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Abstract
Pathology driving β-cell loss in diabetes is poorly defined. Chronic subclinical inflammation

is associated with β-cell dysfunction. Acute in vitro exposure of islets and β-cells to an

inflammatory cytokine cocktail (IL-1β/TNF-α/IFN-γ) results in loss of cell function and viabil-

ity. The contribution of each cytokine alone or in combination has been evaluated in homo-

geneous mouse β-cell lines and primary mouse islets. Cytokine cooperation is required for

β-cell apoptosis with the most potent combinations including IL-1β. Single cytokine expo-

sure did not induce β-cell apoptosis. Expression of endogenous interleukin-12 in β-cells cor-

related with inflammatory cytokine combinations that induced β-cell apoptosis. Uncoupling

of the IL-12 axis by a block of IL-12 production, inhibition of IL-12 receptor/ligand interaction

or disruption of IL-12 receptor signaling conferred protection to β-cells from apoptosis

induced by inflammatory cytokine stimulation. Signaling through STAT4 is indicated since

disruption of IL-12 concomitantly reduced inflammatory cytokine stimulation of endogenous

IFN-γ expression. Primary mouse islets isolated from mice deficient in STAT4 show resis-

tance to inflammatory-cytokine-induced cell death when compared to islets isolated from

wild type mice. Collectively, the data identify IL-12 as an important mediator of inflammation

induced β-cell apoptosis. Modulation of IL-12/STAT4 signaling may be a valuable therapeu-

tic strategy to preserve islet/β-cell viability in established diabetes.

Introduction
Worldwide diabetes incidence is predicted to exceed 592 million by 2035 [1]. Diabetes is a
complex metabolic disease being influenced by numerous factors. A core feature is the failure
of insulin producing β-cells for both type 1 (T1DM) and type 2 (T2DM) diabetes [2, 3]. Causes
of β-cell failure are poorly understood, but chronic sub-clinical inflammation is a contributing
factor. Inflammation is a feature of both T1DM and T2DM [4–12]. Acute exposure of islets
to inflammatory cytokines ex vivo promotes islet stress and dysfunction, including loss of
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glucose-stimulated insulin secretion, increased apoptosis and elevated expression of various
marker genes, including monocyte chemoattractant protein-1 (MCP-1) [13, 14]. Elevated
MCP-1 in islets occurs during early insulitis in experimental diabetes mouse models and is
used clinically to assess transplantable human islets [15]. Induction of islet dysfunction by
inflammatory cytokines, especially the triple cytokine combination of IL-1β/TNF-α/IFN-γ, is
extensively reported [16]. The cellular responses in islets and β-cells to inflammatory cytokine
exposure are less well characterized.

Several cellular effects have been associated with exposure of β-cells to inflammatory cyto-
kines [17, 18]. A candidate mediator of β-cell dysfunction is interleukin-12 (IL-12). Local pro-
duction of IL-12 has been reported and may establish an islet:immune interface for targeted β-
cell destruction [19]. IL-12, a heterodimeric ligand composed of subunits, p35 (IL-12 p35) and
p40 (IL-12 p40), coordinates a Th1 immune response by inducing expression of IFN-γ. Princi-
pally considered an immune factor, IL-12 has also been identified in non-immune cells, includ-
ing islets [19]. Being a key mediator in disease pathologies, several approaches to uncouple IL-
12 action have been identified. STA-5326 (Apilimod1) is a small molecular weight compound
that inhibits c-Rel translocation from the cytoplasm to the nucleus and disrupts transcription
of both IL-12 p35 and IL-12 p40 [20–23]. Lisofylline (LSF) is a methylxanthine metabolite of
Pentoxifylline that inhibits IL-12 signaling activity. LSF limits commitment to T-helper 1 cell
development and IFN-γ production [24]. LSF stopped onset of Type 1 diabetes in NODmice
[25]. Antibodies that bind, sequester and neutralize IL-12 p40, eg Usterkinumab1 and Bria-
knumab1 have proven clinical efficacy in the autoimmune condition psoriasis [26–29]. Anti-
body-mediated neutralization of IL-12 p40 in islets conferred protection to β-cell dysfunction
mediated by inflammatory cytokines [19]. Ligation of the IL-12 ligand to its heterodimeric
receptor primarily activates (phosphorylates) signal transducer and activator of transcription 4
(STAT4). Genetic deletion studies show STAT4 is an important factor in elevating susceptibil-
ity to several autoimmune diseases. In terms of diabetes, NOD mice deficient in STAT4 do not
develop spontaneous diabetes unlike wild-type NODmice [30, 31].

