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Microglia have been implicated in many degenerative eye disorders, including retinitis
pigmentosa, age-related macular degeneration, glaucoma, diabetic retinopathy, uveitis,
and retinal detachment. While the exact roles of microglia in these conditions are still being
discovered, evidence from animal models suggests that they can modulate the course of
disease. In this review, we highlight current strategies to target microglia in the eye and
their potential as treatments for both rare and common ocular disorders. These
approaches include depleting microglia with chemicals or radiation, reprogramming
microglia using homeostatic signals or other small molecules, and inhibiting the
downstream effects of microglia such as by blocking cytokine activity or phagocytosis.
Finally, we describe areas of future research needed to fully exploit the therapeutic value of
microglia in eye diseases.
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INTRODUCTION

First described by Pıó del Rıó-Hortega in the early 20th century, microglia are the resident immune
cells of the central nervous system (CNS), including the retina. In healthy eyes, microglia comprise
approximately 0.3-1.0% of retinal cells and perform a multitude of functions, such as immune
surveillance, synaptic refinement, neurotrophic support, and clearance of debris (1–4). Under
homeostatic conditions, retinal microglia primarily reside in the inner and outer plexiform layers
and possess a ramified morphology with long motile processes that dynamically monitor the ocular
environment (1, 2). However, in response to local injury, infection, or broader insults like hypoxia,
microglia can transition from their normal quiescent state to activated phenotypes hallmarked by
increased cytokine secretion and phagocytic activity (5–7).

Activation of microglia has been observed in virtually every major neurodegenerative disorder
(8, 9), as well as numerous degenerative and inflammatory diseases of the eye (10–13). Indeed,
microglia have been implicated in the progression of retinitis pigmentosa (RP), age-related macular
degeneration (AMD), glaucoma, diabetic retinopathy (DR), uveitis, and retinal detachment among
other ocular conditions (14–19) (Figure 1). While these diseases differ in their underlying etiologies,
they are all characterized by the loss of photoreceptors or retinal ganglion cells (RGCs), resulting in
deterioration of vision and, in some cases, blindness. It is possible that interventions targeting
org February 2022 | Volume 13 | Article 8435581
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microglia could alleviate photoreceptor and RGC death, thereby
helping patients preserve their sight.

At the same time, there is a growing appreciation that
microglia can also take on beneficial roles during eye disease.
In a handful of animal models, improved tools to experimentally
remove microglia have unexpectedly revealed these cells to be
neutral or even protective against degeneration (19–24).
Microglia may further exhibit distinct functions depending on
the stage and chronicity of the disorder, and microglial
populations at different physical locations in the eye might
behave differently. These complexities highlight the need for
equally nuanced treatment approaches to fully leverage the
therapeutic value of microglia.

In this review, we discuss strategies that could be used to
therapeutically target microglia and their potential to ameliorate
degenerative diseases of the eye. These include 1) depleting
microglia with small molecules or radiation, 2) reprogramming
microglia with signals that modify microglial activation, and
3) blocking the downstream effects of microglia by inhibiting
cytokine activity or phagocytosis (Figure 2). For each specific
approach, we evaluate data from pertinent animal models and
clinical trials, if available, to assess how the intervention might
perform in patients with different ocular conditions (Table 1).
Lastly, we propose several avenues of future research on
microglia that may lead to better therapies for eye disorders.
STRATEGIES TO TARGET MICROGLIA IN
EYE DISEASE

Depletion
Much of what we know about microglial function comes from
studies in which these cells were depleted. Early efforts to remove
microglia were made possible by the creation of CD11b-HSVTK
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transgenic mice, which express the herpes simplex virus-derived
thymidine kinase (HSVTK) suicide gene in CD11b-positive cells,
including microglia (25). However, it was not until the
identification of CX3CR1 as a marker for microglia and the
generation of CX3CR1CreER-DTR mice harboring the diphtheria
toxin receptor (DTR) gene that selective ablation of microglia
FIGURE 1 | Proposed mechanisms of microglia-mediated damage in degenerative eye diseases. Activated microglia may provide less robust neurotrophic support
and carry out excessive phagocytosis. They may also secrete pro-inflammatory cytokines, which in turn can induce the release of neurotoxins from resident glial cells
as well as recruit immune cells from outside of the eye.
FIGURE 2 | Strategies to target microglia in degenerative eye diseases.
Current options include 1) depleting microglia with small molecules or
radiation, 2) reprogramming microglia with signals that modify microglial
activation, and 3) blocking the downstream effects of microglia by inhibiting
cytokine activity or phagocytosis.
February 2022 | Volume 13 | Article 843558
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could be achieved (26, 27). While these transgenic methods have
enabled efficient elimination of microglia in mice, genetic
targeting of microglia in humans is not currently possible.
Alternative strategies for depleting microglia that could also be
used in patients include pharmacologic inhibitors and
irradiation, which are detailed below.

