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Abstract
Low molecular weight heparin (LMWH) is routinely used to prevent thromboembolism in

orthopaedic surgery, especially in the treatment of fractures or after joint-replacement.

Impairment of fracture-healing due to increased bone-desorption, delayed remodelling and

lower calcification caused by direct osteoclast stimulation is a well-known side effect of

unfractioned heparin. However, the effect of LMWH is unclear and controversial. Recent

studies strongly suggest impairment of bone-healing in-vitro and in animal models, charac-

terized by a significant decrease in volume and quality of new-formed callus. Since October

2008, Rivaroxaban (Xarelto) is available for prophylactic use in elective knee- and hip-

arthroplasty. Recently, some evidence has been found indicating an in vitro dose indepen-

dent reduction of osteoblast function after Rivaroxaban treatment. In this study, the possible

influence of Rivaroxaban and Enoxaparin on bone-healing in vivo was studied using a stan-

dardized, closed rodent fracture-model. 70 male Wistar-rats were randomized to Rivaroxa-

ban, Enoxaparin or control groups. After pinning the right femur, a closed, transverse

fracture was produced. 21 days later, the animals were sacrificed and both femora har-

vested. Analysis was done by biomechanical testing (three-point bending) and micro CT.

Both investigated substances showed histomorphometric alterations of the newly formed
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callus assessed by micro CT analysis. In detail the bone (callus) volume was enhanced

(sign. for Rivaroxaban) and the density reduced. The bone mineral content was enhanced

accordingly (sign. for Rivaroxaban). Trabecular thickness was reduced (sign. for Rivaroxa-

ban). Furthermore, both drugs showed significant enlarged bone (callus) surface and

degree of anisotropy. In contrast, the biomechanical properties of the treated bones were

equal to controls. To summarize, the morphological alterations of the fracture-callus did not

result in functionally relevant deficits.

Introduction
An immobilized patient after orthopedic surgery or trauma is an obligatory subject of anticoag-
ulant therapy to prevent thrombosis or pulmonary embolism. Without this therapy, the rate of
deep vein thrombosis following major lower extremity surgery is between 40–60%, increasing
the risk of developing fatal pulmonary embolism [1, 2]. Established treatment includes heparin
and low-molecular weight heparins (LMWHs), whilst Vitamin K antagonists (4-hydroxycou-
marin-derivatives) are routinely used as anticoagulants to prevent thrombosis and embolism in
cardiac arrhythmia or as long-term secondary prophylaxis. In 2008, Rivaroxaban was initially
approved for the prevention of venous thromboembolism in adult patients undergoing elective
hip and knee replacement surgery [3]. Recently, therapeutic indications were extended to the
treatment of ischemic stroke, atrial fibrillation and deep venous thrombosis or pulmonary
embolism increasing the clinical impact of this substance significantly [4].

In 1955, the potential effects of anticoagulants on fracture healing were studied for the first
time by Stinchfield who was able to reproduce delayed unions in animals receiving heparin [5].
Thereafter, several preclinical animal studies have stated that heparin and LMWH caused
decreased trabecular volume through increased resorption, a decreased rate of bone formation
and lower calcification of the callus as well as delayed remodeling, presumably caused by direct
osteoclast stimulation [6–11]. However, observed effects of LMWH seemed milder compared
to unfractioned heparin [9, 11]. Prolonged, unfractionated heparin treatment has been associ-
ated with bone loss and an increased risk of fracture [12, 13]; while long term administration of
LMWH is associated with a higher risk of developing osteoporosis [14], this is a rare adverse
side effect with an incidence of 2–5% [15].

Systematic examinations on the possible effects of the direct factor Xa-inhibitor Rivaroxa-
ban on bone healing are sparse. Solayer et al. treated primary human osteoblast cultures in
vitro with varying concentrations of Rivaroxaban and Enoxaparin and found a significant
reduction in osteoblast function independent of dose. This reduction was associated with
reduced mRNA expression of osteocalcin, Runx2, and the osteogenic factor BMP-2. Though
both agents did not adversely affect osteoblast viability, the authors concluded that Rivaroxa-
ban treatment may negatively affect bone through a reduction in osteoblast function [16]. Simi-
larly, Gigi et al. observed a dose-dependent inhibition of the DNA-synthesis and Creatine
kinase-specific activity of SaOS2 cells via Rivaroxaban. Alkaline phosphatase-specific activity
was decreased and cell mineralization unaffected. The in vitromodel demonstrated a signifi-
cant Rivaroxaban-induced reduction in osteoblastic cell growth and energy metabolism, indi-
cating that Rivaroxaban might inhibit the first stage of bone formation [17].

As bone formation demands the coordination of different cell types and the activation of
specific signal pathways, a single cell culture might not be sufficient to comprehend the whole
process resulting in the restoration of bone. In light of the fact that heparin and LMWHs have
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been associated with detrimental effects on bone on the one hand and the possible inhibitory
effects of Rivaroxaban, in vitro on the other, we aimed to investigate possible adverse effects in
vivo via a standardized, rodent fracture model. Our main interest was the evaluation of whether
Rivaroxaban or Enoxaparin alters biomechanical properties or morphological features of the
newly formed callus through μCT analysis.

