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Abstract: In situ hybridization (ISH) at the electron microscopic (EM) level is essential for 
elucidating the intracellular distribution and role of mRNA in protein synthesis. EM-ISH is 
considered to be an important tool for clarifying the intracellular localization of mRNA and 
the exact site of pituitary hormone synthesis on the rough endoplasmic reticulum. A 
combined ISH and immunohistochemistry (IHC) under EM (EM-ISH&IHC) approach has 
sufficient ultrastructural resolution, and provides two-dimensional images of the 
subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The 
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advantages of semiconductor nanocrystals (quantum dots, Qdots) and confocal laser 
scanning microscopy (CLSM) enable us to obtain three-dimensional images of the 
subcellular localization of pituitary hormone and its mRNA. Both EM-ISH&IHC and ISH 
& IHC using Qdots and CLSM are useful for understanding the relationships between 
protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B 
and SNARE proteins such as SNAP-25 and syntaxin has revealed that both rab3B and 
SNARE system proteins play important roles and work together as the exocytotic 
machinery in anterior pituitary cells. Another important issue is the intracellular transport 
and secretion of pituitary hormone. We have developed an experimental pituitary cell line, 
GH3 cell, which has growth hormone (GH) linked to enhanced yellow fluorescein protein 
(EYFP). This stable GH3 cell secretes GH linked to EYFP upon stimulation by Ca2+ influx 
or Ca2+ release from storage. This GH3 cell line is useful for the real-time visualization of 
the intracellular transport and secretion of GH. These three methods from conventional 
immunohistochemistry and fluorescein imaging allow us to consecutively visualize the 
process of transcription, translation, transport and secretion of anterior pituitary hormone. 

Keywords: pituitary hormone; mRNA; intracellular transport and secretion; quantum dot; 
enhanced yellow fluorescein protein 

 

1. Introduction 

Molecular morphological research of production, transport and secretion of anterior pituitary 
hormones is essential for understanding the pathophysiology of pituitary cells. For this purpose, 
several molecular morphological studies are required. Immunoelectron microscopy has been developed 
for the observation of protein products and is now a sophisticated technique in the field of 
histopathology. In situ hybridization (ISH) at the electron microscopic (EM) level (EM-ISH) is another 
sophisticated technique that is essential for the intracellular identification of mRNA and the study of 
the role of mRNA in protein synthesis. We developed a non-radioisotopic EM-ISH method using 
biotinylated synthesized oligonucleotide probes, and applied this method to the ultrastructural 
visualization of growth hormone (GH) and prolactin (PRL) mRNAs and pathophysiological studies in 
rat pituitary cells [1-3]. In addition, we developed a combined EM-ISH and immunohistochemistry 
(IHC) (EM-ISH&IHC) technique for the purpose of simultaneously identifying pituitary hormone  
and its message in the same cell [4-6]. This method has been utilized to investigate the  
intracellular localization of pituitary hormone and its mRNA at the same time [4-11]. Confocal laser 
scanning microscopy (CLSM) enables us to observe subcellular organelles, mRNA and proteins  
three-dimensionally in routinely processed light microscopic specimens [12-23]. Semiconductor 
nanocrystals (quantum dots, Qdots) enables us to obtain multicolor images of molecules due to a 
narrow emission peak that can be excited via a single light wavelength [24,25]. In biological research, 
Qdots have been used for the detection of the signals of IHC and fluorescence in situ hybridization 
(FISH) [26-31]. Recently, the above-mentioned advantages of Qdots and CLSM have been 
successfully applied to three-dimensional imaging of the intracellular localization of mRNA and 
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Qdots have narrow, symmetric emission spectra with multiple resolvable colors that can be excited 
simultaneously using a single excitation wavelength. The color of Qdots can be tuned to any chosen 
wavelength by simply changing their size. This property is capable of multiple labeling of subcellular 
molecules. Qdots have an advantage over conventional fluorophores, such as FITC and Texas Red, due 
to their photostability and prominent signal intensity. Qdot signals were more than 11-fold stronger 
than those of fluorescein [31]. These properties enable us to visualize the intracellular localization of 
pituitary hormone and mRNA by using different sized Qdots with CLSM [32,33]. This analysis has 
several merits: It can be used with light microscopic specimens; it can be observed in any chosen cells 
and any chosen depth of the section; it can reconstruct three-dimensional images. Three-dimensional 
images of the intracellular localization of mRNA and encoded protein enhance our three-dimensional 
understanding concerning the localization of mRNA and secreted protein. Two different sized Qdots 
can discriminate between two molecules that are located in the three-dimensional distance more than 
25 ± 13 nm [56,57]. 