CSF1R Inhibitors
The most widely used method to deplete microglia in
experimental settings is inhibition of colony-stimulating factor
1 receptor (CSF1R), a membrane protein expressed by microglia
that is essential for their survival (28). This approach has largely
replaced other compounds used to remove macrophages, such as
clodronate liposomes, which have difficulty crossing the blood-
retina barrier and are less specific for microglia due to effects on
peripheral immune cells (23). When administered to mice, small
molecule inhibitors of CSF1R such as PLX3397 (pexidartinib)
and PLX5622 can eliminate up to 100% of retinal microglia in
one to two weeks (18, 20, 21, 29). Pexidartinib furthermore
has an established safety profile in humans, as it was recently
approved for the treatment of tenosynovial giant cell
tumors (30).

In several animal models, depletion of microglia with CSF1R
inhibitors has been shown to counter the progression of ocular
pathology. For instance, in mice treated with laser to induce
choroidal neovascularization (CNV), a hallmark of exudative
AMD, administration of PLX5622 led to significantly faster
resolution of lesions (29). Microglial ablation in mice with
PLX5622 also suppressed the development of experimental
autoimmune uveoretinitis (EAU), a model of human
autoimmune uveitis, although the outcome depended on the
timing of disease (18). Specifically, suppression was only
observed if PLX5622 was given during the early stages of EAU,
Frontiers in Immunology | www.frontiersin.org 3
suggesting that microglia are essential for the initiation of ocular
autoimmunity but subsequently play a more limited role.

Conversely, there are multiple models of eye disorders in
which CSF1R inhibitors have failed to demonstrate a therapeutic
benefit. In rd10 mice, which carry a mutation that causes
autosomal recessive RP (31), early genetic ablation of microglia
using a diphtheria toxin system improved the survival of rod
photoreceptors (32). However, in rd1 animals, which harbor a
more severe mutation in the same gene, microglia removal using
PLX3397 or PLX5622 did not alter the rate of photoreceptor
death (20–22). For RGCs, microglia depletion with PLX5622 had
no observable effect after optic nerve crush and failed to preserve
visual function in mice injected with microbeads to raise
intraocular pressure (IOP) (23, 24). When given before retinal
detachment in mice, PLX5622 also increased the number of
apoptotic photoreceptors (19), indicating that microglia during
acute retinal detachment protect against rather than promote
degeneration. Collectively, these studies suggest that in certain
conditions such as exudative AMD or early uveitis, microglia
may in fact be predominantly harmful. Nonetheless, for many
eye disorders, simply eliminating activated microglia will not be
sufficient to slow the course of the disease.

Irradiation
Forms of ionizing radiation such as gamma rays and X-rays are
routinely used in clinical settings to perform diagnostic imaging
and treat cancers. Coincidentally, exposure to ionizing radiation
can also result in microglia depletion. In mice, a single dose of
gamma radiation progressively eliminated an average of 75% of
retinal microglia after 70 days (33). Loss of microglia was likely
from apoptosis secondary to DNA double-strand breaks, as
has been observed for brain microglia following similar
irradiation (34).
TABLE 1 | Interventions targeting microglia supported by in vivo loss- or gain-of-function experiments.

Intervention RP AMD Glaucoma DR Uveitis RD

Depletion
CSF1R inhibitors o + o + –

Irradiation + +
Reprogramming
Minocycline + + + + +
CX3CL1 + + + + +
CD200 o + +
TGF-b + –

TSPO ligands o +
IGF-1 + +
TUDCA + + + +
Tamoxifen +
GLP-1R agonists + +

Effect blockade
IL-1 inhibitors + + o + +
TNF inhibitors + + + + + +
C1q inhibitors – o + o

Cyclic RGD peptides + +
CD47 +
February 2022
 | Volume 13 | Article 843
Interventions with available data are denoted as beneficial (+), detrimental (–), or neutral (o).
RP, retinitis pigmentosa; AMD, age-related macular degeneration; DR, diabetic retinopathy; RD, retinal detachment; CSF1R, colony-stimulating factor 1 receptor; TGF-b, transforming
growth factor beta; TSPO, translocator protein; IGF-1, insulin-like growth factor 1; TUDCA, tauroursodeoxycholic acid; GLP-1R, glucagon-like peptide 1 receptor; IL-1, interleukin 1; TNF,
tumor necrosis factor; C1q, complement component 1q; RGD, Arg-Gly-Asp.
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In 2005, Anderson et al. reported that large doses of gamma
radiation unexpectedly preserved RGCs in DBA/2J mice, which
develop congenital glaucoma due to pigment dispersion (35). After
irradiation at five weeks of age, the percentage of damaged optic
nerves dramatically improved from 83.3% in untreated 12-month-
old animals to only 4.9%. In a follow-up study, the same group
found that localized irradiation of DBA/2J eyes using X-rays could
specifically protect treated eyeswhile those contralateral underwent
degeneration (36). IOP remained elevated in both eyes and was
unaltered by irradiation. However, only irradiated eyes showed
reduced expression of IBA1 (36, 37), a marker for microglia,
suggesting that depletion of microglia may have contributed to
saving RGCs.