This study aims to investigate whether anticoagulant medication (Rivaroxaban or
Enoxaparin):

1. Alters failure load, stiffness or work to failure of fracture callus in the animal model
situation?

2. Causes ultrastructural changes within the callus?

Materials and Methods
The study was performed in the animal facility of the Klinikum rechts der Isar, Technische
Universität München and was evaluated and approved by the local authority (Regierung von
Oberbayern, approval no. 55.2-1-54-2531-17-10) as required by German law.

70 male Wistar rats (CRL:WI), obtained from Charles River Laboratories (Sulzfeld, Ger-
many), 15 weeks of age and weighing between 400 and 460g were used in the main experiment.
After arrival, all rats were granted a 14 day acclimation period before entering the experiment.
Rats were housed in open cages, polysulfone type III OTC, with a base area of 825 cm2 (Ehret,
Emmendingen, Germany). After acclimation they were randomized and allocated to the differ-
ent arms (Enoxaparin, Rivaroxaban and Controls) and groups (Group A: Biomechanical Test-
ing, 15 animals per substance; 4 reserve. Group B: Morphometry, 7 animals per substance) of
the study.

Surgery
The rats underwent antegrade pinning of the right femur and subsequent standardized frac-
ture. The surgical procedure performed was a modification of the method first described by
Bonnarens and Einhorn in 1984 [18], but instead of opening the knee joint for retrograde pin-
ning, a K-wire was inserted anterograde via the intertrochanteric fossa.

All animals were prepared for surgery by shaving and cleansing of the left leg. After preoper-
ative skin-desinfection, sterile coverage of the op-site was provided. The skin incision was done
over the greater trochanter. After cutting the fascia, the gluteal muscles were separated respect-
ing the direction of fibers. The intertrochanteric fossa was palpated and the femoral neck was
grasped with a curved forceps. Subsequently, a 0.6mm K-wire was drilled into the intramedul-
lary cavity by the use of a picture amplifier. Distally, the pin reached the supracondylar region
without exceeding the bone, as not to interfere with knee motion. After a terminator radio-
graphic control in 2 planes, the pin was cut flush with the cortex and the wound closed in layers.

At the time of surgery, a standardized fracture was completed according to the method
described by Bonnarens et al. [18]. A blunt guillotine 3-point bending device consisting of a
500 g weight driving the blunt guillotine down onto an outstretched rat leg placed across an
open platform was used creating a 3-point bending mechanism (Fig 1a and 1b).

Drugs
Enoxaparin was administered twice daily (every 12 hours) with 1000 IU/kg body weight, start-
ing with the first injection 12 hours before the operation. Rivaroxaban was administered via
medicated feed provided by Bayer Health Care AG, containing 600 ppm/g. The medicated fed
was provided 24 hours before the operation. The chosen amount of medication and application
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has proven to produce comparable levels of factor Xa inhibition (pilot-studies prior to the
main experiment, see supplemental data, S1 File). In detail, inhibition levels were constantly
between 84% and 90% for Rivaroxaban measured over a period of 16 hours. Enoxaparin pro-
duced comparable levels of factor Xa-inhibition ranging from 74% to 80% in the first 4–5
hours after injection, efficiency was decreasing between 5 and 9 hours after injection. There-
fore, it was decided to administer Enoxaparin twice daily every 12 h.

Fig 1. Experimental Setup. (a) Standardized fracture: Anesthetized animal placed on the fracture device. Leg placed across an open
platform. (b) Postoperative radiograph, a.p. view after fracture. A transverse fracture with minimal dislocation can be seen at the middle of
the femoral shaft. (c) Setting during biomechanical testing of the specimens. The distance between the bars was adapted for each bone. All
bones were loaded until failure (V-max) with a persistent test velocity of 5mm/min. Meanwhile a load-displacement diagram was recorded
every 0.1 second and thereby failure load was determined. (d) Scout view scan before μCT-measurement.

doi:10.1371/journal.pone.0159669.g001

Rivaroxaban and Bone Healing

PLOS ONE | DOI:10.1371/journal.pone.0159669 July 25, 2016 4 / 19



After 21 days the animals were euthanized and both femora harvested. According to group-
allocation the bones were frozen and stored at -20°C (Group A, Biomechanical Testing) or
fixed in 100%Methanol and stored at 4°C (Group B, Micro CT). Analyses were done after
removal of the intramedullary pin, either via biomechanical testing until failure or Micro CT
scan.

All researchers conducting surgery, performing x-rays, collecting samples or analyzing data
were blinded throughout the duration of the entire experiment.

