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Antidrug antibody (ADA) responses impact drug safety, potency, and efficacy. It is

generally assumed that ADA responses are associated with human leukocyte antigen

(HLA) class II-restricted CD4+ T-cell reactivity. Although this review does not address

ADA responses per se, the analysis presented here is relevant to the topic, because

measuring or predicting CD4+ T-cell reactivity is a common strategy to address ADA

and immunogenicity concerns. Because human CD4+ T-cell reactivity relies on the

recognition of peptides bound to HLA class II, prediction, or measurement of the capacity

of different peptides to bind or be natural ligands of HLA class II is used as a predictor

of CD4+ T-cell reactivity and ADA development. Thus, three different interconnected

variables are commonly utilized in predicting T-cell reactivity: major histocompatibility

complex (MHC) binding, capacity to be generated as natural HLA ligands, and T-cell

immunogenicity. To provide the scientific community with guidance in the relative merit

of different approaches, it is necessary to clearly define what outcomes are being

considered. Thus, the accuracy of HLA binding predictions varies as a function of

what the outcome predicted is, whether it is binding itself, natural processing, or T-cell

immunogenicity. Furthermore, it is necessary that the accuracy of prediction is based

on rigorous benchmarking, grounded by fair, objective, transparent, and experimental

criteria. In this review, we provide our perspective on how different variables and

methodologies predict each of the various outcomes and point out knowledge gaps

and areas to be addressed by further experimental work.

Keywords: anti drug antibodies (ADA), CD4T cell, MHC-prediction, prediction benchmarking, immunogenicity

INTRODUCTION

As discussed in general and in more detail in other contributions to this special issue, protein-drug
immunogenicity is of concern, as it can lead to safety issues and can impact drug efficacy and
potency. It is further widely assumed that immunogenicity at the level of CD4T cells recognizing
human leukocyte antigen (HLA) class II epitopes is a key and necessary step in the development
of antidrug antibodies (ADAs), because CD4T cells are generally required for antibody affinity
maturation and isotype switching, which is of relevance because ADA is in general IgG and other
subclasses that require immunoglobulin gene rearrangements.
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FIGURE 1 | Scheme of three variables commonly considered in antidrug antibody (ADA) prediction. (A) Major histocompatibility complex (MHC) binding: MHC-peptide

binding can be directly measured and/or utilized to train MHC-binding prediction methods. (B) Eluted ligands: naturally processed and presented peptides can be

eluted from antigen-presenting cells (APCs) and/or used as a source for the training of algorithm predicting natural ligand generation. (C) Immunogenicity: T-cell

reactivity is often predicted on the basis of binding or elution data/predictions. In addition, it can be directly measured and/or predicted by methods utilizing T-cell

immunogenicity as a training set. (D) Antidrug antibody (ADA): it is commonly assumed that ADA responses are dependent on (A–C) and related to T-cell reactivity.

As a result, a variety of strategies have been developed to assay
and/or predict different steps in the process of the development
of ADA. This review will focus on efforts and available data
benchmarking different methodologies and outcomes relating to
HLA class II binding, elution of natural HLA class II ligands,
and T-cell immunogenicity in vitro. The interconnection between
these different methodologies at the level of actual experimental
data vs. bioinformatic prediction is graphically illustrated in
Figure 1. This paper is mostly reflective of our work in the
context of Immune Epitope Database and Analysis Resource
(IEDB), and we fully acknowledge the seminal contributions
of several other groups, as also detailed in other contributions
to this special issue. Likewise, this review does not address
other variables that are appreciated to impact ADA and T-
cell immunogenicity, such as induction of T-cell tolerance, self-
similarity, protein-drug dosing and schedule, aggregation state,
and general immune responsiveness of the drug recipient. We
emphasize that the present study is a review, and as such,
we do not present primary data presented elsewhere. In each
paragraph, the specific papers and sources of the primary data
are referenced, to allow the reader a more in-depth analysis
if desired.

