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Abstract: Fungi fibrinolytic compound 1 (FGFC1) is a rare marine-derived compound that can
enhance fibrinolysis both in vitro and in vivo. The fibrinolytic activity characterization of FGFC1
mediated by plasminogen (Glu-/Lys-) and a single-chain urokinase-type plasminogen activator
(pro-uPA) was further evaluated. The binding sites and mode of binding between FGFC1 and
plasminogen were investigated by means of a combination of in vitro experiments and molecular
docking. A 2.2-fold enhancement of fibrinolytic activity was achieved at 0.096 mM FGFC1, whereas
the inhibition of fibrinolytic activity occurred when the FGFC1 concentration was above 0.24 mM.
The inhibition of fibrinolytic activity of FGFC1 by 6-aminohexanoic acid (EACA) and tranexamic
acid (TXA) together with the docking results revealed that the lysine-binding sites (LBSs) play a
crucial role in the process of FGFC1 binding to plasminogen. The action mechanism of FGFC1
binding to plasminogen was inferred, and FGFC1 was able to induce plasminogen to exhibit an open
conformation by binding through the LBSs. The molecular docking results showed that docking
of ligands (EACA, FGFC1) with receptors (KR1–KR5) mainly occurred through hydrophilic and
hydrophobic interactions. In addition, the binding affinity values of EACA to KR1–KR5 were −5.2,
−4.3, −3.7, −4.5, and −4.3 kcal/moL, respectively, and those of FGFC1 to KR1–KR5 were −7.4, −9.0,
−6.3, −8.3, and −6.7 kcal/moL, respectively. The findings demonstrate that both EACA and FGFC1
bound to KR1–KR5 with moderately high affinity. This study could provide a theoretical basis for the
clinical pharmacology of FGFC1 and establish a foundation for practical applications of FGFC1.

Keywords: FGFC1; pro-uPA; plasminogen; molecular docking; fibrinolytic properties

1. Introduction

Plasminogen is a protein with a molecular weight of 92 kDa composed of 791 amino
acids, exhibiting a concentration of approximately 2 µM in total human plasma [1,2]. Plas-
minogen is an inactive form of plasmin, which degrades fibrin and plays a key role in the
fibrinolytic system [3,4]. It is activated into plasmin as a result of cleavage between Arg561
and Val562 by tissue-type plasminogen activator (tPA) or urokinase-type plasminogen
activator (uPA) [5,6]. Plasminogen adopts two conformations, i.e., closed and open. The
native circulating Glu-plasminogen, which consists of seven distinct domains (a Pan-apple
domain (PAp), five kringle domains (KR1–KR5, each comprising around 80 amino acid
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residues), and a serine protease domain (SP)), adopts a closed conformation [7–9]. The
open conformation, which occurs through ready activation by plasminogen activators, can
be formed when the kringle domains interact with fibrin or cell surface receptors [10–12].
Studies by Law et al. suggest that the lysine-binding sites (LBSs) of the kringle domains are
essential for the interaction between plasminogen and fibrin or cell surface receptors [9,13].
6-Aminohexanoic acid (EACA) and tranexamic acid (TXA) are lysine analogues that act as
antifibrinolytic drugs. They compete with fibrin or cell surface receptors for binding to the
LBSs of plasminogen, resulting in an abnormal change in plasminogen conformation, thus
preventing the process of plasminogen activation [14,15]. The removal of PAp results in
the formation of Lys-plasminogen. However, this is different from the open conformation,
which is formed via contact with fibrin or cell surface receptors [16–18].

Fungi fibrinolytic compound 1 (FGFC1, 2,5-bis-[8-(4,8-dimethyl-nona-3,7-dienyl)-5,7-
dihydroxy-8-methyl-3-keto-1,2,7,8-tertahydro-6H-pyran[a]isoindol-2-yl]-pentanoic acid),
is a rare compound with a molecular weight of 869 Da isolated from the culture of marine
fungi Stachybotrys longispora FG216 (CCTCCM 2012272). FGFC1 is a thrombolytic agent
without hemorrhagic risk that can degrade fibrin both in vitro and in vivo. The pharma-
cokinetics of FGFC1 in Wistar rats indicated that FGFC1 becomes quickly distributed in
most tissues but is not distributed in the brain. FGFC1 (10 mg/mL) could dissolve most of
the pulmonary thrombi when used to treat Wistar rats. FGFC1 is a potential drug for the
treatment of thrombosis [19–21]. Furthermore, FGFC1 possesses fibrinolytic activity mainly
through influencing the secondary and tertiary structure of plasminogen, enabling its
activation [22]. Accordingly, the key target of FGFC1 is plasminogen. The enzyme kinetic
parameters of FGFC1 were also determined [23]. However, the fibrinolytic characterization
of FGFC1 requires further research. Currently, there remain questions to be answered.
Which sites of plasminogen bind to FGFC1? How does the conformation of plasminogen
change after binding to FGFC1? EACA inhibits Plg binding by competing with fibrin or cell
surface receptors for the lysine-binding sites (LBSs). According to Takayasu et al., the levels
of fibrin binding of 125I-Glu-Plg and 125I-Lys-Plg were increased by staplabin at the same
concentration. In both cases, binding was inhibited by EACA, suggesting that the activation
process of plasminogen involves LBSs [24–26]. On the basis of the above results, we aimed
to measure the fibrinolytic activity of FGFC1 in the presence of EACA and TXA. Molecular
docking is a powerful tool to predict the binding mode and binding sites between a protein
and a small molecule. AutoDock Vina is a molecular docking program for protein–ligand
docking with high accuracy and computation speed. AutoDock Vina computes the best
conformation and placement of ligands. Ligands are ranked on the basis of their binding
ability [27,28]. The determination of binding sites and the binding mode between FGFC1
and plasminogen is important for exploring the mechanism of their interaction.