Biomechanical Testing
Biomechanical examination of the specimens was done by three-point bending using a Zwick
material testing machine (Zwicki 1120, Zwick GmbH & Co, Ulm, Germany). Positioning for
three-point-bending was carried out with force transmission at the evaluated middle position
between the distal and the proximal site of each femur (Fig 1c). Bearing- and loading-bars had
a rounded tip with a diameter of 2.5mm. The distance between the bars was adapted for each
bone. The femora (n = 90) were placed with their posterior surface on the lower supports of the
bending apparatus. These supports were adjusted individually so that the first support was
placed just distal to the trochanter minor and the other support just proximal to the condyles
of the femur (popliteal plane) [19]. All bones were loaded until failure (V-max) with a persis-
tent test velocity of 5mm/min. Meanwhile, a load-displacement diagram was recorded every
0.1 second and thereby failure load was determined. Measurement was done with a load sensor
for 2.5 KN (Klasse 0.05, A.S.T. GmbH, Dresden, Germany). The stiffness was defined as linear
regression with TestXpert V12 software, and deduced by obtaining the gradient of the linear
part of the load-displacement curve. For the experimental sides it was defined as the interval
between 2 N and 10 N, for the controls between 20 N and 80 N. Manual corrections were
applied if necessary (e.g. short, linear part of the curve; later or earlier onset). Work to failure
was calculated representing the area under the curve until V-max.

Failure load, stiffness and work to failure were collected for each bone of the biomechanical
group. Absolute as well as relative values (failure load and stiffness of the experimental side in
relation to the contralateral, healthy bone) were determined.

Micro-CT
All analyses were done by using μ-CT 40, Scanco Medical1 AG, Brüttisellen, Switzerland. The
samples were placed and aligned in parallel to a transparent cylindrical sample holder (18.5
mm diameter) and secured with a surrounding sponge [20]. For heat protection and preserva-
tion from drying the sample holder was filled with 100% methanol for the duration of the
examination time of 61.9 minutes.

In preparation of each μ-CT analysis a scout view was used for the exact determination of
the region of interest (ROI) [21] (Fig 1d). In our study the ROI covered 6.2 mm in the z-axis,
3.1mm proximal and 3.1mm distal of the fracture gap. The scans with a thickness of 0.01 mm
were performed with a ‘high resolution scan mode’. The integration time was set at 200 ms.
1000 projections (each projection is sampled for 200 ms) with 2048 measurement points each
were taken over 180°. The integration time corresponds to the exposition time of the detector
of the x-ray of each projection is exposed to. Contouring was done manually by using a stan-
dard circle wide enough to enclose the bone of all slices. Within this ROI, thresholding was per-
formed visually and based on histograms to separate callus, cortical bone, marrow and air. The
grey-values were globally binarized using the following parameters for callus [sigma (0.8), sup-
port (1) and threshold (150)] and cortical bone [sigma (1.5), support (3) and threshold (370)]
[22]. After the reconstruction of the data the analysis of the non volume-dependent parameters
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was performed on the basis of the selected volume of interest (VOI), to obtain the 3-dimen-
sional interpretation (3D) [23]. All processing steps were operated automatically using Image
Processing Language (IPL, Scanco Medical AG, Brüttisellen).

The following measures of bone structure and composition were evaluated from the μ-CT
image data for each specimen: Bone volume (BV); tissue mineral density (TMD) = material
density = bone tissue density = degree of mineralisation; bone mineral content (BMC), defined
as callus BV multiplied by TMD; trabecular thickness (Tb. Th.); degree of anisotropy (DA);
bone surface (BS); structure model index (SMI) [24].

Statistics
Sample size estimation for the biomechanical testing was done according to the specifications
by Leppänen et al. regarding biomechanical testing in animal models [25]. By allocating at least
14 animals per group, recognition of expected treatment effects of 10% would be feasible with
statistical power of 90% at a significance level of p<0.05 in the femur shaft three-point bending
test. So the group size for the biomechanical testing was defined with 15 animals per group.

Morphological examinations by Micro-CT were defined as explorative study. Therefore the
minimum group size should be at least 5 animals [26].

Statistical analyses were performed with R 3.1.0 (The R Foundation for Statistical Comput-
ing, Vienna, Austria). As quantitative data showed no severe deviations from the normal distri-
bution, descriptive statistics are given by mean ± standard deviation. Accordingly, group
comparisons were performed by t-tests. The distribution of qualitative data is presented by
absolute and relative frequencies and compared between groups using the χ2-test or Fisher’s
exact test, depending on the cell counts of corresponding contingency tables. All tests were
two-sided and performed in an exploratory manner on a 5% significance level.

Results
Six rats developed a hematoma, located above the greater trochanter. Of those, 5 were in good
general condition and stayed in the experiment, 1 rat had to be euthanized due to pale mucous
membranes and a poor general condition. All rats developing hematoma belonged to the Enox-
aparin group. So the prevalence of hematomas in the Enoxaparin group was 26% whereas no
relevant hematoma could be seen in the Rivaroxaban or in the control-group (p = 0.022).

Biomechanical Testing
A total of 45 animals (90 femura) were investigated by biomechanical testing (Fig 2a and 2b).
In all 90 femura the failure load could be determined. In 2 bones, both experimental sides (1 in
the Rivaroxaban-group, 1 in the Enoxaparin-group) the stiffness could not be calculated due to
absence of linear characteristics in the load-displacement diagram.

Failure Loads (V-max)
Failure loads of the experimental sides averaged 24.7 ± 11.9 N for the controls, 25.3 ± 11.3 N
for Rivaroxaban and 22.9 ± 8.1 N for Enoxaparin. The contralateral, unfractured bones
counted up for 142.1 ± 20.8 N for the controls, 136.0 ± 20.5 N for Rivaroxaban and
140.1 ± 17.1 N for Enoxaparin (Table 1, Fig 3).