HUMAN LEUKOCYTE ANTIGEN BINDING
AND ELUTED LIGANDS

HLA class II binding, more generally major histocompatibility
complex (MHC) binding, is measured by in vitro utilizing
preferably synthetic peptides and purifiedHLA class IImolecules.
The most accurate and reproducible “gold standard” assay
on hand is a classic radiolabeled probe displacement receptor
ligand assay, developed by Gray, Sette, and Buus and Unanue,

Babbit, and Allen in the mid-1980s (1, 2). Other assay
platforms that have been previously described suffer from
difficulties in controlling peptide degradation (live-cell assays)
(3) or a low throughput (plasmon resonance assays) (4).
Furthermore, radiolabeled probe displacement receptor ligand
assay has been run for many different HLA class II allelic
variants with a large number of synthetic peptides (5, 6),
and it is thus associated with the most numerous volume
of accurate and directly comparable data. Accordingly, these
data have been used, as described in more detail in the
following sections, to train predictive algorithms, which have
increased efficacy and accuracy throughout the past three decades
(Figure 1A).

Like in the case of all MHC molecules, the vast majority
of peptide-binding sites of HLA class II is occupied by natural
ligands, derived from antigens processed into small peptides
and displayed on the surface of antigen-presenting cells (APCs).

These natural ligands can be eluted and characterized (4). In the
context of application to the characterization of protein, drug-
derived peptides with the acronym MAPPs, which stands for

MHC-associated peptide proteomics (MAPPs), are frequently
used (7, 8). Recent years have witnessed an explosion of
availability of sequences of natural ligands, thanks to the
ever-increasing power of mass spectrometry (MS) sequencing
techniques (9). As a result, these eluted ligand data can also
be used to train predictive algorithms (Figure 1B), as also
described in the following sections. It is perhaps intuitively
expected that the two different training sets might yield largely
overlapping results, with binding data being the most effective
in predicting binding capacity and eluted ligand being the most
effective to predict eluted ligands but not necessarily HLA
binding per se.
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T-CELL IMMUNOGENICITY

In order for an epitope to be recognized by CD4T cells, it
needs to be capable of binding HLA class II molecules and
of being generated by natural processing. Accordingly, binding
and natural ligand assays and predictions are routinely utilized
to predict T-cell immunogenicity. However, it should be kept
in mind that these measures, by definition, do not necessarily
relate to immunogenicity at the T-cell level, as other variables
are also involved (e.g., the degree of similarity to self-antigens).
Furthermore, it is often not clear which thresholds are associated
with the optimal prediction of T-cell epitope, on the basis of
either measured or predicted elution or binding data.

Alternative strategies use T-cell immunogenicity data to train
agnostic predictors or use in vitro immunogenicity assays to
predict or rank the immunogenicity of protein drugs in vivo
in humans (Figure 1C). Here as well, considerable challenges
and opportunities for further research exist, as it is unclear how
specific and sensitive these assays are and how they do correlate
with in vivo immunogenicity. Likewise, it is unclear whether T-
cell immunogenicity in vitro in unexposed naïve individuals can
predict T-cell immunogenicity in exposed individuals. Finally,
and of the greatest relevance, data that demonstrate that T-
cell immunogenicity measured by currently used assays does,
in fact, correlate with ADA titers in human patient populations
are very limited (Figure 1D). Figure 1D is presented here to
point out a knowledge gap, and no data for ADA are reviewed
herein. Several studies are starting to generate data relevant to
this respect, in the context of protein therapeutics that are either
human or humanized and foreign proteins such as asparaginase
and glucarpidase. These topics are addressed in other papers
presented in this issue and are not within the scope of this
review. In the context of this paper, we simply point out that the
volume of data is as yet insufficient to perform a systematic and
unbiased evaluation.

THE CONCEPT AND NECESSITY OF
BENCHMARKING PREDICTIVE
ALGORITHMS

To rigorously evaluate the performance of any predictive
algorithm, it is generally necessary to define objectivemeasures of
performance. Commonly utilized measures are sensitivity [what
fraction of true positives (TPs) are predicted vs. false positive
(FP)] and specificity [what fraction of the predictions are TPs vs.
false negatives (FN)]. The prediction rates are plotted to generate
an area under the curve (AUC) and AUC values, which are an
overall numeric assessment of performance (with an AUC of 0.5
being associated with random predictions and an AUC of 1.00
corresponding to a perfect prediction).