ISH and IHC with Qdots and CLSM are capable of the simultaneous and three-dimensional 
visualization of the relationship between protein and mRNA, whereas EM-ISH&IHC method enables 
us to visualize the two-dimensional relationship between protein and mRNA simultaneously in high 
resolutions. Both EM-ISH&IHC and ISH & IHC using Qdots and CLSM are useful for understanding 
the relationship between protein and mRNA simultaneously in two or three dimensions. 

2.4. Functional Analyses of rab3B in Pituitary Cells and the SNARE System and rab3B in Pituitary Cells 

CLSM of immunohistochemical double stainings for SNAP-25, syntaxin and rab3B demonstrated 
co-localization of rab3B and these SNARE proteins in GHRH-treated rats, and their dissociation in 
SRIF-treated rats (Figure 5). These results suggest that rab3B plays a principal role in GH secretion 
from the anterior pituitary cells and that SNAP-25 and syntaxin act in association with rab3B in 
functional regulation of GH secretion.  

Low molecular weight GTP-binding proteins of the rab family act as the central regulators of 
vesicular traffic. The rab3 subfamily (rab3A, B, C and D) proteins are associated with membrane 
vesicles or granules that are undergoing exocytotic fusion with the plasma membrane [58,59]. High 
expression of rab3A is observed in brain tissue [60], whereas rab3B is the major form found in the 
anterior pituitary [59]. Lledo et al. reported that rab3B is a key intracellular signaling molecule  
that can control exocytosis in anterior pituitary cells [59]. Tasaka et al. suggested that rab3B is 
indispensable for gonadotropin-releasing hormone (GnRH)-induced gonadotropin release [61]. They 
reported that rab3B is involved in basal and GnRH-induced gonadotropin release, and that rab3B is 
essential for GnRH-regulated exocytosis downstream of cytosolic Ca2+ in gonadotrophs. Tahara et al. 
immunohistochemically investigated the localization of rab3 in five human non-tumorous pituitaries 
and 114 human pituitary adenomas, finding that rab3 is preferentially expressed in GH-secreting cells 
in non-tumorous pituitaries [62]. They concluded that rab3 might be involved in regulating exocytosis 
of secretory granules from anterior pituitary cells, particularly GH-secreting cells, which display 
characteristic densely granulated cytological features. 
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vesicle-associated membrane protein-2 (VAMP-2), which is localized on the membrane of secretory 
granules. Synaptic proteins localized to the synaptic vesicle membrane include synaptotagmin, VAMP, 
cysteine string protein (CSP), SV2, rabphilin, rab3, synaptophysin, and synapsin. Synaptic proteins 
that are found within or at the plasma membrane include SNAP-25, syntaxin, and a 35-kDa protein. 
SNAP-25 is attached to the plasma membrane through fatty acylated cysteine residues [63,64]. 
Syntaxin is a membrane-associated protein that binds to synaptotagmin [65], VAMP [66], SNAP-25 
[67], N-ethylmaleimide sensitive factor (NSF) [67], soluble NSF-attachment proteins (SNAPs) [67,68], 
and neural-specific syntaxin-binding protein (n-Sec1) [69-71]. Exocytotic proteins with a cytoplasmic 
location that can associate with these vesicle or plasma membrane proteins include SNAPs, NSF and 
mammalian homologue of unc-18 (munc-18). SNAPs are essential for membrane fusion [67].  
Munc-18 is closely associated with syntaxin, and to interfere with the binding of VAMP and SNAP-25 
to syntaxin [72]. The exact roles of these proteins with regard to exocytotic mechanisms in the 
pituitary gland remain to be elucidated. Limited information on the presence and the cellular 
localization of SNARE proteins have been presented for anterior pituitary cells. As for the membrane 
fusion of secretory granules in anterior pituitary cells, the SNARE mechanism is essential. 