Outside of DBA/2J mice, low-dose gamma radiation has also
been found to delay photoreceptor death in both the rd1 and rd10
models of RP (38). However, photoreceptor preservation in these
micewas unique to low-dose radiation, as increasing either the dose
rate or total dose as little as four-fold abolished the rescue (38). Since
higher doses of radiation eliminate more microglia (39), these data
argue that neuroprotection from ionizing radiation is not solely due
to microglia depletion. Indeed, while irradiation helped in animal
models of RP and glaucoma, treatment with CSF1R inhibitors,
which more efficiently remove microglia, did not (20–22, 24).
Because microglia depletion after irradiation is relatively slow and
incomplete, some of its therapeutic effects might come from
changes induced in the microglia that survive. Alternatively, the
benefits of irradiation could be due to concomitant elimination of
other cell types in the eye, such as infiltrating monocytes (36).
Regardless, any possible benefits of irradiation as an ocular therapy
should be balanced against the risk for radiation retinopathy, a
complication of radiation exposure characterized by capillary
occlusions and microaneurysms (40).

Reprogramming
Despite its potential to alleviate pathology in several eye
disorders, microglia depletion is not without consequences.
Long-term ablation of microglia results in failure to maintain
the synapses used by photoreceptors, leading to impaired retinal
signaling (41). Furthermore, microglia in some conditions
appear to perform favorable actions, since elimination of these
cells has a neutral or even detrimental effect on disease
progression (19–24). For these reasons, reprogramming rather
than removing microglia may be an appealing therapeutic
approach to correct microglial dysregulation while preserving
or enhancing their beneficial functions.

Below, we review a number of candidate therapies that attempt
toachievemicroglia reprogramming,definedhere as the redirection
of microglia away from harmful phenotypes. These interventions
range from small molecules and repurposed drugs to proteins
involved in the endogenous regulation of microglia. While not
comprehensive, this list reflects the diversity ofmolecular pathways
implicated inmicroglial activation and how theymight be co-opted
to treat degenerative eye diseases.

Minocycline
Minocycline is a tetracycline-derived antibiotic that readily
crosses the blood-retina barrier and possesses anti-
Frontiers in Immunology | www.frontiersin.org 4
inflammatory properties independent of its anti-microbial
activity. As early as 1998, minocycline was found to inhibit
pro-inflammatory cytokine production by microglia in a model
of brain ischemia (42), leading to evaluation of the compound as
a potential therapeutic for multiple CNS pathologies (43–45).
Mechanistically, minocycline is thought to inhibit the pro-
inflammatory “M1” polarization of microglia as evidenced by
its attenuation of markers including interleukin 1 beta (IL-1b)
and tumor necrosis factor (TNF) (46). In contrast, expression of
anti-inflammatory “M2” genes such as IL-4 and IL-10 are largely
unaffected by minocycline and likely dominate following the
drug’s suppression of M1 polarization (46).

Across animal models of degenerative eye disease, treatment
with minocycline has often demonstrated promise. In the rd10
model of RP, twice daily systemic injections of minocycline
reduced rod death and partially preserved retinal function as
measured by both scotopic electroretinography (ERG) and a
visual behavior test (47). These changes coincided with greater
ramified morphology among retinal microglia and decreased
immunoreactivity for the lysosomal marker CD68, in addition to
lower levels of TNF protein in the retina (47, 48). For glaucoma,
minocycline improved RGC survival in mice with transiently
elevated IOP as well as in the DBA/2J model of chronic glaucoma
secondary to pigment dispersion (49, 50). In the latter, the
proportion of microglia with ramified morphology was also
increased (50), supporting the notion that microglial
deactivation by minocycline preserved RGCs.

In rats made diabetic by streptozotocin (STZ), a compound
which destroys pancreatic b-cells, the activity of caspase-3 in the
retina was seen to rise due to increased apoptosis (51). Twice daily
treatment with minocycline in these animals restored retinal
caspase-3 activity close to non-diabetic levels (51), suggesting that
minocycline might lower apoptosis in DR. In a rat model of uveitis
induced by intravitreal lipopolysaccharide (LPS), minocycline was
also found to be beneficial (52). Specifically, minocycline reduced
the number of anterior chamber cells and attenuated RNA
expression of IL-1b, IL-6, CCL2, and TNF in the retina, although
all these values remained elevated compared to normal eyes (52).
Finally,minocycline alleviated photoreceptor loss after induction of
retinal detachment in mice, even if given 24 hours after the
detachment (53). Minocycline may thus be applicable as an initial
treatment option for patientswho experienced a retinal detachment
and are awaiting definitive surgical repair.