In this study, we constructed a fibrinolytic system composed of plasminogen (PLG)
and pro-uPA in vitro on the basis of previous studies to evaluate the fibrinolytic charac-
terization of FGFC1 mediated by plasminogen and pro-uPA. In addition, the fibrinolytic
system was used to investigate the binding sites and mode of binding between FGFC1
and plasminogen, thereby inferring the mechanism of their interaction. These findings are
significant for studying the in vivo pharmacology of FGFC1.

2. Results
2.1. Fibrinolytic Characterization of FGFC1
2.1.1. The Role of Pro-uPA in the Fibrinolytic Activity of FGFC1

In general, fibrinolytic activity reached a maximum between 20 and 40 min (Figure 1A).
The fibrinolytic activity increased approximately linearly with pro-uPA concentration,
showing 7.7-fold enhancement (4.8 × 10−3 to 37.1 × 10−3 min−1) from 0.45 to 18 nM
(Figure 1B). The addition of pro-uPA promoted the conversion of plasminogen to plasmin;
additionally, more pro-uPA was activated to uPA with the increase in plasmin.
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Figure 1. The role of the single-chain urokinase-type plasminogen activator (pro-uPA) in the fibrinolytic activity of fungi
fibrinolytic compound 1 (FGFC1). Plot of absorbance at 405 nm (A405) versus time (A) and the values of Kn (B) at different
pro-uPA concentrations (0–18 nM). The reaction was incubated at 37 ◦C and measured every 5 min for 120 min. The results
are expressed as the mean ± SD performed in triplicate. The concentration of Glu-plasminogen and FGFC1 in the reaction
system were 40 nM and 0.048 mM, respectively.

2.1.2. The Role of Glu-Plasminogen in the Fibrinolytic Activity of FGFC1

The time required to achieve maximum reaction rate was shortened as the Glu-
plasminogen concentration increased (Figure 2A). From 2 to 80 nM, Glu-plasminogen
promoted the fibrinolytic activity in a dose-dependent manner until saturation was reached.
The fibrinolytic activity was enhanced 5.2-fold (5.2 × 10−3 to 26.8 × 10−3 min−1) with an
increase in Glu-plasminogen concentration from 2 to 80 nM (Figure 2B). At high concentra-
tions of Glu-plasminogen, there was increased activation of plasmin, which then acceler-
ated the conversion of pro-uPA to uPA. However, this effect stabilized at Glu-plasminogen
concentrations higher than 16 nM.

Figure 2. The role of Glu-plasminogen in the fibrinolytic activity of FGFC1. Plot of A405 versus time (A) and the values of
Kn (B) at different Glu-plasminogen concentrations (0–80 nM). The reaction was incubated at 37 ◦C and measured every
five minutes for 120 min. The results are expressed as the mean ± SD, performed in triplicate. The concentration of pro-uPA
and FGFC1 in the reaction system were 9 nM and 0.018 mM, respectively.
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2.1.3. The Fibrinolytic Characterization of FGFC1 Mediated by Pro-uPA and
Glu-Plasminogen

As shown in Figure 3, at concentrations of FGFC1 up to 0.24 mM, FGFC1 promoted
fibrinolytic activity; however, any further increase in concentration had no effect. In
particular, when the FGFC1 concentration was below 0.096 mM, fibrinolytic activity was
enhanced by FGFC1 in a dose-dependent manner. From 0.096 to 0.24 mM, the promoting
effect of FGFC1 declined in a dose-dependent manner. The fibrinolytic activity reached its
maximum and showed a 2.2-fold enhancement at 0.096 mM (Figure 3B).