Jacobsson et al. studied the expression and cellular localization, in rat pituitary gland, of several 
protein components that are essential for exocytotic membrane fusion in neurons [73]. They applied 
ISH and immunohistochemical techniques to the detection of proteins such as SNAP-25, syntaxin, 
VAMP-2, synaptotagmin, CSP, cellubrevin, and munc-18, showing the presence of several protein 
components and their isoform-specific mRNAs in rat pituitary. They suggested that these proteins, 
similar to their roles in the regulation of synaptic neurotransmitter release, might participate in 
exocytotic events in pituitary endocrine cells. Salinas et al. investigated the presence of syntaxin-1 and 
SNAP-25 in different parts of mouse, guinea pig and cat pituitaries using immunohistochemical 
methods, and suggested that syntaxin-1 and SNAP-25 are involved in the hormonal secretory process 
of both the adenohypophysis and neurohypophysis in these species [74]. Quintanar et al. analyzed the 
expression of SNAP-25 and syntaxin-1 in the adenohypophyses of hypothyroid rats, and found that 
thyroidectomy resulted in changes to both expression and immunoreactivity of SNAP-25 and syntaxin-
1, and that these effects could be reversed by T4 administration [75]. However, the direct function of 
rab3B in conjunction with the secretion of pituitary hormones and SNARE system remains unclear. 
Elucidation of the role of rab3B with regard to SNARE mechanisms represents an important issue. 

We therefore undertook experiments to elucidate the role of rab3B in GH secretion and the mutual 
relationships with SNARE proteins such as SNAP-25 and syntaxin [34,35]. Both rab3B and SNARE 
system proteins play important roles and work together as the exocytotic machinery in anterior 
pituitary cells.  

2.5. Intracellular Transport and Secretion of EYFP-GH and Synergistic Dynamics of rab3B and GH in 
Porosome 

In order to investigate, in real time, the transport and secretion of pituitary hormone, we developed a 
stable experimental pituitary cell line, GH3 cell, which has secretory granules of GH linked to EYFP [36]. 
The GH3 cells transfected with pCMV- sig- EYFP-GH-1 were incubated with culture medium of high 
K 60mEq/L concentration, and they were observed under CLSM, which showed that granules of GH 
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linked to EYFP, and secretes this molecule upon stimulated by Ca2+ influx or Ca2+ release from 
storage. There is an experimental limitation when using the GH3 cell line, because GH3 cells lack 
GHRH receptors. Lee et al. restored GHRH responsiveness in GH3 cells by adenoviral vectors to 
transfer the human GHRH receptor to GH3 cells [78]. Another issue is that experimental cell lines 
have an altered transcriptome and their physiological relevance is limited. Nevertheless, these GH3 
cells are useful for the real-time visualization of the intracellular transport and secretion of GH. 
Moreover, using the experimental cell line expressing EYFP-GH and ECFP-rab3B, we have 
demonstrated the role of rab3B in the vesicular budding and GH secretion through porosome. These 
bioimagings of rab3B support the role of rab3B in cooperation of GH secretion with SNARE system 
and porosome. 

Additionally it is noteworthy that He et al. developed a system to use secreted fluorescent proteins 
as surrogate markers for the continuous on-line monitoring of hormone release from perfused tissue  
slices [79]. They tested this system using GH-GFP transgenic rats with GFP targeted to the secretory 
vesicles of pituitary GH cells. This method provides useful insight into the release kinetics from large 
populations of pituitary cells, and fills a temporo-spatial gap between single vesicle and single cell 
monitoring of exocytosis in milliseconds, and in vivo sampling studies of release into the bloodstream 
on a time scale of minutes. 

3. Experimental 

3.1. ISH at an Electron Microscopic Level 

3.1.1. Preembedding ISH at an electron microscopic level 

The details of the EM-ISH&IHC method are described in our previous reports [1-3]. Briefly, the 
anterior lobes of rat pituitary gland were fixed in 4% paraformaldehyde dissolved in 0.01 M phosphate 
buffered saline pH 7.4 (PBS). Hybridization was carried out using biotinylated oligonucleotide probes. 
The hybridized signals of mRNA were detected with ABC-HRP, and then developed with 
diaminobenzidine (DAB) and H2O2. After osmification and dehydration with ethanol, tissue sections 
were embedded in Epon resin. After polymerization, ultrathin sections were inspected under electron 
microscopy. The control experiments carried out are hybridization with probes of sense or scramble 
sequence and without probes. 

3.1.2. Postembedding ISH at an electron microscopic level 

Briefly, in this method the anterior lobes of rat pituitary gland were fixed in 4% paraformaldehyde 
dissolved in 0.01 M phosphate buffered saline pH 7.4 (PBS). After fixation, tissues were embedded in 
LR White resin (Polyscience, Warrington, PA, U.S.A.). Ultrathin sections were retrieved on nickel 
grids. Hybridization was carried out on the grids, and the hybridization signals are developed with  
20 nm streptavidin gold (British Biocell International, Cardiff, UK). The grids were inspected under 
electron microscopy. The control experiments carried out are hybridization with probes of sense or 
scramble sequence and without probes. 
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3.2. Combined ISH and IHC at an Electron Microscopy Level 

Briefly, in these experiments hybridization was carried out using biotinylated oligonucleotide 
probes. The hybridized signals of mRNA were detected with streptavidin-biotin complex and 
horseradish peroxidase, and then developed with diaminobenzidine (DAB) and H2O2. After 
osmification and dehydration with ethanol, tissue sections were embedded in Epon resin. After 
polymerization, ultrathin sections were attached to nickel grids. Subsequently, the immunoreactivity of 
the targeted protein was retrieved by 10% H2O2 or with 4% sodium periodate. Immunohistochemical 
staining was carried out using primary antibody, and the immunoreaction was visualized with 20 nm 
protein A colloidal gold. The ultrathin sections were inspected under electron microscopy. 