Positive preclinical data for minocycline have since sparked
several clinical trials to test the drug in eye diseases. In a pilot phase
I/II study enrollingfive patientswithmild tomoderateDRassociated
with macular edema, twice daily oral minocycline for six months
resulted in a small improvement in visual acuity (NCT01120899)
(54). However, the trial did not include a control group for
comparison, and overall, the effect size was modest. Other ongoing
trials involving minocycline include its use in RP (NCT04068207),
geographic atrophy associated with AMD (NCT02564978), and
branch retinal vein occlusion (NCT01468831).

CX3CL1
Microglial homeostasis is maintained by a number of signaling
molecules that bind to receptors on the surface of microglia to
February 2022 | Volume 13 | Article 843558
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suppress their activation (55). The best characterized of these
signals is CX3CL1, also known as fractalkine, which serves as the
sole ligand for the CX3CR1 receptor (56). Constitutively
produced by neurons, CX3CL1 is a transmembrane protein
whose extracellular domain can undergo proteolytic cleavage
to release soluble CX3CL1 (57). Conversely, CX3CR1 expression
in the eye is restricted to microglia (20), although the receptor
can additionally be seen on several immune populations such as
monocytes, natural killer cells, and dendritic cells (26).

In rd10 mice, removal of CX3CL1-CX3CR1 signaling via
knockout of CX3CR1 increased microglial phagocytic activity
and production of pro-inflammatory cytokines while
exacerbating photoreceptor degeneration (58). Microglial
activation in rd10 retinas was also ameliorated after intravitreal
injection of recombinant CX3CL1, suggesting a protective role
for CX3CL1 in RP (58). Consistent with these findings,
overexpression of soluble but not full-length CX3CL1 in the
eye improved cone photoreceptor survival in three different
mouse models of RP and slowed vision loss (20). However,
preservation of cones with soluble CX3CL1 was still observed
when microglia were depleted, arguing that a microglia-
independent mechanism was at least partially responsible for
the rescue effect (20).

In other ocular disease models, absence of CX3CL1-CX3CR1
signaling has similarly been shown to worsen outcomes.
Following laser injury to induce CNV, mice with CX3CR1
knocked out exhibited larger lesions than those with intact
expression (15). Aged mice lacking CX3CR1 also accumulated
microglia in the subretinal space and developed outer retinal
thinning and drusen-like deposits reminiscent of those seen in
AMD (15). CX3CR1 deficiency in mice furthermore led to more
extensive RGC death after transient IOP elevation (49), increased
vascular pathology in STZ-induced DR (59), and greater disease
severity following induction of EAU (60). Endogenous CX3CL1
signaling thus shields against degeneration in multiple models of
eye disorders. An important next step will be to determine if
exogenous CX3CL1 in these animals can likewise alleviate cell
and vision loss.

CD200
CD200 is another broadly expressed transmembrane protein that
binds to its receptor, CD200R, on the surface of microglia to
inhibit their activation. In the mouse brain and spinal cord,
CD200 deficiency leads to less ramified microglia and
upregulation of pro-inflammatory markers such as TNF and
inducible nitric oxide synthase (iNOS) (61, 62), an enzyme that
helps generate reactive nitrogen species. Retinal microglia from
CD200 knockout mice similarly show much higher iNOS levels
than wild-type controls (63), suggesting that CD200 tonically
opposes M1 polarization of microglia in the eye.

In the rd1 model of RP, neither full-length CD200 nor its
soluble ectodomain altered cone survival when overexpressed in
the retina using an adeno-associated viral (AAV) vector (20).
Nonetheless, augmenting CD200-CD200R signaling has been
reported to be beneficial in other animal models of eye disease.
For instance, intravitreal injection of DX109, a monoclonal
antibody for CD200R with agonist activity, reduced the area of
Frontiers in Immunology | www.frontiersin.org 5
laser-induced CNV in mice compared to an isotype control (64).
Intravitreal CD200Fc, another CD200R agonist, also decreased
RGC apoptosis after optic nerve crush in rats (65), although its
effect on RGCs subjected to elevated IOP has not been examined.
In CD200 knockout mice, induction of EAU resulted in earlier
and more severe disease activity as measured by histological
scores and photoreceptor apoptosis (63). In contrast, EAU
development in wild-type animals was suppressed following
treatment with either systemic or intravitreal DX109 (66).
Based on these studies, CD200R agonists such as DX109 and
CD200Fc may be worth testing in patients with degenerative eye
conditions. Another candidate is LY3454738, a CD200R agonist
currently being evaluated in phase 1 trials for atopic dermatitis
(NCT03750643) (67).

TGF-b
Transforming growth factor beta (TGF-b) is a pleiotropic
cytokine with anti-inflammatory effects on microglia. When
administered to microglial cultures, TGF-b inhibits the
production of IL-1, IL-6, and TNF and downregulates major
histocompatibility complex (MHC) class II, a marker for
activated microglia (68, 69). Furthermore, silencing of TGF-b
signaling specifically in microglia via deletion of TGF-b receptor
2 (TGFBR2) has been shown to cause activation of retinal
microglia and death of photoreceptors and RGCs (70).