Figure 3. The fibrinolytic characterization of FGFC1 mediated by pro-uPA and Glu-plasminogen. Plot of A405 versus time
(A) and the values of Kn (B) at different FGFC1 concentrations (0–0.36 mM). The reaction was incubated at 37 ◦C and
measured every five min for 120 min. The results are expressed as the mean ± SD, performed in triplicate. The concentration
of pro-uPA and Glu-plasminogen in the reaction system were 9 nM and 4 nM, respectively.

The data indicate that the effect of FGFC1 on Glu-plasminogen was divided into two
aspects—activation and inhibition. A relatively low FGFC1 concentration (<0.096 mM)
facilitated the ready activation of Glu-plasminogen to plasmin. However, beyond this
concentration, excess FGFC1 potentially acts as a Glu-plasminogen inhibitor. As the FGFC1
concentration increased beyond 0.24 mM, the inhibitory action of FGFC1 became dominant,
thereby preventing fibrinolytic activity.

2.1.4. The Fibrinolytic Characterization of FGFC1 Mediated by Pro-uPA
and Lys-Plasminogen

To investigate whether the effect of FGFC1 on Glu-plasminogen resulted in a con-
version of Glu-plasminogen to Lys-plasminogen, we substituted Glu-plasminogen with
Lys-plasminogen to measure the fibrinolytic activity of FGFC1. As shown in Figure 4,
FGFC1 promoted fibrinolytic activity even when mediated by Lys-plasminogen. A con-
centration of 0.24 mM still distinguished between activation and inhibition of fibrinolytic
activity. The fibrinolytic activity of FGFC1 was again separable into two phases. When
the FGFC1 concentration was below 0.072 mM, fibrinolytic activity was enhanced in a
dose-dependent manner. From 0.096 to 0.24 mM, the promoting effect of FGFC1 declined
in a dose-dependent manner. The fibrinolytic activity also showed a 2.2-fold increase at
0.072 mM (Figure 4B).
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Figure 4. The fibrinolytic characterization of FGFC1 mediated by pro-uPA and Lys-plasminogen. Plot of A405 versus
time (A) and the values of Kn (B) at different FGFC1 concentrations (0–0.36 mM). The reaction was incubated at 37 ◦C
and measured every five minutes for 120 min. The results are expressed as the mean ± SD, performed in triplicate. The
concentration of pro-uPA and Lys-plasminogen in the reaction system were 9 and 4 nM, respectively.

Compared with Glu-plasminogen, the fibrinolytic activity mediated by Lys-plasmin
ogen was stronger when the FGFC1 concentration was below 0.048 mM, and reached
its maximum activity at approximately 0.072 mM. Plasmin generation was higher with
lys-plasminogen as would be expected and a similar trend was observed in the fibrinolytic
activity of FGFC1 with both Glu- and Lys-plasminogen. These data show that FGFC1
at a particular range of concentrations may be used to stimulate the conversion of Glu-
plasminogen to Lys-plasminogen.

2.2. Binding Sites and Mode of Binding between FGFC1 and Plasminogen
2.2.1. The Effect of EACA, TXA, and Soybean Trypsin Inhibitor (SBTI) on the Fibrinolytic
Activity of FGFC1

As shown in Table 1, the fibrinolytic activity of FGFC1 was promoted within a certain
concentration range (0–0.18 mM), reaching its peak at 0.096 mM. However, at concentrations
higher than 0.18 mM, the addition of EACA, TXA, and SBTI inhibited the fibrinolytic
activity. EACA (3.6–216 mM) and TXA (0.72–21.6 mM) remarkably inhibited the fibrinolytic
activity of FGFC1, thus confirming that FGFC1 enhances fibrinolytic activity through
binding of plasminogen. The activation of plasminogen by FGFC1 was inhibited by EACA
and TXA, strongly indicating the participation of LBSs. This occurred in a dose-dependent
manner for concentrations of EACA and TXA ranging from 3.6 to 21.6 mM and from 0.72
to 4.8 mM, respectively, with the effect stabilizing beyond these ranges. The half maximal
inhibitory concentration (IC50) values of EACA and TXA were approximately 9.6 and
1.44 mM, respectively.

Table 1. The effect of different 6-aminohexanoic acid (EACA), tranexamic acid (TXA), and soybean trypsin inhibitor (SBTI)
concentrations on the fibrinolytic activity of FGFC1.