Stiffness
Stiffness of experimental bones averaged 27.8 ± 22.4 N/mm for controls, 23.1 ± 14.4 N/mm for
Rivaroxaban and 18.4 ± 7.2 N/mm for Enoxaparin. The contralateral sides were 231.0 ± 50.5
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N/mm in the control-group, 214.1 ± 48.1 N/mm in the Rivaroxaban-group and 227.1 ± 29.5
N/mm for Enoxaparin (Table 1).

Work to Failure
Furthermore, work to failure was analyzed for experimental sides of each substance. Controls
averaged with 15.54 ± 8.305 Nmm, Rivaroxaban with 15.43 ± 6.513 Nmm and Enoxaparin
13.77 ± 4.876 Nmm (Table 1, Fig 4).

Comparison between the Groups
In general, the means and standard deviations of absolute and relative V-max, stiffness and
work to failure values showed homogenous patterns throughout the groups (Table 1).

Mean V-max (failure load) of the control and experimental side ranged between 136.0–
142.1 N and 22.9–25.3 N, respectively. As expected, stiffness showed a slightly higher variance

Fig 2. Biomechanical Parameters. (a, b) Load-displacement diagram of corresponding bones during three-point bending. The first
diagram (a) shows the fracture-curve of the control side, the second the experimental side (b). The ordinate displays the force (N), the
abscisse the displacement (in mm). Different scales of the ordinate. The red line in Fig 2b displays stiffness (gradient of the linear part of the
load-displacement curve). The light blue area is the work to failure (area under the curve (Nmm)).

doi:10.1371/journal.pone.0159669.g002

Table 1. Results Biomechanical Testing.

N unfractured femur fracture ratio p-value*

V-max 15 Enoxaparin 140.1 ± 17.1 22.9 ± 08.1 0.16 ± 0.05 <0.001

(N) Control 142.1 ± 20.8 24.7 ± 11.9 0.18 ± 0.11 <0.001

Rivaroxaban 136.0 ± 20.5 25.3 ± 11.3 0.19 ± 0.09 <0.001

Stiffness 14 Enoxaparin 227.1 ± 29.5 18.4 ± 07.2 0.08 ± 0.03 <0.001

Control 231.0 ± 50.5 27.8 ± 22.4 0.12 ± 0.10 <0.001

Rivaroxaban 214.1 ± 48.1 23.1 ± 14.4 0.12 ± 0.08 <0.001

Work to failure 15 Enoxaparin 13.8 ± 4.9

(Nmm) Control 15.5 ± 8.3

Rivaroxaban 15.4 ± 6.5

Results of biomechanical testing (Mean ± SD, *one sample / paired samples t-test). N = 15 (except for assessments involving stiffness in the Enoxaparin

and Rivaroxaban groups, here n = 14). p-value displays difference between experimental and control sides.

doi:10.1371/journal.pone.0159669.t001
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in both sides and the corresponding mean values ranged from 214.1 to 231.0 and 18.4 to 27.8,
respectively.

After 21 days the callus of the fractured femur reached between 16 and 19% of the strength
(evaluated by obtaining V-max) of the corresponding, contralateral bone. Comparison of
groups did not show significantly different mean values between the tested substances and the
control (Fig 3).

Micro-CT
The results were illustrated qualitatively by three-dimensional reconstructions of representa-
tive specimens (see Fig 5) and quantitatively for each experiment. Altogether 20 bones were
examined (7 in the Rivaroxaban-, 7 in the Enoxaparin-group, and 6 controls).

Absolute values of the obtained parameters are shown in Table 2.
The quantification of bone volume (mineralized callus volume = BV) in the fractured femo-

ral diaphysis is shown in Fig 5. The Rivaroxaban- as well as the Enoxaparin-group showed
higher callus volume than the controls (sign. for Rivaroxaban, p = 0.004) (Fig 6a).

The density of the callus (tissue mineral density TMD) was lower in both groups treated
either with Rivaroxaban or Enoxaparin compared to the control group. The bone mineral con-
tent BMC (defined as the callus BV multiplied by TMD) showed corresponding to BV a higher
score in the treated rats. The Rivaroxaban-group showed again a statistically higher BMC than
the control group (p = 0.010) (Fig 6b).

The structure model index (SMI) quantifies the plate and rod characteristic of 3D-trabecu-
lar-structure [27]. SMI is negative in case of concave surfaces, like in trabecular bone. The SMI
in our investigation did not show significant changes between the groups.

Fig 3. Results Biomechanical Testing, V-max absolute and ratio. (a) Dot-plots of absolute V-max values for controls, Rivaroxaban and Enoxaparin;
Control sides (unfractured femur) and experimental sides (fracture). No sign. differences between controls and substances. (b) Dot-plot of ratios fractured
to unfractured bones in V-max for controls, Rivaroxaban and Enoxaparin. No sign. differences between controls and substances.

doi:10.1371/journal.pone.0159669.g003
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The degree of anisotropy (DA) as well as the trabecular thickness (Tb.Th.) showed statistically
significant lower results in the treated groups compared to the control group (Fig 6c and 6d).
Bone surface (BS) is determined by triangulating the surface and calculating the total area of tri-
angles. The surface of the bone (BS) was found significant higher in the Rivaroxaban- (p = 0.002)
and the Enoxaparin-group (p = 0.033) than in the control group (Fig 6e). No statistical differ-
ences were found between Rivaroxaban and Enoxaparin for any of the callus morphometric
measurements.