Exposure of islet β-cells to pro-inflammatory cytokines results in β-cell dysfunction [14,
19]. The current report has identified a pivotal role for IL-12 and IL-12 mediated STAT4 sig-
naling in the development of β-cell apoptosis. These data identify potential therapeutic targets
for preservation of β-cell function and/or β-cell survival in established diabetes.

Materials and Methods

Ethics Statement and Mouse Islets
All protocols and procedures were performed in accordance with the “Principles of laboratory
animal care” (NIH publication no. 85–23), AAALAC, and approved by Institutional Animal
Care and Use Committee (IACUC protocol #11–013) at Eastern Virginia Medical School. Islets
were isolated from C57BL/6J (Jackson Laboratory, Bar Harbor, ME) mice between the ages of 8
to 24 weeks by common bile duct cannulation and collagenase digestion [25]. STAT4ko mice
(on C57BL/6J background; gift from Dr. Mark Kaplan, Indiana University) between the ages of
8 weeks to 28 weeks were used for islet isolation. Individual islets were hand picked and placed
in 1 mL RPMI media (Life Technologies, Grand Island, NY) supplemented with 10% fetal
bovine serum/antibiotics.

Cell Line
βTC-3 (mouse) cells (as described in [32]) were cultured at 37°C with 5% CO2 in DMEM (Life
Technologies) supplemented with 18% fetal bovine serum, 100units/mL penicillin, 100μg/mL
streptomycin, 4mM L-glutamine, 25mM glucose, and 1mM sodium pyruvate.
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Treatment and apoptosis detection
Cell stimulation: Isolated islets or cells were treated for 24 hours with either a pro-inflamma-
tory cocktail (PIC) of all three cytokines (IL-1β (5 ng/mL), TNF-α (10 ng/mL), and IFN-γ
(100 ng/mL), R&D Systems, Minneapolis, MN), a combination of two of the cytokines, or an
individual cytokine only. Selected inhibitors or antibody at the indicated concentrations (STA-
5326 (1nM or 100nM) (Apilimod, Axon Medchem BV, Groningen, Netherlands); Lisofylline
(LSF, 20μM); c47 (50μM); anti-IL-12 antibody (1μg/mL) (eBioscience, San Diego, CA)) were
added 30 minutes prior to cytokine treatment and remained for the duration of treatment.

Fluorescence microscopy: Treated cells were washed in cold PBS and then incubated in cold
PBS containing 0.1 μMYO-PRO-1 (Life Technologies) and 1 μg/mL Propidium Iodide (PI) at
4°C for 30 minutes. For cell lines, five random fields per well were analyzed and for islets, all
islets were analyzed. The densitometric fluorescence value (green and red channels) were ana-
lyzed using ImageJ 1.42q (http://rsb.info.nih.gov/ij) to determine the fluorescence for each
treatment. An apoptotic index was determined by relative expression of normalized signal with
PIC being defined as unity. Images were captured with Axiophot (Zeiss, Jena, Germany) and
Axiovision (Zeiss) image analysis.

Caspase-3 detection: Islets or cell line were treated for 4 hours without or with inhibitor.
Cleavage of pro-caspase-3 was measured using a caspase-3 assay kit (BD Pharmigen, Franklin
Lakes, NJ) according to the manufacturer’s instructions. Fluorescence was measured (Spectra-
Max, Molecular Devices, Sunnyvale, CA) using excitation wavelength 380 nm and emission
wavelength 440 nm.