In mouse models of RP, ocular overexpression of TGF-b1,
one of three TGF-b isoforms in mammals, saved cones from
degeneration and preserved vision (21). Rescue of cones could be
disrupted with either microglia depletion or blocking of TGF-b
receptors, suggesting that treatment with TGF-b1 induced
protection by microglia (21). TGF-b signaling in microglia
may likewise be beneficial during AMD, as mice with
microglia-specific ablation of TGFBR2 develop greater CNV
after laser injury (70). However, the net effect of TGF-b in
AMD eyes appears to be detrimental, since TGF-b inhibitors
in both mice and rats have been found to reduce laser-induced
CNV (71, 72). One possible reason for this discrepancy is that
TGF-b receptors are present not only on microglia, but also on
other ocular cell types, such as endothelial cells and the retinal
pigment epithelium (RPE) (73). Using TGF-b to modulate
microglia might therefore have unintended consequences if
other parts of the eye respond in ways that have a negative
impact. Reassuringly, AAV-mediated expression of TGF-b1 in
wild-type mouse eyes produced no obvious adverse changes after
a month (21). Nonetheless, the effects of TGF-b may be different
depending on the context of ocular disease and in each case
should be carefully evaluated.

TSPO Ligands
Translocator protein (TSPO) is a receptor on the outer
mitochondrial membrane of microglia that becomes
upregulated during their activation (74). When bound by its
endogenous ligand in the eye, diazepam-binding inhibitor (DBI),
TSPO suppresses features of activated microglia such as
production of TNF and reactive oxygen species (74). In mice
systemically treated with XBD173 (emapunil), a TSPO ligand
with agonist activity, photoreceptor degeneration after acute
February 2022 | Volume 13 | Article 843558
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exposure to bright light was reduced (75). However, in rd10mice,
knockout of TSPO did not affect the rate of photoreceptor death
(76), perhaps because degeneration in the rd10 model is much
more prolonged than that caused by bright light. TSPO signaling
might therefore not be therapeutically relevant for genetic forms
of retinal degeneration such as RP.

TSPO ligands have also been tested in the mouse laser injury
model of AMD, although the results were not as straightforward.
In wild-type mice, daily doses of XBD173 attenuated vascular
leakage and CNV size (77), arguing that promotion of TSPO
signaling may help in AMD. The same paper then found laser-
induced CNV to improve with conditional deletion of TSPO in
microglia (77), supporting the idea that inhibition of TSPO
might instead be beneficial. Indeed, while knocking out TSPO
has been shown to lower microglial expression of pro-
inflammatory cytokines in vitro (78), knocking down TSPO
reportedly results in the opposite (74, 79). These findings
illustrate the complex and sometimes paradoxical nature of
TSPO in regulating microglia and highlight a need for further
studies of TSPO in eye disease.

IGF-1
Insulin-like growth factor 1 (IGF-1) is a pleiotropic polypeptide
hormone that has been implicated in growth, development, and
ag ing , among other b io log i ca l proces se s . Dur ing
neuroinflammation, IGF-1 is thought to enhance neuronal
survival by reprogramming microglia to an M2 phenotype via
the IGF-1R receptor (80). Consistent with this, intravitreal
delivery of IGF-1 in rd10 mice decreased photoreceptor
apoptosis, and this effect was diminished in the presence of
clodronate liposomes, which deplete microglia (81). IGF-1 has
also been found to be neuroprotective for RGCs. In rats,
intravitreal IGF-1 reduced RGC death following transection of
the optic nerve (82). Likewise, intravitreal administration of
insulin-like growth factor binding protein like-1 (IGFBPL1),
which acts by binding to IGF-1, was able to slow visual decline
in a microbead-induced mouse model of glaucoma (83).

Nonetheless, one challenge facing the use of IGF-1 as an
ocular therapeutic is its potential to cause new pathology.
Absence of IGF-1 in mice leads to progressive loss of ERG
amplitudes and deterioration of retinal synapses (84). However,
overexpression of IGF-1 similarly results in reduced ERG
responses, as well as increased photoreceptor death and
features of DR such as retinal microvascular damage (85, 86).
Treating eyes with IGF-1 will thus require achieving intraocular
levels sufficient to enable neuroprotection without triggering the
various toxicities seen with excess IGF-1 signaling.

TUDCA
Tauroursodeoxycholic acid (TUDCA) is a conjugated bile acid that
has shown promise in multiple models of eye disease. Specifically,
systemic administration of TUDCA has been reported to slow
retinal degeneration in both the rd10 and P23H rodent models of
RP (87, 88), preserve visual function in mice with STZ-induced DR
(89), suppress CNV formation in rats after laser injury (90), and
decrease photoreceptor death in rats after retinal detachment (91).
Frontiers in Immunology | www.frontiersin.org 6
Topical TUDCA was also found to delay RGC loss in rats following
optic nerve crush (92), although the compound has not been tested
in more physiological models of glaucoma.While use of TUDCA in
P23H rats was associated with reduced activation of retinal
microglia as supported by their downregulation of MHC class II
(93), it is unknown how much this microglial reprogramming
mediated TUDCA’s therapeutic effects. Furthermore, TUDCA has
been reported to interact with numerous receptors both on and
inside the cell (94), making its molecular mechanism uncertain.
Regardless, given encouraging results with TUDCA in preclinical
models and its documented tolerability in humans (95), trials
employing it to treat ocular disorders should be considered.