Discussion
Still, there is considerable controversy concerning the question of whether anticoagulant medi-
cation, especially broadly used LMWH would potentially interfere with bone healing. In this
context, Street et al. found a significant delay in fracture healing in an unstabilized rabbit rib
fracture model following the administration of Enoxaparin [11]. In the Enoxaparin group, the
grade of fracture healing was reduced at days 7 and 14, and the mechanical properties were
weaker at day 21 compared to controls. In contrast, Hak et al. investigated Dalteparin in a stan-
dard stabilized rat femur fracture model and were not able to observe any deleterious effects
[28]. Furthermore, variable effects on bone have been shown with distinct formulations of
LMWHs. Fondaparinux for example was shown to cause higher mitochondrial activity and
protein synthesis in osteoblasts compared to Enoxaparin and unfractionated heparin [7].

Fig 4. Results Biomechanical Testing, work to failure.Dot-plots of work to failure (Nmm) for controls,
Rivaroxaban and Enoxaparin; experimental sides (fracture). No sign. differences between controls and
substances.

doi:10.1371/journal.pone.0159669.g004
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Broadly, the dose of applied medication has an impact on the results. Negative effects tend
to increase with experimental overdoses. In an in vitro bone nodule assay, supertherapeutic
doses of LMWH have been proven to decrease cancellous bone volume, demonstrated by a
lack of normal remodeling and repair [29]. Supertherapeutic doses also produced a decrease in
the osteoid surface area and alkaline phosphatase activity in a dose-dependent manner [9].

The mechanism of how anticoagulant medication interferes with bone-healing is still
unclear. Obviously, there might be some effect on the fracture-hematoma which plays a crucial
role in the restoration of fractured bones. It has been reported that routine use of LMWH in
total hip arthroplasty has higher rates of surgical side hematomas [30]. Thus, the early use of
LMWH in orthopedic patients suffering fractures may presumably lead to larger fracture site
hematoma. As Mizuno et al. stated the osteogenic potential of the fracture side hematoma, its
significance and beneficial role has been generally accepted [31]. Several studies have shown

Fig 5. Micro-CT Scan, 3D reconstruction within the ROI. μCT scans, 3-dimensional reconstruction of ROI, virtually
sliced in half or axial cuts. (a, b) representative specimen of the control group. Lower callus volume in comparison to
Rivaroxaban/Enoxaparin (representative specimen, here Rivaroxaban, pictures (c) and (d)).

doi:10.1371/journal.pone.0159669.g005
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that evacuation of this hematoma can be deleterious, especially when performed several days
following fracture, after the inflammatory phase has ended [32, 33]. In contrast, Street et al.
observed that the high potassium (K+) concentration of fracture site hematoma is cytotoxic to
endothelial cells and osteoblasts and therefore inhibits bone formation [34]. Only after these
cytotoxic elements have undergone resorption can the angiogenic and osteogenic cytokines
present within the fracture hematoma become functional. Brighton and Hunt described an
area of architectural disruption and cell degradation that diminishes with the distance from the
hematoma [35]. So increased fracture site hematoma volume as well as lacking hematoma may
therefore provide deleterious effects on the physiological cascade of fracture healing.

Additionally, unfractioned heparin and some LMWH have been shown to provide direct,
cell-mediated effects on bone formation and resorption by interfering with osteoblast- and
osteoclast-function.

Unfractioned heparin has also been shown to negatively influence bone formation by pro-
moting the activation of osteoclasts and decreasing bone volume in rats [6, 8]. This was further
specified in vitro and could be linked to enhanced osteoclastic bone resorption through inhibi-
tion of osteoprotegerin activity [36] and induction of bone resorption in rat osteoclasts [6, 8].
Furthermore, previous studies have shown that heparin and LMWH, for example Enoxaparin,
exert negative effects on alkaline phosphatase expression, as key-protein indicative for osteo-
blastic function [29, 37]. Ultimately, heparin seems to be able to inhibit BMP-2 osteogenic

Table 2. Results Micro CT Scan.