FGFC1 FGFC1 + EACA FGFC1 + TXA FGFC1 + SBTI

Concentration
(mM)

Fibrinolytic
Activity (%)

Concentration
of EACA

(mM)
Fibrinolytic
Activity (%)

Concentration
of TXA (mM)

Fibrinolytic
Activity (%)

Concentration
of SBTI (mM)

Fibrinolytic
Activity (%)

0 100 0 100 0 100 0 100
0.048 139.36 ± 4.6 3.6 82.35 ± 8.7 0.72 86.19 ± 4.5 5 65.83 ± 1.2
0.072 210.64 ± 4.3 7.2 71.32 ± 1.5 1.08 64.55 ± 8.9 10 53.24 ± 1.5
0.096 218.09 ± 6.8 9.6 54.41 ± 5.4 1.44 51.87 ± 1.9 20 29.86 ± 3.9
0.12 207.45 ± 5.8 12 40.44 ± 0.1 2.4 23.88 ± 2.1 40 21.58 ± 2.3
0.18 134.04 ± 4.5 21.6 15.44 ± 1.9 4.8 8.21 ± 0.5 70 11.15 ± 0.6
0.24 98.94 ± 4.1 72 6.62 ± 2.3 14.4 4.10 ± 0.6 100 6.83 ± 2.6
0.36 74.47 ± 3.4 216 5.15 ± 2.5 21.6 3.36 ± 0.9 120 3.96 ± 0.5

The concentration of FGFC1 for the FGFC1 + EACA, FGFC1 + TXA, and FGFC1 + SBTI assays was 0.12 mM.
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EACA and TXA competed with FGFC1 for the LBSs of the kringle domains, blocking
the binding between FGFC1 and LBS, thereby inhibiting the activation of plasminogen.
EACA and TXA partially bound to LBSs at low concentrations (<21.6 and <4.8 mM,
respectively), which was consistent with the incomplete inhibition of the fibrinolytic
activity of FGFC1. When the concentrations of EACA and TXA were beyond 72 and
14.4 mM, respectively, the LBSs were almost completely occupied; therefore, the fibrinolytic
activity of FGFC1 was almost completely inhibited (Figure 5A,B). In addition, we measured
fibrinolytic activity in the presence of SBTI (trypsin inhibitor from Glycine max) to test
its inhibitory effect. As shown in Table 1, its inhibitory effect (5–120 mM) was relatively
stronger than that of EACA and TXA. When the concentration of SBTI ranged from 5 to
70 mM, the fibrinolytic activity of FGFC1 was inhibited in a dose-dependent manner, and
stabilized beyond this point (Table 1). The results show that SBTI inhibits the activity of
plasmin, resulting in a decrease in the fibrinolytic activity of FGFC1. The inhibitory effect
of SBTI was 1000 times stronger than that of EACA (Figure 5C).

Figure 5. The fibrinolytic activity of FGFC1 at different concentrations of EACA (0–216 mM) (A), TXA (0–21.6 mM) (B), and
SBTI (0–120 µM) (C). The reaction was incubated at 37 ◦C and measured at 405 nm using a microplate reader every five
minutes for 120 min. Results are expressed as a percentage of the fibrinolytic activity in the absence of EACA, TXA, and SBTI.
The results are expressed as the mean ± SD, performed in triplicate. The concentration of FGFC1 for the FGFC1 + EACA,
FGFC1 + TXA, and FGFC1 + SBTI assays was 0.12 mM.



Molecules 2021, 26, 1816 7 of 20

2.2.2. Docking

To obtain more insight into the action mechanism of FGFC1’s interaction with the
five kringle domains (KR1–KR5), the docking of two ligands (EACA and FGFC1) with
KR1–KR5 was simulated. The results of EACA binding to KR1–KR5 were concordant with
previous NMR and X-ray diffraction experiments, suggesting that the parameters used for
AutoDock Vina calculations were appropriate [29–32].

The chemical structures of EACA and FGFC1 are shown in Figure 6.

Figure 6. Chemical structures of EACA (A) and FGFC1 (B).

The same protein orientation was used to compare the binding models of EACA and
FGFC1 to the same kringle domain. As shown in Figure 7, the binding position of FGFC1 to
KR1–KR5 partially overlapped with that of EACA according to a comparison and analysis
of their binding modes.
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Figure 7. The docking results of ligands (EACA and FGFC1) with kringle domains (KR1–KR5) (A–E). In each group, the docking
results of EACA (top) and FGFC1 (bottom) with KR1–KR5 are shown, along with the binding site (left) and amino acid residues
involved (right). The dotted lines represent hydrogen bonds between the ligand and amino acid residues. KR1–KR5 are shown in
surface representation, whereas EACA and FGFC1 are shown as sticks.