Once the method to be used for evaluation is defined, it is
necessary to define datasets that are going to be used to assess
the algorithm’s performance. The evaluation dataset should be
distinct from the one used to derive the method, to avoid
overfitting. This is particularly the case for heuristic and machine
learning approaches, where the method will fit the data without a

predefined hypothesis or model. The process by which a different
methodology is objectively and rigorously evaluated is generally
referred to as “benchmarking.”

In our opinion, to have true scientific value, a benchmarking
needs to fit three fundamental characteristics. First, it needs
to be objective, following predefined metrics and an accepted
methodology. Second, it needs to utilize independent datasets,
not used to train the methodology and preferably not available
to the method developer while the method was trained. Third,
it needs to be transparent, using publicly available code,
preferably published in the peer-reviewed literature, and the
results must be verifiable and reproducible by anyone in the
scientific community.

BENCHMARKING HUMAN LEUKOCYTE
ANTIGEN CLASS II BINDING
PREDICTIONS

To the best of our knowledge, the first comprehensive
rigorous benchmarking of different prediction methodologies
was reported for HLA class I by Peters et al. (2). In those studies,
predictions for over 48 MHC alleles, 88 datasets, and 48,828 IC50

values were considered, with 50–300 data points per dataset. In
general, the performance of different methodologies was similar,
and the main factor influencing predictive power was found to
be how many data points were available for training predictions
for a given allele. Since then, the process of benchmarking was
automated and is periodically performed by the IEDB (10).

Following the same thought process and methodologies, we
have recently instituted a platform for automated benchmarking
of HLA class II predictions (11). On a weekly basis, the
absolute and relative predictive performance of all participating
tools on data newly entered into the IEDB is assessed before
it is made public. This unbiased assessment of available
prediction tools is fully automated, and results are posted
on a publicly accessible website (http://tools.iedb.org/auto_
bench/mhcii/weekly/). The initial benchmarking included six
commonly used prediction servers. The results from that
process have room for improvement, predictions were reasonably
accurate with median AUC values for the various class II
molecules of around 0.8 for the best methods (NetMHCIIpan
and NNalign). Since the publication of the study, additional gains
have been realized with an AUC value of 0.835 for NetMHCIIpan
(11). The current benchmarking evaluates MHC binding, and
we plan to extend this automated benchmarking to eluted ligand
data and eventually T-cell immunogenicity data.

It is important to realize that this benchmarking only assesses
the performance on class II binding predictions, in terms of
predicting binding itself, and should not be interpreted to
assess how well-binding prediction predicts immunogenicity
or ADA. Although this would seem self-apparent, we often
encounter statements to the extent that the “MHC binding
predictions do not work because I have immunogenicity data
that . . . .” Obviously, although the binding is necessary for
immunogenicity, it is not the sole condition. The current
efforts to objectively assess the performance of HLA class II
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binding (predicted or measured) as a predictor of HLA class II
immunogenicity are described in a section further below.

NATURAL LIGAND AND PROCESSING
PREDICTIONS

As mentioned above, the recent years witnessed a dramatic
increase in the availability of data relating to HLA class II eluted
ligands. In this context, a reasonable line of investigation would
be to examine if the eluted ligand data could be utilized to
learn some “processing motif,” present in natural ligand but
not associated with HLA-binding motifs. A recent study by
Paul et al. (12) used this approach. MHC II ligand elution data
collected from IEDB were further filtered to generate a high-
quality dataset. The result was the delineation of a predictive
cleavage motif for eluted ligands. A combination of cleavage
and binding predictions improved ligand predictions. Strikingly,
however, incorporating the processing motif in combination
with binding predictions did not improve predictions of which
sequences would be actual T-cell epitopes. Similar results were
also obtained in a study from Nielsen’s group (13), who detected
a footprint of antigen processing, which improved predictions
of eluted ligands but did not improve predictions of which
sequences would be actual T-cell epitopes. These results are
remarkably similar to what was previously observed in the case of
class I molecules where it was found that processing predictions
were not affording increased efficacy in predicting actual T-
cell epitopes, either by themselves or in combination with
binding predictions.