Animal/Bone Substance BV Density (mg HA/ccm) BMC SMI DA BS Tb.Th

1 Rivaroxaban 68.7 619 42.5 -0.88 1.10 1574 0.100

2 73.7 644 47.5 -0.87 1.20 1693 0.099

3 96.8 642 62.2 -0.84 1.12 2199 0.100

4 80.2 634 50.5 -1.26 1.14 1782 0.100

5 75.2 620 46.6 -1.68 1.13 1634 0.099

6 76.9 637 49.0 -1.61 1.09 1655 0.099

7 92.6 652 60.4 -1.77 1.16 1967 0.101

Mean±SD 80.6±10.3 635±12 51.2±7.3 -1.27±0.41 1.13±0.04 1786±223 0.100±0.001

8 Enoxaparin 84.8 645 54.7 -0.84 1.11 1968 0.098

9 61.1 647 39.5 -0.83 1.13 1367 0.101

10 77.3 638 49.4 -1.80 1.12 1549 0.108

11 85.9 649 55.8 -1.56 1.17 1839 0.101

12 60.8 634 38.5 -0.16 1.13 1431 0.101

13 67.2 635 42.7 -0.87 1.12 1517 0.101

14 61.9 624 38.7 -0.13 1.16 1499 0.099

Mean±SD 71.3±11.2 639±9 45.6±7.6 -0.88±0.63 1.14±0.02 1596±222 0.101±0.001

15 Control 58.2 643 37.4 -1.22 1.15 1272 0.101

16 64.3 646 41.5 -0.18 1.16 1463 0.108

17 64.1 644 40.6 -1.10 1.17 1278 0.104

18 63.9 647 42.4 -1.09 1.18 1433 0.104

19 61.3 648 39.7 -0.80 1.20 1284 0.106

20 70.7 647 45.7 -2.17 1.18 1433 0.103

Mean±SD 63.7±4.1 646±2 41.2±2.8 -1.09±0.64 1.17±0.02 1360±91 0.104±0.002

Absolute values of micro-CT parameters for each animal (bone). Displayed are bone volume (mineralized callus volume = BV), density of the callus (tissue

mineral density TMD), bone mineral content BMC (defined as the callus BV multiplied by TMD), the structure model index (SMI), the degree of anisotropy

DA, the bone-surface (BS) and trabecular thickness (Tb.Th).

doi:10.1371/journal.pone.0159669.t002
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activity by binding to BMP-2 and the BMP receptor. This effect comes along with reduced
Runx2, osteocalcin and alkaline phosphatase expression [38].

There is some evidence that the effects of heparin and its derivatives on osteoblast differenti-
ation are molecular-weight dependent and increase with the molecule-mass. Handschin et al.
compared the effects of Dalteparin and Fondaparinux using primary human osteoblasts. In
that study, Dalteparin was found to produce a significant reduction in osteoblast differentiation
and proliferation at a dose of 300μg/ml causing a decline in osteoblast specific markers, osteo-
calcin and alkaline phosphatase. In contrast, Fondaparinux, resembling the smaller molecule,
did not produce a significant reduction in any of these variables [39]. The critical mass to affect
either osteoblast differentiation or mineralization was supposed to be around 3000 Da [29, 37].

Part of the bigger impact of heparin compared to LMWH is the diverse potential to interfere
with osteoclast-linages. Muir et al. for example compared the effects of the LMWH (Tinzaparin
0.5–1.0 U/g), with that of heparin (0.5 and 1.0 U/g) in Sprague—Dawley rats and found a dose-
dependent decrease in cancellous bone volume for Tinazaparin and unfractioned heparin,

Fig 6. Summary Micro-CT Scan.Micro-CT based assessment of histomorphometry, black points indicate exact data, grey arbour mean data ± standard
deviation. (a) Bone Volume BV (mm³) = mineralized callus volume: Significant difference of Rivaroxaban compared to control group (p = 0,004). (b) Bone
Mineral Content = BMC defined as callus BV multiplied by TMD (mg hydroxyapatite/ ccm): Significant difference of Rivaroxaban compared to control
group (p < 0,05). (c) Degree of Anisotropy = DA: Significant difference of both substances compared to control group (p < 0,05). (d) Trabecular
Thickness = Tb-Th (mm): Significant difference of Rivaroxaban compared to control group (p < 0,05). (e) Bone Surface = BS (mm²): Significant difference
of both substances compared to control group (p < 0, 05).

doi:10.1371/journal.pone.0159669.g006
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which was dramatically higher in heparin [9]. These results were explained by the fact that
while both—heparin and LMWH—decreased osteoblast number and activity, only unfrac-
tioned heparin was found to increase the number and activity of osteoclasts. The observation
that heparin increases bone resorption while LMWH does not, is supported by ex vivo studies
measuring the release of 45Ca from prelabeled fetal rat calvarias [40]. Besides, it has been
shown that heparin's effects on bone are not readily reversible because it remains sequestered
within the bone´s microenvironment [40].

Recently a new, direct factor Xa inhibitor (Rivaroxaban, Xarelto1, BAYER) is available for
the prevention of venous thromboembolism in adult patients undergoing elective hip and knee
replacement surgery. It has been proven to be highly effective in preventing thromboembolic
events [2, 3, 41–44]. Coupled with the fact that Rivaroxaban is available orally, eliminating the
need for invasive administration, Rivaroxaban is an attractive option for orthopaedic surgeons
and patients alike. Regarding the efficacy of the substance, the risk of symptomatic venous
thromboembolism in elective joint-replacement surgery was lowered with Rivaroxaban, but
considerations of increasing the relative risk of clinically relevant bleeding with this treatment
have been drawn [44], this could be relativized by pooled data in the RECORD-trials [3].