As shown in Figure 7 and Table 2, the molecular docking results identified hydrogen
bonding and hydrophobic interactions between the ligands (EACA, FGFC1) and receptors
(KR1–KR5). Two hydrogen bonds (3.05 and 3.27 Å) were formed between EACA and
residue Arg71 of KR1, in addition to strong hydrophobic interactions with residues Tyr64,
Asp55, Asp57, Tyr72, and Trp62. FGFC1 formed hydrogen bonds with residues Tyr64,
Arg71, His32, Pro68, Asp57, and Tyr74 of KR1, with bond lengths of 3.14, 3.13, 3.13, 3.14,
2.82, and 3.07 Å, respectively (Figure 7A).
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Two hydrogen bonds were formed between EACA and Arg70 of KR2 (3.20 and 3.04 Å)
in addition to hydrophobic interactions with Trp71, Trp61, Asp56, Asp54, and Phe63.
FGFC1 formed hydrogen bonds with residues Gly34, Asn55, and Lys39 of KR2, with bond
lengths of 2.94, 3.16, and 2.86 Å, respectively, along with strong hydrophobic interactions
involving Trp71, Asp54, Tyr35, Lys43, Pro53, Asn52, Glu7, Asn42, Phe40, Asp56, and
Trp61 (Figure 7B).

EACA formed two hydrogen bonds (3.07 Å and 3.28 Å) with Lys57 and Arg71 of
KR3, respectively, in addition to strong hydrophobic interactions with Arg36, His33, His64,
Trp72, and Trp62. FGFC1 formed three hydrogen bonds (3.11, 3.22, and 2.97 Å) with
residues Ser79, Ile77, and Gly4 of KR3, in addition to hydrophobic interactions with Asp81,
Leu2, Val17, Lys76, Tyr74, Cys75, Glu73, Trp72, Ala60, Arg59, and Thr5 (Figure 7C).

EACA formed three hydrogen bonds with Lys100 (2.97 Å) and Arg134 (2.82 and 3.30 Å)
of KR4 in addition to hydrophobic interactions with Trp135, Trp125, Asp119, Asp121, and
Phe127. Three hydrogen bonds were formed between FGFC1 and Thr94, Ser89, and Leu110
of KR4, with bond lengths of 3.00, 3.19, and 2.99 Å, respectively, in addition to strong
hydrophobic interactions with Ser92, Pro95, Thr129, Cys87, Gln88, Lys86, Asn113, Met112,
Thr111, Pro102, Thr101, Glu103, Met93, and Ser91 (Figure 7D).

EACA exhibited strong hydrophobic interactions with residues Tyr74, Asp55, Trp62,
Tyr72, Phe36, Tyr64, and Asp57 of KR5. FGFC1 formed hydrogen bonds with residues
Asn41 and Arg32 of KR5 with bond lengths of 2.97 and 2.93 Å, respectively, in addition
to strong hydrophobic interactions with Tr64, Leu71, Ile35, Trp62, Asp55, Phe36, Asp57,
Tyr72, Thr40, and Ser34 (Figure 7E).

The analysis results show that FGFC1 and EACA were located in the pocket of the
five kringle domains. According to the analysis of the binding modes, hydrogen bonds
and hydrophobic carbon–hydrogen interactions played a significant role in the binding of
both FGFC1 and EACA to KR1–KR5.

Table 2. Residues involved in the docking of EACA and FGFC1 to KR1–KR5 of plasminogen.

Domain
EACA FGFC1

Residues in Hydrophobic
Interactions

Residues in Hydrophilic
Interactions

Residues in Hydrophobic
Interactions

Residues in Hydrophilic
Interactions

KR1 Asp55, Asp57, Tyr64, Tyr72,
Trp62 Arg71, Arg35

Pro58, Pro31, Trp62, Asp55,
Arg35, Arg33, Tyr72, Lys70,

Glu69

His32, Arg71, Tyr64, Tyr74,
Pro68, Asp57

KR2 Asp54, Asp56,
Trp61, Trp71, Phe63 Arg70

Trp71, Asp54, Tyr35, Lys43,
Pro53, Asn52, Glu7, Asn42,

Phe40, Asp56, Trp61
Lys39, Asn55, Gly34

KR3 Arg36, His33, His64,
Trp72, Trp62 Arg71, Lys57

Asp81, Leu2, Val17, Lys76,
Tyr74, Cys75, Glu73, Trp72,

Ala60, Arg59, Thr5
Ser79, Gly4, Ile 77

KR4 Trp125, Trp135, Asp119,
Asp121, Phe127 Lys100, Arg134

Ser92, Ser91, Pro95, Thr129,
Cys87, Lys86, Asn113,

Glu103, Met112, Met93,
Gln88, Thr111, Thr101,

Pro102

Thr94, Ser89, Leu110

KR5 Tyr72, Tyr74, Tyr64, Asp55,
Asp57, Trp62, Phe36 -

Asp57, Asp55, Tyr64, Tyr72,
Leu71, Ile35, Trp62, Phe36,

Thr40, Ser34
Asn41, Arg32

The binding affinity values for the most appropriate binding modes are shown in
Table 3. The values obtained for EACA to KR1–KR5 were −5.2, −4.3, −3.7, −4.5, and
−4.3 kcal/mol, respectively, whereas those for FGFC1 to KR1–KR5 were −7.4, −9.0, −6.3,
−8.3, and −6.7 kcal/moL, respectively. The docking results showed that both EACA
and FGFC1 bound to KR1–KR5 with moderately high binding affinity. In general, the
binding affinity of FGFC1 to KR1–KR5 was stronger than that of EACA. These results may
help to explain observations in the previous experiment whereby fibrinolytic activity was
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enhanced for equal concentrations of FGFC1 and EACA. The binding affinity of FGFC1
to KR2 and EACA to KR1 was strongest, suggesting that KR2 and KR1, respectively, are
central to their activation of plasminogen.