Real-time PCR
Isolated islets from wild-type mice and STAT4ko mice or βTC-3 cells were treated with varying
combinations of PICs for either 4 or 24 hours without or with inhibitor. After treatment, total
RNA was isolated (RNeasy Mini Kit; Qiagen, Valencia, CA) and transcribed using murine leu-
kemia virus reverse transcriptase (Life Technologies) and random hexamers (Life Technolo-
gies) using a 20μL reaction volume. RT-PCR was performed in a CFX96 Thermal Cycler (Bio-
Rad, Hercules, CA). Total reaction volume was 25μL, which consisted of 3μL cDNA (five-fold
dilution) and Jump Start Taq Polymerase (Sigma-Aldrich, St Louis, MO). The primers used
with SYBR Green 1 (Molecular Probes, Carlsbad, CA) probes are shown in Table 1. Taqman
primers were used for IL-12 p40, IL-12 p35, and IFN-γ (Life Technologies). All RT-PCR reac-
tions were performed in triplicate. The housekeeping gene GAPDH was used to normalize the
data. The 2-ΔΔCT method was used to analyze the data.

Data Analysis
Experiments were performed at a minimum in triplicate. For statistical analysis, student t test
or one-way ANOVA with Tukey post hoc testing (Prism 4.0, Graph-Pad Software, La Jolla,

Table 1. Primers used for RT-PCR.

Primer Sequence

GAPDH forward 5’-TCA CCA CCA TGG AGA AGG C-3’

GAPDH reverse 5’-GCT AAG CAG TTG GTG GTG CA-3’

MCP-1 forward 5’-CTT CTG GGC CTG CTG TTC A-3’

MCP-1 reverse 5’-CCA GCC TAC TCA TTG GGA TCA-3’

IL-23 p19 forward 5’-CAG TCA GAG TTG CTG CTC CGT GG-3’

IL-23 p19 reverse 5’-CAG CCA ACT CCT CCA GCC AGA G-3’

doi:10.1371/journal.pone.0142735.t001
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CA) were used to determine statistical significance (95% CI and p< 0.05). Data set for analyses
is provided (S1 Appendix).

Results

Induction of islet death by pro-inflammatory cytokines
Acute overnight treatment of isolated mouse islets with a cocktail of pro-inflammatory cyto-
kines (PIC; IL-1β/TNF-α/IFN-γ) induced cell death (Fig 1). A significant increase in cell death
in PIC-treated islets was detected using the fluorescent viability dyes YO-PRO-1 (green) and
propidium iodide (red) when compared to non-cytokine treated control (Ctl) islets. Triple
cytokine treatment (PIC) induced a significant increase in fluorescence when compared to
untreated islets (p< 0.05). Representative images are shown in Fig 1A. The data is quantified
in Fig 1C. Relative fluorescence units (RFU) for triple cytokine treated islets was 17.9 ± 3.3
RFU as compared to 2.9 ± 1.2 RFU for control islets.

To determine if individual cytokine exposure was sufficient for the induction of islet death,
islets were treated with single cytokines. Representative images are shown in Fig 1B. The data is
quantified in Fig 1D. Islets were incubated with each cytokine at the equivalent dose used in
the PIC cocktail (one-fold; 1X) and at four-fold this dose (4X) (Fig 1B and 1D). Incubation
either with IL-1β, TNF-α, or IFN-γ alone (1X) did not induce elevated cell death relative to
control islets. Increasing the dose of each cytokine 4-fold did not significantly induce cell
death. Islets that were treated with single cytokines at either a 1X or 4X dose showed signifi-
cantly less cell death than islets treated with PICs (p< 0.001) and no significant difference to
control (Fig 1D).

Paired combinations of the cytokines IL-1β, TNF-α, and IFN-γ were used to determine if a
dual cytokine treatment was sufficient to induce islet death equivalent to PIC treatment. Signif-
icant increases in cell death (fluorescence) were observed and quantitated when the cytokine
combinations of IL-1β/TNF-α and IL-1β/IFN-γ were used to treat islets (p< 0.05, p< 0.01;
relative to control; Fig 1A and 1C). Treatment with the combination TNF-α/IFN-γ did not sig-
nificantly increase cell death when compared to control islets (ctl 2.9 ± 1.2 RFU; n = 3). Results
from quantitative analyses of fluorescence (Fig 1C) showed that cell death for triple cytokine
treated islets (17.9 ± 3.3 RFU) was greater than IL-1β/TNF-α (14.6 ± 3.6 RFU), IL-1β/IFN-γ
(13.4 ± 2.2 RFU), and TNF-α/IFN-γ (4.9 ± 1.4 RFU) treated mouse islets respectively. The dual
cytokine treatment of TNF-α/IFN-γ induced cell death significantly less than triple cytokine
(PIC)-treatment (p< 0.01).