Tamoxifen
Tamoxifen is a selective estrogen receptor modulator used to
treat hormone receptor-positive breast cancer. In mice,
tamoxifen is often also given to activate an inducible form of
Cre recombinase that facilitates genetic changes in specific cell
types. Unexpectedly, administration of tamoxifen-supplemented
food in the rd10 model of RP was found to slow photoreceptor
degeneration compared to littermates receiving standard chow
(96). Rescue of photoreceptors with tamoxifen was associated
with decreased pro-inflammatory cytokine production by retinal
microglia (96), implying that microglia were involved in the
therapeutic mechanism. Although promising, the potential
benefits of tamoxifen in RP will need to be reconciled with the
drug’s well-documented ocular toxicities (97). These include
crystalline deposits in the retina, foveal cavitations, and
macular edema and are estimated to occur in up to 12% of
patients who take the medication long-term (98).

GLP-1R Agonists
In 2017, it was reported that activated microglia can induce the
formation of reactive astrocytes by secreting IL-1a, TNF, and
complement component 1q (C1q) (99). These reactive astrocytes
go on to promote neurodegeneration via production of an
unknown toxin that kills a variety of CNS cell types, including
RGCs (99). Recently, microglial induction of reactive astrocytes
was observed in a mouse model of glaucoma created by injection
of microbeads (100). RGC survival in these animals was
improved by NLY01, a glucagon-like peptide 1 receptor (GLP-
1R) agonist that has been shown to halt astrocyte transformation
by suppressing microglial expression of IL-1a, TNF, and C1q
(100, 101).

Initially developed to treat diabetes, GLP-1R agonists are
a class of medications that augment glucose-dependent
secretion of insulin to help with glycemic control and weight
loss (102). However, GLP-1R agonists may additionally possess
neuroprotective properties, which have been attributed to their
actions on microglia and subsequently astrocytes (101, 103, 104).
GLP-1R agonists have also been tested in mice with congenital
diabetes, where they were found to decrease retinal apoptosis
independent of their glucose-lowering effects (105). These
studies suggest that beyond microglia, interventions targeting
reactive astrocytes may likewise be relevant for degenerative
eye diseases.
February 2022 | Volume 13 | Article 843558
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Effect Blockade
A third strategy to prevent microglia-mediated degeneration in
the eye is to directly target the downstream effects of these cells.
These include the production of pro-inflammatory cytokines like
IL-1, TNF, and C1q, as well as injurious behaviors such as the
engulfment of stressed but viable neurons (106). Although not
explored here, other actions of activated microglia such as the
generation of reactive oxygen and nitrogen species also merit
investigation in the context of ocular disease.

IL-1 Inhibitors
IL-1a and IL-1b (collectively referred to as IL-1) are potent pro-
inflammatory cytokines that signal via the IL-1 receptor. In the
eye, IL-1 is expressed by multiple cell types including microglia,
which upregulate IL-1 in animal models of many degenerative
eye disorders (21, 32, 100, 107). Elevated IL-1 levels have
similarly been detected in the vitreous of patients with RP,
AMD, and DR (108–110), as well as the subretinal fluid of
patients with retinal detachment (111). Functionally, IL-1 is
thought to indirectly cause neuronal damage by triggering glial
production of neurotoxic molecules (99, 112, 113). Consistent
with this, addition of IL-1b to explanted mouse retinas was
sufficient to induce photoreceptor apoptosis and cone outer
segment loss (114, 115).

In animal models, opposing IL-1 activity has generally been
found to alleviate retinal degeneration. In rd10 mice, intravitreal
injections of anakinra, a recombinant IL-1 receptor antagonist
(IL-1RA), reduced photoreceptor apoptosis compared to saline
in contralateral eyes (32). Intravitreal anakinra likewise inhibited
CNV in rats subjected to laser injury (116), while subcutaneous
delivery of IL-1RA suppressed CNV in mice (117). After retinal
detachment, IL-1b blockade via subretinal injections of a
neutralizing antibody decreased photoreceptor death in mice
(111). Mice deficient in the IL-1 receptor also exhibited fewer
infiltrating cells following induction of EAU (107). Supporting
this, lentiviral vector-mediated expression of IL-1RA in mouse
eyes lessened the severity of uveitis elicited by intravitreal
LPS (118).