Table 3. The binding affinity values of the most appropriate binding modes obtained from AutoDock.

Ligand Receptor Binding Affinity (kcal/mol)

EACA KR1 −5.2
EACA KR2 −4.3
EACA KR3 −3.7
EACA KR4 −4.5
EACA KR5 −4.3
FGFC1 KR1 −7.4
FGFC1 KR2 −9.0
FGFC1 KR3 −6.3
FGFC1 KR4 −8.3
FGFC1 KR5 −6.7

Note: The docking scoring function of AutoDock Vina worked well to rank binding poses. However, it is not
necessarily related to the binding affinity between ligand and receptor.

The present study also investigated the interaction model between the proteins and
compounds at the molecular level. Compound FGFC1 was conjugated to plasminogen with
a binding affinity of −8.0 kcal/moL, and the theoretical binding mode is shown in Figure 8.

Figure 8. Schematic diagram of optimal conformational interaction between FGFC1 and plasminogen. (A) Binding site and
(B) the 3D model of FGFC1 docking with protein.

It can be seen from Figure 8 that the active pocket of compound FGFC1 presented
a compact binding mode. FGFC1 formed hydrogen bonds with amino acid residues
Glu39 (2.6 Å), Thr41 (3.3 and 3.4 Å), and Arg43 (3.4 Å). These interactions gave rise to a
stable complex.

3. Discussion

In the present work, we constructed the fibrinolytic system and characterized the
fibrinolytic activity of FGFC1. The binding sites and mode of binding between FGFC1
and plasminogen were investigated using a combination of experiments and bioinformatic
docking. It was first discovered that a relatively low FGFC1 concentration enhances
fibrinolytic activity, whereas excess FGFC1 is inhibitory in vitro, in contrast with results of
previous research [21,23]. These findings are instructive for the use of FGFC1 in vivo.

The conformation of Glu-plasminogen (Glu-Plg) differs from that of Lys-plasminogen
(Lys-Plg), and Glu-Plg has a closed conformation. In intact plasminogen, cleavage between
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Lys77 and Lys78 results in the removal of the PAp domain. Lys-Plg lacks the PAp domain
and, as such, has an open conformation. Compared with the Glu-Plg-mediated fibrinolytic
activity of FGFC1, the Lys-Plg-mediated fibrinolytic activity reached its maximum at a
lower concentration of FGFC1 (approximately 0.072 mm) (Figure 4). The results show
that different conformations led to different activity. This may have been due to the
different conformations resulting in different docking sites. The activation mechanism
of FGFC1 to Glu-plasminogen may involve the conversion of Glu-plasminogen to Lys-
plasminogen. The docking results of FGFC1 and KR1–KR5 show that the participation
of LBSs is essential for the activation of plasminogen by FGFC1. Only the LBS of KR1
is unprotected, and KR1 mediates the initial interaction between plasminogen and the
C-terminal lysine moiety on the cell surface or fibrin. KR5 peeling away from the PAp
may be transiently exposed in closed plasminogen; hence, it can interact with an external
lysine, triggering a conformational change. Notably, Lys50 of the PAp domain interacts
with Asp518 of KR5, forming a strong salt bridge, which is a key interaction. Arg70 of the
PAp domain coordinates KR5 via interaction with Asp534 [9,13,14,33]. Surprisingly, our
results for docking between FGFC1 and KR5 showed that the group of FGFC1 interacted
with Asp518 and Asp534, forming hydrogen bonds (Figure 7E). The results of molecular
docking between FGFC1 and plasminogen showed that FGFC1 formed stable complexes
via hydrogen bonds with Thr41, Glu39, and Arg43. This was consistent with the docking
between FGFC1 and KR5, which formed hydrogen bonds through interactions between
the group of FGFC1 and Asp (Figure 8). The docking results show that the conformation of
plasminogen may be changed.