Previous data by Jurtz et al. (14) demonstrated that directly
using eluted ligand data to train neural networks (NNs) was
associated with increased capacity to predict eluted ligands,
as compared with NN trained in HLA class I binding data.
Garde et al. (15) demonstrated that training in class II eluted
data increases the accuracy of predicting eluted ligands, just as
previously observed in the case of class I. Thus, training NN
algorithms with MS eluted ligands improves the capacity to
accurately predict eluted ligands for both HLA class I and II
alleles (14–16).

COMPARISON OF BINDING AND ELUTED
LIGAND DATA

In terms of comparing these two different data types, a first
question to be addressed is how the measured binding and
experimental elution data compare with each other. An analysis
performed more than 2 years ago (17) demonstrated that T-cell
and MHC-binding data were mostly related to non-self, whereas
elution ligands are mostly self. This is largely a reflection of
the fact that HLA binding and epitope studies have prevalently
been focused on infectious diseases and allergy targets, whereas
ligands encountered that are naturally occupying the HLA class
II binding site are predominantly of self-origin. Therefore, the
problem is just that the particular peptide sets that happen
to be studied in the two approaches are non-overlapping,
complicating direct comparison but not necessarily leading to

different predictions. This is not a reflection of the fact that
self and non-self peptides differ in their capacity to bind or
to be generated by natural processing. The fact that MHC
class II molecules bind indiscriminately the self and non-self
peptides were established in the early 1990s (18). The disparity
in the number of self vs. non-self peptide data available in the
literature and associated with the two techniques is simply a
reflection of the investigational bias of MHC-binding and T-
cell mapping studies being mostly focused on infectious diseases
and allergen targets, whereas in the case of natural MHC
ligands, the most abundant species (and therefore more easily
sequenced species) are of self-origin. Tables 1, 2 present numbers
of peptides eluted from MHC class II molecules. These are
the data available through the IEDB as of Q3 2019, which
contain the specific peptide sequences and specific MHC class
II molecules.

Table 1A presents an updated analysis (as of Q3 2019)
focused on HLA class II. This analysis highlights how comparing
measured HLA binding and eluted data is problematic in
general and for HLA class II in particular because the two
datasets are only minimally overlapping. This knowledge gap
is starting to be addressed by several studies in the context
of murine class I molecules (19, 20). Croft et al. utilized the
vaccinia virus (VACV) as a model system in the context of
the murine MHC class I molecules Kb and Db (19). Further
benchmarking of the dataset (21) reveals that the majority
of eluted peptides are within expected binding ranges, but a
large fraction of binders are not identified by the elution of
experiments (Table 1B). This is not unexpected and is likely
reflective of the impact of protein expression/abundance also
shaping it; in concert with a binding capacity of the actual
peptides, the repertoire of natural ligands bound to MHC. A
compensatory relation between binding and expression was
indeed noted by Abelin and coworkers, who states. “This
revealed a multiplicative relationship between expression and
affinity, in which a 10-fold increase in expression could
approximately compensate for a 90% decrease in binding
potential” (22).

Generating datasets where for a given model antigen we
can address which peptides are experimentally found to bind
and isolate as natural ligands in the context of HLA class II
molecules should be considered a priority for the general field of
benchmarking of binding and elution data.

HOW DO ALGORITHMS PERFORM IN
PREDICTING THE “OTHER” VARIABLE?

As mentioned above, it is intuitively expected that binding
data might be most effective in training to predict binding
capacity, but not necessarily eluted ligands. Likewise, training
with eluted ligand might be expected to be the most effective
to predict eluted ligands but not necessarily HLA binding per
se. This point was formally addressed by Garde et al. (15).
The authors expanded the NNalign approach by adding a
second output neuron, and training is performed on both data
binding and eluted data simultaneously. The resulting model
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TABLE 1 | Composition of epitopes available in IEDB.