Literature concerning possible interactions of Rivaroxaban or other, direct factor Xa-inhibi-
tors with bone-formation is sparse. Solayer et al. treated primary human osteoblast cultures in
vitro with varying concentrations of Rivaroxaban and Enoxaparin and found a significant
reduction in osteoblast function for both substances, measured by a decrease in alkaline phos-
phatase activity. This reduction was associated with reduced mRNA expression of the bone
marker osteocalcin, the transcription factor Runx2, and the osteogenic factor BMP-2. Though
both agents did not adversely affect osteoblast viability, the authors concluded that Rivaroxa-
ban and Enoxaparin may negatively affect bone through a reduction in osteoblast function,
with Rivaroxaban having the major impact [16].

Similarly Gigi et al. observed a dose-dependent inhibition of the DNA-synthesis and crea-
tine kinase-specific activity of SaOS2 cells via Rivaroxaban. In this experiment, SaOS2 cells
were treated for 24 hours with different concentrations of Rivaroxaban (0.01–50 μg/ml) and
analyzed for DNA synthesis and creatine kinase- and alkaline phosphatase-specific activities.
For analyzing mineralization, the treatment was extended 21 days. Rivaroxaban dose-depen-
dently inhibited up to 60% DNA synthesis of the cells. Creatine kinase-specific activity was
also inhibited dose-dependently to a similar extent by the same concentrations. Alkaline phos-
phatase-specific activity was dose-dependently inhibited but only up to 30%. Cell mineraliza-
tion was unaffected by 10 μg/ml Rivaroxaban. The in vitromodel demonstrated a significant
Rivaroxaban-induced reduction in osteoblastic cell growth and energy metabolism and slight
inhibition of the osteoblastic marker, alkaline phosphatase, while osteoblastic mineralization
was unaffected. To summarize, the findings might indicate that Rivaroxaban inhibits the first
stage of bone formation [17].

Contradictory, our group investigated genetical alterations by Enoxaparin and Rivaroxaban
in vitro (MSC during osteogenic differentiation) and was, amongst others, able to find a signifi-
cant downregulation of ALPL, Osteocalcin, BMP2, RunX2, CDH11 and SP7/OSX (osterix) for
Enoxaparin but not for Rivaroxaban [45, 46].

Fusaro et al. studied the impact of warfarin and dabigatran administration on bone struc-
ture via histomorphometric analysis of unfractured vertebrae and femura in rats [47]. They
were not able to show significant changes of bone-related, histomorphometric parameters of
dabigatran treated rats vs. controls, Warfarin on the other hand showed substantial changes.
Authors concluded that dabigatran might have a better bone safety profile than warfarin poten-
tially resulting in a lower incidence of fractures.
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In the given experiment we investigated the influence of Enoxaparin and Rivaroxaban on
the biomechanical and morphological properties of new-formed callus in a standardized
rodent fracture model.

The results clearly indicate two major conclusions: First, the biomechanical characteristics
were not altered by the chosen, anticoagulant medication. Second, both pharmacons lead to
morphological changes of the fracture-callus, precisely to an enhanced callus volume (signifi-
cant for Rivaroxaban) with reduced density (trend for both substances), to a bigger bone sur-
face (significant for both substances) and in the case of Rivaroxaban, to significantly increased
bone mineral content. Furthermore, geometrical parameters such as degree of anisotropy and
trabecular thickness (only Rivaroxaban significant) were different from controls. Our results
are consistent with a recently published survey by Klüter et al. [48]. As Fusaro et al. [47] were
not able to see histomorphometric alterations by dabigatran in unfractured bones, normal
bone remodeling and fracture healing might respond differently to direct factor Xa inhibitor
exposures and thus has to be evaluated differentiated.

Interpretation and conjunction of these facts seems rather complex. Several studies have
used μ-CT to measure quantities such as bone volume, bone volume fraction, and mineral den-
sity in fractured callus [49–54]. However, contradictory results have been reported regarding
how well these quantities predict callus mechanical properties or how these values indicate
impairment of bone-healing [50, 52, 55].

Higher callus-volume has been previously associated with impaired fracture healing. Shuid
et al. studied the effects of calcium supplementation on the late phase healing of fractured, oste-
oporotic bones using an ovariectomized rat model and were able to demonstrate higher callus
volumes after eight weeks in the ovariectomized group compared to controls. Though no clear
correlation to biomechanical testing (bending stress and Young’s modulus) could be found, the
authors concluded that bigger callus could indicate impaired fracture healing of osteoporotic
bone due to delay in callus maturation [55]. Contradictory, Morgan et al. correlated larger
amounts of callus and tissue mineral density (TMD) positively with better fracture healing
[24]. In their survey, the process of fracture healing was strongly linked to an increase in tissue
mineral density (TMD) at every investigated time point, whereas absolute and relative amounts
of mineralized tissue (BV, BMC) varied. Their results indicate that while the regain of bone
strength and stiffness over time is largely due to a time-dependent increase in mineral density,
this relationship between mechanical properties and mineral density can be modulated by fac-
tors that alter geometry.

TMD seems to represent one of the most important predictors of fracture healing and is
strongly correlated to callus mechanical properties. Nyman et al. investigated fracture healing
under anabolic treatment in a rat femur fracture model and were able to show that mineralized
callus volume inversely and TMD of the callus positively correlated with peak force as deter-
mined by three-point bending, though the correlations were relatively weak [56]. The same
behaviour was demonstrated in an investigation by Hao et al. [57]. The authors confirmed a
significantly reduced mineralized bone volume in Micro-CT analysis in osteoporotic rat frac-
tures, which implied a delay in fracture healing with decrease of the degree of mineralization.