The mechanism of FGFC1–plasminogen interaction was inferred from a comprehen-
sive analysis of previous studies and current results. The main points are described below.
When the concentration of FGFC1 is relatively low, the function of FGFC1 may mimic the
cell surface or fibrin. The mechanism of plasminogen activation by FGFC1 is shown in
Figure 9. FGFC1 initially binds to the LBS of KR1, resulting in the peeling of KR5 from
PAp and its exposure in closed plasminogen. Subsequently, FGFC1 mainly interacts with
Asp518 and Asp534 of the exposed KR5, triggering a conformational change and structural
rearrangement. At this moment, the additional LBSs of the kringle domains are exposed,
allowing the PAp domain to move. Thus, FGFC1 can bind to additional LBSs, and a
series of interactions occur with the kringle domains, leading to the formation of an open
conformation that is readily activated by plasminogen activators. By contrast, when the
concentration of FGFC1 is relatively high, FGFC1 may functionally mimic EACA or TXA
due to having similar functional groups (carboxyl group and NE sidechain) and binding
sites for plasminogen. Excess FGFC1 may bind specific sites of plasminogen, resulting in
the formation of an abnormal conformation, which inhibits the activation of plasminogen.

The complete plasminogen consists of seven different domains (a Pan-apple domain
(PAp), five cyclic domains (KR1–KR5), and a serine protease domain (SP)). Serine protease
plays an important role in digestion, coagulation, and the complement system, and is
mainly regulated by protease inhibitors. Serine protease inhibitors (serpins) can change
from a natural form to a polymorphic type, showing extensive flexibility. Research findings
that the reactive site and β-sheet polymorphism appear to be coupled in serpins may
account for the extreme stability of serpin–proteinase complexes through the insertion of
the reactive site strand into a β-sheet [34]. In this study, we confirmed the existence of poly-
morphism via molecular docking and fibrinolytic activity. In conclusion, the mechanism
of the interaction between FGFC1 and Glu-plasminogen may be related to its conver-
sion to Lys-plasminogen and the existence of polymorphism. FGFC1 interacted with the
LBSs in plasminogen via hydrogen bonds. Overall, this study provides a theoretical basis
for the clinical pharmacology of FGFC1 and a reference for the development of novel
plasminogen activators.
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Figure 9. A model of the mechanism of plasminogen activation by FGFC1.

4. Materials and Methods
4.1. Materials

Glu-plasminogen, Lys-plasminogen, single-chain urokinase-type plasminogen activa-
tor (pro-uPA), trypsin inhibitor from Glycine max (SBTI), 6-aminohexanoic acid (EACA),
tranexamic acid (TXA), and bovine serum albumin (BSA) were purchased from Sigma-
Aldrich (Shanghai, China). The chromogenic substrate S-2444 for urokinase-type plas-
minogen activator (uPA) was purchased from BioMed (Shanghai, China). Absorbance
was measured using a microplate reader (SH-1000 Lab, Corona Electric, Ibaraki, Japan).
Fungi fibrinolytic compound 1 (FGFC1) was extracted and purified in our laboratory
(purity > 98%). All other chemicals were of analytical grade.

4.2. Fibrinolytic Characterization of FGFC1

In this experiment, the fibrinolytic activity of FGFC1 was expressed as Kn (the slope
of each curve) and determined by the linear regression between absorbance and time. The
content of uPA was represented by the absorbance of hydrolytic product p-nitroaniline
(p-NA) in S-2444 at 405 nm. The fibrinolytic reaction system was carried out as previously
described with slight modifications on the basis of the following feedback activation
reactions [21,35,36]:

(Reaction 1): plasminogen activated to plasmin by pro-uPA;
(Reaction 2): pro-uPA activated to uPA by plasmin;
(Reaction 3): substrate S-2444 hydrolyzed by uPA.
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4.2.1. The Role of Pro-uPA in the Fibrinolytic Activity of FGFC1

The reaction mixture contained pro-uPA (0.45, 1.8, 3.6, 4.5, 9.0, and 18 nM), Glu-
plasminogen (40 nM), FGFC1 (0.048 mM), S-2444 (0.4 mM), BSA (10 mg/mL), and Tris-HCl
buffer (50 mM, 100 mM NaCl, pH 7.4 at 25 ◦C). The reaction mixture was measured in a
96-well plate at 37 ◦C for 120 min. The time–absorbance curves were determined at 405 nm
using a microplate reader. The fibrinolytic activity of different pro-uPA concentrations was
obtained from the time–absorbance curves.

4.2.2. The Role of Glu-Plasminogen in the Fibrinolytic Activity of FGFC1

The reaction mixture contained Glu-plasminogen (2, 4, 8, 16, 40, and 80 nM), pro-uPA
(9 nM), FGFC1 (0.018 mM), S-2444 (0.4 mM), BSA (10 mg/mL), and Tris-HCl buffer (50 mM,
100 mM NaCl, pH 7.4 at 25 ◦C). The reaction mixture was measured in a 96-well plate
at 37 ◦C for 120 min. The time–absorbance curves were determined at 405 nm using a
microplate reader. The fibrinolytic activity of different Glu-plasminogen concentrations
was obtained from the time–absorbance curves.