MHC class II

Classification based on Type T-cell epitopes MHC binders Eluted ligands

(A) MHC-BINDING DATA

Host All 62,380 21,885 66,304

Human 41,577 18,944 53,810

Rodents/rabbit 21,351 3,644 13,335

Non-human primates 269 106 NA

Other hosts 2,181 60 NA

Antigen source Self 6,251 3,542 63,766

Non-self 39,983 12,943 1,495

Viruses 25,834 9,575 484

Allergen 1,924 1,342 784

Bacteria 9,358 1,409 151

Parasites 2,071 553 74

Fungus 796 64 2

Predicted binder or not

Binder Non-binder Total

(B) NATURAL LIGAND ELUTION DATA

Eluted or not Eluted 124 42 166

Non-eluted 10,397 646,239 656,636

Total 10,521 646,281 656,802

IEDB, Immune Epitope Database and Analysis Resource; MHC, major histocompatibility complex.

is able to predict binding affinity value and the likelihood
of peptide being an eluted ligand. This study demonstrated
that training in class II eluted data increases the accuracy of
predicting eluted ligands, but not to predict binding, and that
vice versa training in binding data increases the accuracy of
predicting binding data, but not to eluted data. In conclusion,
these data reiterate that caution must be exercised when
algorithms generated to predict a certain variable are used to
predict outcomes linked to a different, albeit related, variable.
It further sets the stage for the next level of benchmarking,
namely, how do HLA class II binding and eluted data and
predictions perform when used to predict HLA class II-restricted
T-cell immunogenicity?

MAJOR HISTOCOMPATIBILITY COMPLEX
BINDING AFFINITY DATA AS A
PREDICTOR OF IMMUNOGENICITY

In the case of HLA class I, it was originally reported that
∼80% of epitopes bind with Kd < 500 nM (23). The more
recent analysis confirmed this observation, supporting this
historic threshold (24). It was further found that different
alleles are associated with different affinity distributions (24),
leading to the recommendation that allele-specific thresholds
are preferred when class I binding predictions are used to
predict immunogenicity.

In the case of class II, a 1,000-nM threshold was suggested,
but not extensively validated over large datasets. To address
this point, we generated curves capturing percent of epitopes
retrieved from the IEDB restricted by different HLA class II
molecules, or we generated a higher quality of data, restricting
the data considered to be those associated with positive tetramer
assays. The results shown in Figure 2A demonstrate that when
alleles for at least 50 epitopes have been described with defined
restriction, 83.3% epitopes bind at <1,000 nM (3,579 out of
4,297 epitope/allele combinations). As noted in the case of
HLA class I, a significant spread exists from one allele to
the next. Similarly, when only tetramer data are considered,
we plotted data from 15 alleles with at least 20 epitopes
(Figure 2B). We found that 80.1% epitopes bind at the <1,000-
nM threshold (1,353 out of 1,690 epitope/allele combinations).
Table 2 shows the affinity at which 50 and 90% of epitopes are
retrieved for each of the HLA alleles described in Figure 2. It
is noted that the DRB1∗01:03 allele has only one epitope at the
<1,000-nM level and appears to be an outlier. Whether this
reflects a problem with the dataset, or rather the algorithm,
or a peculiarity of this rather infrequent allele remains to
be investigated.

Rigorous benchmarking of epitopes in a single well-defined
system where the epitopes are mapped to different HLA class
II molecules is not currently available. The above-referenced
study of Croft et al. (19), in addition to studying eluted
peptides and measuring binding affinities, also measured the
epitopes recognized following VACV infection, also in the
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TABLE 2 | Binding affinity at which 50 and 90% of epitopes are retrieved for each HLA class II allele on the basis of epitope or tetramer data available in IEDB.