Despite these encouraging results, the therapeutic potential of
IL-1 blockade has yet to be realized for patients with degenerative
eye diseases. In a small study of six subjects with active DR,
systemic inhibition of IL-1b with canakinumab, a monoclonal
antibody, had no effect on the area of neovascularization (119).
Canakinumab was also used in a phase 1 study for treating
exudative AMD that completed in 2007 without follow-up
(NCT00503022), suggesting a likely unfavorable outcome. In
other degenerative eye disorders, IL-1 inhibitors have still not
been tested, even though there are now several of these
compounds approved for clinical use. Repurposing these
medications to block IL-1 activity in the eye might ameliorate
ocular pathology and should be considered for future trials.

TNF Inhibitors
Tumor necrosis factor (TNF) is another pro-inflammatory
cytokine upregulated by microglia during ocular disease.
Originally named for its ability to lyse tumor cells, TNF is also
Frontiers in Immunology | www.frontiersin.org 7
a key driver of rheumatoid arthritis, inflammatory bowel disease,
and multiple other inflammatory conditions. Structurally, TNF is
synthesized as a transmembrane protein, which when cleaved
releases soluble TNF (120). Both transmembrane and soluble
TNF can signal via the two TNF receptors to activate pathways
that trigger apoptosis and cytokine secretion (121). Moreover,
autocrine TNF signaling can stimulate further TNF production
by microglia and lead to glutamate release that exacerbates
neurotoxicity (122, 123).

As with IL-1, inhibition of TNF appears to be broadly
beneficial across animal models of eye disease. Indeed, TNF
blockade with adalimumab, a monoclonal antibody, is clinically
approved for the treatment of uveitis (124, 125). In the rd10
model of RP, adalimumab slowed photoreceptor death when
delivered either systemically or intravitreally (126, 127).
Similarly, anti-TNF therapies have been reported to suppress
laser-induced CNV in mice (128), rats (129), and non-human
primates (130). In a rat model of glaucoma, RGC survival during
ocular hypertension was improved with either XPro1595, which
neutralizes soluble TNF, or etanercept, a TNF decoy receptor
(131, 132). Furthermore, ablation of TNF signaling via knockout
of TNF protected photoreceptors in mouse models of both DR
and retinal detachment (133, 134).

In patients, TNF inhibitors have additionally exhibited promise
for ocular diseases beyond uveitis. In a case series of three subjects
with concurrent arthritis and AMD, treatment with systemic
infliximab, a monoclonal antibody against TNF, led to CNV
regression and better vision (135). In another series of three
AMD patients, intravitreal administration of infliximab also
restored sight (136). However, a slightly larger study of 13
participants found systemic infliximab to only stabilize visual
acuity in AMD, rather than improve this measure (137). For DR,
the effect of systemic infliximab on diabetic macular edema was
previously examined in a small randomized controlled trial (138).
Compared to the six placebo-treated eyes, which showed decreased
vision after 16 weeks, the eight eyes receiving infliximab had
significantly higher visual acuity that was improved from baseline
(138). Blocking TNF thus appears to be a viable strategy to treat not
only uveitis, but possibly also DR and AMD. Larger trials are
warranted to fully test these ideas, as well as to evaluate the
potential of TNF inhibitors in other degenerative eye conditions.

C1q Inhibitors
C1q was first discovered as part of C1, the protein complex that
initiates the classical complement pathway (139). Since then, C1q
has been shown to participate in many additional biological
processes, ranging from the clearance of apoptotic cells to the
pruning of excess synapses during development (140, 141). In
both the brain and retina, C1q is primarily secreted by microglia
and can become upregulated following microglial activation (21,
142). However, C1q levels are unchanged in some degenerative eye
diseases such as DR (143), and interventions lowering ocular C1q
in vivo have generated mixed results. For example, genetic deletion
of C1q protected RGCs in the DBA/2J mouse model of glaucoma
(144), but accelerated retinal degeneration in a mouse model of RP
and had no impact on disease severity in EAU mice (145, 146).
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Inhibition of C1q by either small interfering RNA-mediated
knockdown or knockout of the gene in mice also had no
observable effect on laser-induced CNV (147, 148). Decreasing
C1q may therefore be a suitable approach for glaucoma in
particular, a notion supported by the elevation of C1q in both
aqueous and vitreous samples from glaucoma patients (149, 150).
This strategy was recently pursued in a phase 1b clinical trial using
an intravitreal antigen-binding fragment to neutralize C1q in
glaucomatous eyes (NCT04188015).

Cyclic RGD Peptides
Phagocytosis is a key component of microglial homeostasis that
enables the clearance of pathogens, remodeling of synapses, and
removal of dead and dying cells (151). However, phagocytosis can
also become dysregulated following microglial activation, resulting
in the engulfment and killing of viable cells (106). In 2015, Zhao
et al. reported that microglia in the rd10model of RP phagocytose
living rods, thereby accelerating retinal degeneration (32).
Similarly, when incubated with fluorescent particles ex vivo,
microglia from rd1 retinas showed much higher phagocytotic
activity than those from heterozygous mice (22).