Similar to studies investigating insufficient or complicated fracture healing under various
circumstances [24, 55, 57], the tested types of anticoagulation, Rivaroxaban as well as Enoxa-
parin, showed concordant alterations of the new-formed callus, namely and in first rank to
enhanced callus volume (BV) with reduced density (TMD) and to a bigger bone surface (BS).
This might possibly indicate that both substances—to presume anticoagulation in general—
have the potential to interfere with normal bone healing. Causally this could be linked to the
hypothetically bigger fracture-hematoma under anticoagulant medication [28, 34, 35] as well
as to possible, direct impairment of osteoblasts [16, 17, 29, 37]. As at least our group could not
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reproduce direct, osteoblast inhibition by Rivaroxaban whilst Enoxaparin did so [45, 46], we
are assuming the first rather than the latter. Important questions remain open: Neither the role
of the osteoclast is defined sufficiently in that context, nor is the formation or the possible alter-
ations within the fracture hematoma. As osteoclasts play an important role in the remodeling
process, further investigation should focus on them.

Approved human dosages for Enoxaparin are given between 0.6mg/kg (prophylaxis of
thrombosis in elective surgery) to 2mg/kg (therapeutical dosage) bodyweight per day. This cor-
responds to 60–200 IU/kg per day. Extrapolations of the human dosages have been used in
prior animal studies, Street et al. administered 1mg/kg Enoxaparin per day in a closed rib frac-
ture model in rabbits and were able to prove impairment of fracture-healing [11]. Hak et al.
used 70 IU/kg of Dalteparin, which represents a similar LMWH in application and indication
(prophylactic dose in elective orthopedic surgery would be 5000 IU/day, conform to 70 IU/kg
in humans), in a closed rat femur fracture model and observed no differences to his controls
[28]. According to experimental experience, a four- to five-fold overdose of human medication
is at least needed in rat models to achieve similar therapeutic results.

Rivaroxaban is a molecule of the oxazolidinone-group, showing poor hydro-solubility and a
95% to 98% plasmatic binding to albumin. Hence, determination of plasma levels is difficult
and of low significance—both, in humans and in the experimental situation [58–61]. As a
result, we attempted to equilibrate the two test-groups in the main experiment via adjusting a
constant factor Xa-inhibition of 80%. This objective was finally achieved by injecting 1000 IU/
kg bodyweight Enoxaparin twice daily on the one- and by application of Rivaroxaban feed con-
taining 600 ppm on the other hand. In comparison to the human dosage, this means a 20-fold
overdose in the experimental situation.

After 21 days the mechanical strength of the new-formed callus of the right femur reached
close to 20% of the strength of the contralateral bone in 3-point bending. The significance of
this result is difficult to obtain due to sparse, preexisting literature. Closest to our model comes
the work of Hak et al., who tested Enoxaparin-treated femora via torsional testing after 2 and 3
weeks and obtained values between 20% and 35% of the torsional strength in accordance to the
contralateral side [28]. Kaspar et al. tested two femora in a standardized rat femur-osteotomy
model after two weeks, as well via torsional testing, and found percentage-torques of 9.8% and
13.8% of the contralateral bone [62]. Keeping in mind that torsional testing in general produces
higher absolute values and reveals higher variance than 3-point bending, our results are well in
line with prior knowledge [25, 63, 64].

With 21 days from the fracture to euthanasia, the treatment- or healing-interval of the
transverse femur fracture remained relatively short. This was driven by the thought that possi-
ble alterations of the fracture-healing process might be linked with the evolution of the frac-
ture-hematoma and should therefore predominantly interfere with the first phase of bone-
healing. As resembling a transient state in the physiological process, the effect might thus be
transitory and is likely to be compensated later on, especially in animals. Additionally, the in
vitro experiment by Gigi et al. was indicative that Rivaroxaban inhibits predominantly the first
stage of bone formation [17].

Having the experiment terminated after 21 days, it is obviously impossible to determine if
and when measurable treatment effects adapt to untreated controls.

The applicability of our data to the human situation has certain limitations, as endochondral
(via cartilage) bone formation predominates the process of fracture healing in rats whereas
humans show a mixture of endochondral and intramembranous(osteoblastic) bone formation
[65]. Therefore, it remains unclear whether effects in humans would be enhanced, reduced or
even compensated. Nevertheless, the given experimental setup offers the possibility of studying
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the effects of factor Xa-Inihibitors on bone and bone-healing and could serve as experimental
standard for further investigations.

As our survey focused biomechanical applications and microstructural properties of the cal-
lus, we were not able to asses changes of the cellular behavior and composition within the cal-
lus. Furthermore, examinations concerning signaling and genetic regulation within the fracture
hematoma representing the first stage of bone-formation are needed to understand which cells
or pathways are actually affected by anticoagulant medication.

To summarize the key-findings of our study, a bigger and somewhat disorganized callus
was present in both treatment groups, which had similar biomechanical strength properties
than the untreated controls. Consequently, the significance of observable morphological alter-
ations of the callus remains unclear.
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