3.3. Combined ISH and IHC Using Qdots for the Detection of mRNA and Protein 

The detailed method was described in our previous report [32]. Hybridization was carried out using 
biotinylated oligonucleotide probes, and subsequently, immunohistochemical staining was carried out 
using primary antibody. Both the hybridized signals of mRNA and the immunopositive reactions were 
detected with different sized Qdots (Quantum Dot Corp.) that had different emission peaks. The tissue 
sections were inspected under CLSM. 

3.4. Functional Analyses of rab3B in Pituitary Cells and the SNARE System and rab3b in Pituitary Cells 

The detailed method was described in our previous report [34,35]. Briefly, the pituitary glands were 
removed from GHRH-injected rats, SRIF-injected rats, and untreated control rats. Routinely processed 
paraffin sections were used for light microscopic immunohistochemical double staining for rab3B and 
SNAP-25, and for rab3B and syntaxin. For subcellular analyses of SNAP-25, syntaxin and rab3B, the 
tissue sections were examined under CLSM. The immunoreactions for SNAP-25 and syntaxin 
developed by DAB were observed under CLSM with the transmittance mode, and rab3B 
immunoreactions developed by alkaline phosphatase (ALP)-Fuchsin were observed under CLSM with 
the confocal mode. 

3.5. Intracellular Transport and Secretion of EYFP-GH and Synergistic Dynamics of rab3B and GH in 
Porosome 

The details of the construct of EYFP-GH were and establishment of stable GH3 cell expressing 
described in our previous report [36]. The GH-EYFP fusion construct pCMV-Sig- EYFP-GH-1 was 
derived from pEYFP-N1 (Clontech Laboratories, Inc.) and contained a sequence encoding the rat GH 
signal peptide (1 to 26 in the rat GH amino-acid sequence) and the EYFP-coding segment, followed by 
another rat GH coding sequence (27 to 217 in the rat GH amino-acid sequence). GH3 cells were 
transfected with plasmid DNA in low serum Opti-MEM using lipofectamine 2000 (Invitrogen Corp.) 
for 4–5 h. The GH3 cell transfected with pCMV- sig- EYFP-GH-1 had secretory granules that emitted 
yellow color in the cytoplasm. The expression of EYFP-GH protein was confirmed by western blotting 
as described in our previous report [36]. Cells were incubated with culture medium of high K  
60 mEq/L concentration and observed under CLSM. 
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To investigate the synergistic dynamics of rab3B and GH in the porosome, we have constructed rat 
rab3B-enhanced cian fluorescein protein (ECFP) plasmid for transfection of GH3 cell [37]. A cDNA 
fragment encoding rat rab3B was amplified by RT-PCR and cloned in-frame into the EcoRI/BamHI 
sites of pECFP-N1 (Clontech Laboratories, Inc.), which expresses rab3B-ECFP fusion proteins in the 
mammalian cell. Plasmids were purified using Qiagen midi-prep kit (Qiagen GmbH), and were 
verified by nucleotide sequencing. Transfection of GH3 cells was performed using lipofectamine 2000 
(Invitrogen Corp.). Cells were observed under CLSM for the inspection of the dynamics of EYFP-GH 
and ECFP-rab3B. 

4. Conclusions 

For two- or three- dimensional imagings of subcellular localization of pituitary hormone and its 
mRNA, both EM-ISH&IHC and CLSM observation using Qdots are essential. CLSM observation of 
rab3B and SNARE proteins such as SNAP-25 and syntaxin revealed that both rab3B and SNARE 
system proteins play important roles and work together as the exocytotic machinery in anterior 
pituitary cells. Experimental cell line transfected with EYFP-linked pituitary hormone is very useful 
for the inspection of intracellular transport and secretion of pituitary hormone. These three methods 
from conventional immunohistochemistry and fluorescein imaging enable us to visualize consecutively 
the process of transcription, translation, transport, and secretion of anterior pituitary hormone. 
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