The observation of phagocytic killing bymicroglia in amodel of
RP suggests that in some degenerative eye diseases, inhibitors of
phagocytosis may be protective. Indeed, cyclic Arg-Gly-Asp
(RGD)-containing peptides, which disrupt phagocytosis by
blocking the vitronectin receptor on microglia (152, 153), have
demonstrated efficacy in several animal models. In rd10 mice,
intravitreal delivery of cyclo(Arg-Gly-Asp-Phe-Val) led to greater
preservation of rods and ERG amplitudes than an inactive analog
injected into contralateral eyes (32). After laser injury, intravitreal
administration of a cyclic RGD peptide in rats was also found to
inhibit CNV progression (154). While the phagocytic activity of
microglia in other ocular disorders has not been as thoroughly
investigated, the potential of cyclic RGD peptides in these
conditions should be explored.

CD47
Another molecule capable of inhibiting microglial phagocytosis is
CD47, a transmembrane protein and well-established “don’t-eat-
me signal.” In many cancers, upregulation of CD47 prevents the
engulfment of tumor cells by binding to signal-regulatory protein
alpha (SIRPa) on macrophages (155, 156). In the CNS, CD47 can
analogously signal tomicroglia via SIRPa and has been reported to
suppress their phagocytic activity during both development and
disease (157, 158). When overexpressed on cones, CD47 protected
against conedegeneration andvision loss inmultiplemousemodels
of RP via a pathway that required SIRPa (22). However, rescue of
cones was unperturbed bymicroglia depletion (22), suggesting that
the effects of CD47-SIRPa signaling in these animals was likely
carried out by non-microglial cells.

Interestingly, CD47 itself is also expressed onmicroglia, where it
can interact with thrombospondin-1 (TSP1), a secreted
matricellular protein (159). In a mouse model of AMD, TSP1
binding to endogenous CD47 helped resolve subretinal
inflammation (159). TSP1-CD47 signaling therefore presents
another potential avenue by which CD47 might ameliorate
eye disease.
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DISCUSSION

Despite their small numbers in the eye, microglia are increasingly
being recognizedaskeycontributors tooculardisease.Asdetailed in
this review, strategies targeting microglia have likewise shown
promise in animal models of eye disorders and may help patients
retain their sight. In general, suppressing the pro-inflammatory
activities of microglia appears to favor photoreceptor and RGC
survival during retinal degeneration, although the extent of this
varies across both interventions and diseases. While some
compounds such as minocycline and TNF inhibitors have
demonstrated efficacy in almost every animal model tested, others
like C1q inhibitors may be more suitable for a single indication.
Notably,depletionofnearly allmicrogliawithCSF1R inhibitorswas
in multiple instances not helpful in combating pathology (19–24).
One interpretation of this could be thatmicroglia are not relevant in
these conditions. However, this view is opposed by the fact that
other interventions targeting microglia were able to alleviate
degeneration in the same models. Instead, it is likely that even
during disease, microglia still perform beneficial functions, which
may be accentuated by approaches that reprogram microglia or
block their injurious effects. This appears to be the case as well in
neurodegenerative disorders of the brain like Alzheimer’s disease,
where microglia have been reported to both promote and inhibit
disease progression (160).

Nonetheless, there are many areas of microglial biology in which
deeper investigation might lead to substantial improvements over
existing therapies. First, the precision and durability of targeting
microglia would benefit from the development of methods to
genetically modify these cells. Unlike many cell types, microglia
have so far not been amenable to transduction with viral vectors in
vivo (161–163). Furthermore, gene delivery vehicles such as
nanoparticles and AAV vectors often themselves elicit undesirable
inflammatory responses frommicroglia (164–167). Finding a way to
genetically altermicroglia efficiently whileminimizing inflammation
thus represents a considerable challenge, but one that would enable
highly tailored microglial reprogramming.

Efforts should also be taken to improve our understanding of
microglia heterogeneity in the eye. In the brain, single-cell studies
have revealed the existence of diversemicroglia subtypes, including
some specific to neurological disorders (168). Analogously, there
are likely different populations and states of microglia in the eye
with distinct functions during ocular disease. Supporting this,
recent papers have described subsets of retinal microglia in mice
associated with oxygen-induced retinopathy or light-induced
photoreceptor degeneration (169, 170). It is possible that
future characterization of microglia diversity in human eyes may
allow for the identification of therapeutic targets unique to
pathologic microglia.

Lastly, asmicroglia are present throughout the CNS, it would be
worthwhile tooptimizedelivery strategies that actuponmicroglia in
the retina, but not the brain or spinal cord. Because the eye is an
enclosed compartment, this can be achieved if compounds are
injected into the vitreous, subretinal, or suprachoroidal space.
However, these routes are less convenient than systemic ones
such as oral administration, especially if a treatment warrants
repeat dosing. Topical instillation of therapies as eye drops would
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offer an approach that is both local and non-invasive ifmedications
delivered this way could reach the retina. While adequate
penetration of topical molecules to the posterior segment remains
difficult (171), successful implementation of this route wouldmake
it much easier to target microglia in the eye.
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