and the presence of casein 
hydrolysate and coconut milk. For example, the highest 
amount of protein was obtained at the highest concentration 
of BA and NAA with casein hydrolysate, coconut milk and 
activated charcoal, while the lowest amount was obtained 
in the medium containing the lowest level of BA and NAA 
and lacking these organic additives. Enzymes are made 
of protein and the total protein content can be profiled in 
the biologically active site of a cell. Plants have numerous 
defense systems, including the increased activity of antioxi-
dant enzymes to remove free radicals and reduce oxidative 
stress [48]. Antioxidant enzymes play an important role in 
scavenging free radicals  (O2

–,  H2O2 and  OH–). They are 
naturally produced during the metabolic activity, but under 
the unfavorable conditions, a burst occurs in their produc-
tion that results in the poor performance such as protein 
catabolism (proteolysis), DNA mutation, membrane peroxi-
dation, and eventually plant death. In plants, both enzymatic 
and non-enzymatic processes are involved in the detoxifi-
cation of reactive oxygen species (ROS) which can lead 
to the oxidative damage to many cell compartments such 
as membrane lipids, proteins, and nucleic acids [49–51]. 
The free radical scavenging enzymes such as superoxide 
dismutase, ascorbic acid peroxidase, catalase, and guaiacol 
peroxidase scavenge the free radicals and reduce the cell 
degradation [52]. The evaluation of catalase and peroxidase 
activity showed that the elevated levels of BA significantly 
increased the activity of both antioxidant enzymes. In fact, 
the results of this study showed that the increase in the 
levels of growth regulators improved the protein content 
and the antioxidant enzyme activity. Moreno et al. [53] 
studied the peroxidase activity in the callus culture of rad-
ish (Raphnus sativus cv. Cherry Bell). The callus induction 
occurred in different combinations of BA and 2,4-D in the 
MS medium. They found that the activity of peroxidase on 
the callus of all explants was higher than that of the intact 
plant. Shank et al. [54] examined the peroxidase activity 
in the calli of different explants of Moringa oleifera. They 

also showed that the enzyme activity was higher in callus 
than in plant.

In the micro-propagation system of plant, the ex vitro 
acclimatization, or hardening, is one of the main processes 
performed for the production of healthy plantlets before 
their transplantation to field conditions [55]. The in vitro-
developed plantlets of E. purpurea were acclimatized after 
transplanting with an 8.66–29.3% survival rate. Sivanesan 
and Jeong [11] reported that 98% of cineraria plantlets were 
successfully acclimatized in the greenhouse. The in vitro 
conditions including low light intensity, levels of sucrose 
and other nutrients, and high relative humidity may cause 
physiological and anatomical changes that have negative 
effects on the acclimatization of regenerated plants and 
explain the limited acclimatization efficiency in this study 
[56].

During the ex vitro acclimatization, many changes may 
occur in the physiological and morphological metabolisms 
such as photosynthesis due to the differences in the environ-
mental conditions [55]. The highest amount of chlorophyll 
content was obtained in the MS medium supplemented with 
BA, NAA, 1 g  L−1 active charcoal, 50 ml  L−1 coconut milk 
and 50 mg  L−1 casein hydrolysate in T10, T11, T13 and T18 
treatments. It has been reported that the increased growth of 
plantlets is a consequence of the increased photosynthetic 
rate of the plantlet due to the control of environmental con-
ditions during the in vitro culture, which also affects the 
plantlet growth and survival during the ex vitro acclimatiza-
tion [57, 58]. Among different treatments, it seems that T10 
and T11 treatments showed the best growth characteristics 
during the ex vitro acclimatization.

Conclusion

In this study, a simple and reproducible process was devel-
oped for the somatic embryogenesis and plant regeneration 
of E. purpurea. The results of this study showed that a com-
bination of cytokinin BA (at high concentrations) and auxin 
NAA (at low concentrations) in the presence of coconut 
milk, activated charcoal and casein hydrolysates had a posi-
tive effect on the somatic embryogenesis in the leaf explants 
of E. purpurea. The histological studies confirmed the dif-
ferent stages of somatic embryogenesis. The biochemical 
analysis results revealed that with increasing the BA and 
NAA concentrations, the protein content and the peroxidase 
and catalase activity of calli significantly increased. The 
in vitro-developed plantlets of E. purpurea were success-
fully acclimatized after transplanting with an 8.66–29.3% 
survival rate. The highest amount of chlorophyll content in 
the acclimatized plantlets was obtained in the MS medium 
supplemented with BA, NAA, 1 g.  L−1 active charcoal, 
50 ml  L−1 coconut milk and 50 mg  L−1 casein hydrolysate. 
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These results serve as the initial step to optimize culture 
media for a variety of purposes, such as in vitro propagation, 
conservation, metabolite extraction, plant breeding, genetic 
transformation or applied biotechnology, including the use 
of synthetic seeds or bioreactors.
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