Triple cytokine (PIC)-treatment is a more efficacious inducer of cell death in islets com-
pared to treatment either with a single cytokine or dual combination of these pro-inflammatory
cytokines.

Effect of pro-inflammatory cytokine treatment on MCP-1 gene
expression
MCP-1 is a chemokine that is released from islets under conditions of stress and is a recognized
marker of β-cell stress. To determine if cytokine-induced changes in MCP-1 corresponded
with induction of cell death in mouse islets, expression of MCP-1 gene was measured. The
greatest increase in MCP-1 expression occurred in mouse islets treated with triple cytokines
(PIC; Fig 2A). Relative to MCP-1 following PIC-treatment (defined as 100%) the expression of
MCP-1 by single cytokines at 4-fold concentration was 41.5% ± 17.5 IL-1β, 29% ± 9 TNF-α,
and 10.7% ± 2.3 IFN-γ. Expression of MCP-1 was significantly less than PICs in islets treated
with single cytokine at 1-fold, 2-fold, and 4-fold doses (p< 0.001).
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MCP-1 expression was determined in mouse islets treated with paired combinations of
cytokines (Fig 2B). Induction of MCP-1 gene expression by IL-1β/TNF-α, IL-1β/IFN-γ, and
TNFα/IFNγ was significantly less than PIC-treated islets (p< 0.01, p< 0.01, p< 0.001). IL-
1β/TNF-α, IL-1β/IFN-γ, and TNF-α/IFN-γ stimulated relative MCP-1 expression 78% ± 7.0,

Fig 1. Single cytokine treatment is not sufficient to induce apoptosis in isolatedmouse islets. Islets were examined microscopically following labeling
with YO-PRO-1 (green) and propidium iodide (red). (A) Islets were treated with a triple cytokine cocktail of IL-1β/TNF-α/IFN-γ (PIC), or dual cytokine
combinations of IL-1β/TNF-α, IL-1β/IFN-γ, or TNF-α/IFN-γ. (B) Islets were treated with a single cytokine of either IL-1β, TNF-α, or IFN-γ at a 1-fold (1x) or
4-fold (4x) dose. Graph shows quantified apoptosis (C) from dual cytokine treatment or (D) from single cytokine treatment for 1x and 4x doses for all islets per
experiment * p < 0.05, ** p < 0.01, *** p < 0.001 relative to Ctl, ## p < 0.01, ### p < 0.001 relative to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g001
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59% ± 5.4, and 40% ± 10 of the induction seen with triple cytokines (defined as 100% expres-
sion). These data indicate that the cytokine combinations IL-1β/TNF-α, IL-1β/IFN-γ, and
TNF-α/IFN-γ are able to induce MCP-1 gene expression although are less effective than triple
cytokine treatment (Fig 2). These data correlate with the cell death studies (Fig 1).

Pro-inflammatory cytokine treatment induces IL-12 gene expression
A candidate pathway in the development of β-cell dysfunction in diabetes is expression and
production of IL-12 and IL-12 mediated signaling. To determine the influence of pro-inflam-
matory cytokine treatment on the IL-12 pathway, gene expression for the IL-12 ligand (IL-12

Fig 2. Cytokine induced MCP-1 in mouse islets. Expression of MCP-1 gene following stimulation of mouse islets with single cytokines (A) IL-1β, TNF-α, or
IFN-γ at 1x, 2x, or 4x or dual cytokines with (B) IL-1β/TNF-α, IL-1β/IFN-γ, or TNF-α/IFN-γ relative to stimulation with PICs. ## p < 0.01, ### p < 0.001 relative
to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g002
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p40 and IL-12 p35) in response to cytokine combinations was tested in mouse islets (Fig 3).
Dual cytokine combinations of IL-1β/TNF-α and IL-1β/IFN-γ induced IL-12 p40 and IL-12
p35 gene expression to levels equivalent to those induced by PIC-stimulation (Fig 3A and 3B).
Induction of IL-12 genes with TNF-α/IFN-γ treatment was significantly less than the other
dual cytokine treatments or triple cytokine treatment (p< 0.05).