Epitopes Tetramers

Affinity at 50% Affinity at 90% Affinity at 50% Affinity at 90%

DPA1*01:03/DPB1*01:01 135 4,220 NA NA

DPA1*01:03/DPB1*04:01 104 2,609 NA NA

DPA1*01:03/DPB1*04:02 439 3,015 NA NA

DQA1*01:01/DQB1*05:01 2,294 9,706 NA NA

DQA1*01:01/DQB1*06:02 6,180 1,813 1,141 204

DQA1*01:02/DQB1*06:02 300 2,439 943 186

DQA1*03:01/DQB1*03:02 1,091 6,001 NA NA

DRB1*01:01 26 234 171 87

DRB1*01:02 553 966 NA NA

DRB1*01:03 NA NA 3,944.14 1,718.14

DRB1*03:01 196 1,823 2,026 7,107

DRB1*04:01 204 8,896 146 5,300

DRB1*04:03 69 321 NA NA

DRB1*04:04 NA NA 313.25 225.87

DRB1*04:05 1,163 6,678 NA NA

DRB1*04:07 123 696 NA NA

DRB1*07:01 65 565 54 206

DRB1*08:01 NA NA 686.2 1,563.99

DRB1*08:02 110 1,673 NA NA

DRB1*08:03 1,009 986 NA NA

DRB1*09:01 66 678 14 194

DRB1*10:01 19 46 NA NA

DRB1*11:01 43 582 212 179

DRB1*11:04 NA NA 922.29 145.13

DRB1*12:02 119 361 NA NA

DRB1*13:01 44 243 NA NA

DRB1*14:01 NA NA 380 423

DRB1*14:02 423 547 NA NA

DRB1*14:04 222 247 NA NA

DRB1*14:06 47 135 NA NA

DRB1*15:01 115 1,843 382 1,233

DRB1*15:06 231 1,528 NA NA

DRB3*02:02 1,233 1,788 NA NA

DRB5*01:01 60 2,811 505 107

NA, not applicable; HLA, human leukocyte antigen; IEDB, Immune Epitope Database and Analysis Resource.

context of previously detailed immunogenicity studies (25). The
benchmarking study of Paul et al. (12) provides a benchmarking
analysis of these data. It was found that the top 1–2% of
binding predictions captured 90% of the epitopes or of the
total response and that the top 0.03–0.04% of the predicted
binders accounted for 50% of the total epitopes and response.
The analysis, however, also further underlined how binding
predictions are very sensitive predictors but are associated with
relatively low specificity. In other words, in the case of murine
class I, when 90% of the epitopes are binders, only about 1% of
the binders are epitopes. In conclusion, the lack of comprehensive
benchmarking of binding prediction and HLA class II-restricted
actual immunogenicity is a major knowledge gap, and generating
suitable datasets should be considered a priority.

HOW EFFECTIVE IS LIGAND ELUTION AS
A PREDICTOR OF IMMUNOGENICITY?

Few studies have benchmarked how effectively eluted ligand
data can be used in terms of prediction of HLA class
II immunogenicity. A study by Mutschlechner et al. (26)
compared elution data and T-cell immunogenicity in a case
of patients allergic to the known major birch pollen allergens.
These authors found that, in general, elution data overlapped
with immunogenicity data but missed one of two major T-
cell immunogenic sites (around positions 77–93 of the Bet
v1 protein).

It is reasonable to assume that all “true” HLA class II
epitopes are naturally processed, but it is unclear how many
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FIGURE 2 | Extrapolation of binding affinity threshold for human leukocyte antigen (HLA) class II prediction. Binding affinity retrieved by NetMHCIIpan by plotting IC50

predicted values for each HLA class II allele on the basis of the cumulative percentage of epitopes derived from the Immune Epitope Database and Analysis Resource

(IEDB) (A) or based only on tetramer data available in IEDB (B).

are detected vs. missed given the limits of sensitivity of
the assays. High abundance can compensate for low MHC
affinity, but it is unknown how immunogenic these types

of ligands are. Conversely, a low abundance of ligand that
binds with high affinity may be less easily detected but more
strongly immunogenic.
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TABLE 3 | Benchmarking summary of HLA class I molecules in the murine VACV

system.