4.2.3. The FGFC1 Fibrinolytic Characterization by Pro-uPA and Glu-/Lys-Plasminogen

The reaction mixture contained FGFC1 (0.048–0.36 mM), Glu-plasminogen (4 nM), or
Lys-plasminogen (4 nM), pro-uPA (9 nM), S-2444 (0.4 mM), BSA (10 mg/mL), and Tris-HCl
buffer (50 mM, 100 mM NaCl, pH 7.4 at 25 ◦C). The reaction mixture was incubated in a
96-well plate at 37 ◦C for 120 min. The time–absorbance curves were determined at 405 nm
using a microplate reader. The fibrinolytic activity of different FGFC1 concentrations was
obtained from the time–absorbance curves.

4.3. The Binding Sites and Binding Mode between FGFC1 and Plasminogen
4.3.1. The Effect of EACA, TXA, and SBTI on the Fibrinolytic Activity of FGFC1

FGFC1 (0.12 mM), pro-uPA (9 nM), Glu-plasminogen (4 nM), S-2444 (0.4 mM), BSA
(10 mg/mL), and Tris-HCl buffer (50 mM, 100 mM NaCl, pH 7.4 at 25 ◦C) were incubated in
the absence and presence of EACA, TXA, and SBTI. The concentrations of EACA, TXA, and
SBTI ranged from 3.6 to 216 mM, 0.72 to 21.6 mM, and 5 to 120 µM, respectively. All reaction
mixtures were incubated in a 96-well plate at 37 ◦C for 120 min. The time–absorbance
curves were determined at 405 nm using a microplate reader (SH-1000 Lab, Corona Electric,
Ibaraki, Japan). The fibrinolytic activity of FGFC1 in the presence/absence of EACA, TXA,
and SBTI was obtained from the time–absorbance curves.

4.3.2. Docking

Models of bound zwitterionic form of EACA and carboxylate form of FGFC1 to
receptors (KR1–KR5, plasminogen protein) were calculated using AutoDock Vina 1.1.2.
Structures for KR1–KR5 were obtained from the Protein Data Bank (PDB), with codes
4CIK, 6DCM, 2L0S, 1KRN, and 2KNF, respectively. The three-dimensional structures of
EACA and plasminogen protein were downloaded from ZINC database (http://zinc.
docking.org/ (accessed on 24 March 2021)) and the Research Collaboration for Structural
Bioinformatics (RCSB) PDB (www.rcsb.org (accessed on 24 March 2021)), respectively, and
the three-dimensional structure of FGFC1 was completed using ChemOffice Professional
19. The small molecules EACA and FGFC1 were modeled as zwitterions and carboxylate
respectively with ChemOffice Professional 19.

The molecular docking steps are described below.

Step 1. Ligand Pretreatment

Energy minimization of the small molecules were done using ChemBio3D Ultra 14.0
and saved in mol2 format. Further, the small-molecule compounds EACA and FGFC1 were
selected as ligands after adding hydrogen, calculating charges, and distributing charges
with Autodock Tools 1.5.6. Then, the rotatable key of ligands was set before saving them in
pdbqt format using Autodock Tools 1.5.6.

http://zinc.docking.org/
http://zinc.docking.org/
www.rcsb.org
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Step 2. Receptor Pretreatment

For receptor preparation, PyMOL software was used to remove original ligand and
all water molecules of the protein molecule. Then, the acceptor was defined as the receptor
and saved in pdbqt format after adding hydrogens, calculating charges, and distributing
charges using Autodock Tools 1.5.6.

Step 3. Preparation of Docking Parameters

Small molecules were imported into Autodock Tools 1.5.6 to set the size of the box.
The original protein ligand was used as the center of the docking box. In the absence of
an original ligand, the whole protein was used as the docking area. The size of the lattice
box was set to 80 × 80 × 80 (with the spacing of each lattice equal to 0.375 Å). In order to
increase the accuracy of calculation, we set the exhaustiveness parameter to 20.

Step 4. Running Molecular Docking and Output Results

In this project, Autodock Vina 1.1.2 was used for semiflexible docking, and nine
conformations were generated. The conformation with the best binding affinity was
selected as the final docking pose.

Step 5. Analysis of Docking Results for EACA and FGFC1 to KR1–KR5

The conformation with the lowest binding energy was selected for docking mode
analysis. The docking results were visualized using Ligplot and PyMOL.

Note: In the above molecular docking method, receptors (KR1–KR5, plasminogen
protein) and FGFC1 were regarded as grid and flexible, respectively. There were a variety
of torsions in sampling for FGFC1, so this semiflexible docking protocol had limitations.
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