Predicted binder or not

Binder Non-binder Total

Eluted or not Eluted 60 5 65

Non-eluted 15 2 17

Total 75 7 82

HLA, human leukocyte antigen; VACV, vaccinia virus.

WHAT IS THE RELATIVE VALUE OF
BINDING VS. ELUTION PREDICTIONS TO
PREDICT IMMUNOGENICITY?

As mentioned above, Nielsen, Jurtz, Garde, and associates
developed a methodology where binding data, elution data, or
both can be used to train NNs, and they generated as output
the likelihood that a given sequence will be an HLA class II
binder or an eluted ligand. The question that is key in light of
application to T-cell immunogenicity is which training is optimal
for T-cell epitope predictions. And which output is optimal? The
results of this analysis have been recently published (15) and show
that training in both ligand and binding datasets is the most
effective and that the optimal output is the prediction of eluted
ligands. These results have been confirmed by three independent
studies (27–29).

Although a formal benchmarking for HLA class II molecules
in a controlled experimental system is to date lacking, these
results are in strong agreement with the results of the murine
class I study of Tscharke in the VACV system (19). In that study,
it was found that of a total of 82 epitopes, 60 were both found
to be binders in actual binding assays and also experimentally
identified as eluted ligands (Table 3) (21). Fifteen epitopes were
binders not identified as eluted ligands, whereas five eluted
ligands were not experimentally found to be 500-nM binders.
However, only two of the peptides experimentally determined to
be epitopes were found to be neither binders nor eluted ligands.
These data provide compelling evidence that a combination of
both predicted binding and elution data should be considered for
the purpose of epitope identification.

THE IMPACT OF HUMAN LEUKOCYTE
ANTIGEN POLYMORPHISM ON BINDING
VS. IMMUNOGENICITY PREDICTIONS

HLA polymorphism is an important issue to be considered in
evaluating the performance of HLA binding or eluted ligand
predictions as a predictor of immunogenicity. HLA class II
predictions are by definition allele-specific. However, in real-life
drug immunogenicity scenarios, this has to be reconciled with
the fact that HLA class II molecules are remarkably polymorphic,
encoded by seven different loci, and represented by thousands of
different allelic variants.

At the level of individual patients, each human subject
is typically heterozygote at four different HLA class II loci
(DRB1, DRB3/4/5, DP, and DQ) and therefore expresses up
to eight or more different HLA class II variants; this is
because of the so-called heterozygous pairing of DP and
DQ where both alpha and beta subunits are polymorphic
and can form trans and cis pairings leading to an estimate
of about 12 different molecules. And a patient population
expresses hundreds of different variants, each represented
in different frequencies, which also vary significantly across
different ethnicities.

Human immunogenicity and clinical trials rarely determine
the specific HLA class II molecule restricting the response,
as this is considerably more complex and less clear-cut than
in the case of HLA class I. As a result, actionable predictive
strategies to target, not alleles, but individuals and populations
are required.

Our group has defined a subset of 26 different DRB1,
DRB3/4/5, DP, and DQ allelic variants (30) that afford 94.5%
global coverage of general human populations. We have used
promiscuity indexes (that is, predicting peptides binding to a
majority of themost common alleles) as a way to identify peptides
that correspond to the most dominant, most immunogenic
peptides observed in real-life patient populations (30).

This approach was further optimized, utilizing datasets
derived from peptide sets spanning entire proteins associated
with measured immune responses in exposed humans to
examine a) how many and b) which specific HLA class II
variant predictions would be most effective, when combined,
to predict immunogenicity in human populations. It was found
that optimal results were found with a set of just seven
variants, representative of common and dominant class II motif
types (31).

PREDICTING IMMUNOGENICITY IN VIVO

IN HUMAN POPULATIONS

The performance of the “seven-allele method” in predicting
immunogenicity in patient populations was evaluated in a
subsequent study (32). In the same study, we also considered
an agnostic approach, where we used T-cell recognition data
to directly train predictive algorithms. For this purpose, we
used in-house data and IEDB-derived tetramer as training sets.
The performance was evaluated using results from 57 different
studies from other laboratories, which used overlapping peptides
and exposed populations that contained 530 non-redundant
dominant epitopes and 1,758 non-epitopes.

We observed that either the HLA class II binding predictions
(seven alleles) or the T-cell immunogenicity tools were associated
with overall AUC values of 0.7. Using the two methods in
combination afforded modest gains, with AUC of 0.725. The
relatively low overall AUC values should not be surprising, given
the fact that what is predicted here is not an outcome linked to a
given HLA but a population outcome, where the composition of
the responding population is unknown and the restricting HLA
molecules associated with each epitope are not determined.
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PREDICTING IMMUNOGENICITY IN VIVO

BY IN VIVO IMMUNOGENICITY ASSAYS

In vitro assays utilizing cells from naïve, non-exposed donors
offer an obvious alternative to bioinformatic predictions.
Primary immunogenicity can be measured in vitro by a
variety of methods. These include immunizing with whole
antigen or peptides, using dendritic cells or peripheral blood
mononuclear cells (PBMCs) as APC, usually after a period
of in vitro culture, followed by read-out assays that include
proliferation, enzyme-linked immunosorbent spot (ELISPOT),
and intracellular cytokine staining (ICS).

Despite their widespread use, benchmarking the performance
of these assays as a predictor of in vivo immunogenicity is lacking.
Rigorous benchmarking studies are required to establish whether
these methods do actually predict in vivo immunogenicity and
which method is most effective. Questions to be addressed
include whether memory responses are detected in drug-treated
subjects and whether HLA type predicts which subjects will
develop memory T-cell responses. It is further unclear to what
extent HLA binding, peptide elution, or in vitro immunogenicity
assays or predictions actually predict which subjects will
develop memory T-cell responses. Finally, benchmarking should
address at the population level whether binding, elution, or
immunogenicity assays or predictions actually identify which
epitopes are dominant in ex vivo scenarios, with obvious
implications for strategies aimed at protein de-immunization by
removing T-cell immunogenic epitopes.

CONCLUSIONS

Do T-Cell Responses Correlate With ADA?
Surprisingly, this is still a very open question that rigorous
benchmarking studies can help answer. This will require a
global assessment of drug-specific memory T cells in drug-
exposed individuals. We believe that the paper makes a clear
and desperate plea for the need to generate more data and
for honest and objective benchmarking, which are a necessary
requisite for moving the field forward. Do the magnitude and/or
specificity of memory T-cell responses correlate with ADA titers
and/or neutralizing activity? Does immunogenicity (predicted or
measured or in non-exposed subjects) predict immunogenicity in

exposed subjects? Are the same epitopes recognized as dominant
in ADA+ and naïve subjects (with obvious implications for
de-immunization) (33)?

It should be emphasized that this review does not address
other variables that are appreciated to impact ADA and T-
cell immunogenicity, such as induction of T-cell tolerance, self-
similarity, protein-drug dosing and schedule, aggregation state,
and general immune responsiveness of the drug recipient. In
particular, the methods available to the scientific community are
trained and derived for the most part on the basis of “strong”
infectious diseases and allergy-derived epitopes (with a growing
representation of autoimmune and cancer-derived epitopes). In
the context of drug immunogenicity and design, it is possible that
epitope prediction thresholds might need to be adjusted. This
issue can be objectively addressed only when a sufficient amount
of epitope data from protein drugs will be accumulated and
made public. Ideally, these data could also be utilized to develop
algorithms specific to the prediction of drug immunogenicity.

Answering these questions will ultimately require the
coming together of bioinformaticians, cellular immunologists,
and clinical scientists, applying rigorous and transparent
methodologies and datasets. And ultimately, it will require
prospective evaluations of immunogenicity including in vitro
immunogenicity assay pre-exposure, HLA typing, and post-
exposure immunogenicity and ADA measures to generate the
datasets in which benchmarking can be applied. Ultimately,
how can we predict immunogenicity outcome if all we do is
run predictions and not test them in a prospective fashion
if the immunogenicity assays predicted immunogenicity and
ADA outcomes?
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