To support the role of the IL-12 pathway in β-cell dysfunction, a neutralizing antibody to
the IL-12 p40 ligand was used to disrupt IL-12. MCP-1 gene expression and apoptosis were
examined in the homogenous mouse β-cell line βTC-3s (Fig 4). Apoptosis was measured by
caspase-3 cleavage. When βTC-3 cells were treated overnight with PICs and a neutralizing IL-
12 p40 antibody (1μg/mL), expression of MCP-1 gene was significantly decreased by 27% ± 5.0

Fig 3. Cytokine treatment affects IL-12 gene expression in mouse islets. (A) IL-12 p40 and (B) IL-12 p35
gene expression was measured in islets treated with PICs or the dual cytokine combinations of IL-1β/TNF-α,
IL-1β/IFN-γ, or TNF-α/IFN-γ. # p < 0.05 relative to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g003

Cytokine-Induced β-Cell Apoptosis

PLOS ONE | DOI:10.1371/journal.pone.0142735 November 10, 2015 7 / 20



Fig 4. A neutralizing antibody to IL-12 p40 protects β-cells from PIC-induced apoptosis. (A) MCP-1
gene expression in PIC-treated βTC-3 cells without or with IL-12 p40 neutralizing antibody. (B) Caspase-3
activity in PIC-treated βTC-3 cells without or with IL-12 p40 neutralizing antibody. Graph (B) shows pro-
caspase-3 cleavage (RFU). # p < 0.05, ## p < 0.01 relative to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g004
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(p< 0.05, Fig 4A). Addition of the IL-12 neutralizing antibody significantly decreased PIC-
induced caspase-3 activity in βTC-3s (539 ± 14 RFU to 482 ± 14 after subtraction of back-
ground 226.3 ± 5.7 RFU) (p< 0.01, Fig 4B).

Inhibition of the IL-12 pathway confers protection in PIC-induced β-cell
apoptosis
A transcriptional inhibitor of IL-12 gene activity was used to explore the effect of IL-12 on β-
cell survival and gene expression. STA-5326 inhibits gene expression of IL-12 p40 and IL-12
p35. Addition of 100nM STA-5326 to PIC-treated βTC-3 cells significantly decreased PIC-
induced IL-12 p40 (Fig 5A) and IL-12 p35 (Fig 5B) gene expression (25% ± 6.6 and 35% ± 5.7

Fig 5. STA-5326 inhibits PIC-induced IL-12 gene expression in β-cells and improves β-cell survival. (A) IL-12 p40, (B) IL-12 p35, and (C) IL-23 p19
gene expression in βTC-3 cells treated with PICs in the absence or presence of 100nM STA-5326. (D) Pro-caspase-3 cleavage in PIC-treated βTC-3 cells
without or with 1nM or 100nM STA-5326. *** p < 0.001 relative to Ctl, # p < 0.05, ### p < 0.001, #### p < 0.0001 relative to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g005
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respectively of PIC-induced levels; p< 0.001, p< 0.0001). βTC-3 cells treated with PICs and
STA-5326 did not show a significant decrease in IL-23 p19 gene expression (Fig 5C). STA-
5326 significantly decreased caspase-3 activity in βTC-3 cells treated with PICs (Fig 5D: PIC,
689.5 ± 29 RFU; PIC + 1nM STA-5326, 602.7 ± 17 RFU; PIC + 100nM STA-5326, 476.2 ± 22
RFU; p< 0.05, p< 0.001).

Additional candidate inhibitors of the IL-12 pathway were also tested in βTC-3 cells and
mouse islets to determine the importance of this pathway in β-cell survival. Lisofylline (LSF)
inhibits the activity of IL-12. LSF and an efficacious structural analog c47 were used to deter-
mine if inhibition of the IL-12 pathway confers β-cell survival. Addition of 20μM LSF prior to
PIC treatment in βTC-3 cells did not change the levels of PIC-induced IL-12 p40 and p35 gene
expression (Fig 6A and 6B). Caspase-3 activity was significantly increased with PIC-treatment
of βTC-3 cells (455.1 ± 8.5 RFU; p< 0.01) when compared to untreated control cells
(402.7 ± 12 RFU) (Fig 6C). Addition of either LSF or c47 prior to PIC-treatment significantly
decreased apoptosis observed in cells (PIC + 20μM LSF 410.7 ± 9.2 RFU, PIC + 50μM c47
397.4 ± 12.4 RFU; p< 0.01, p< 0.01). Detection of cell death by fluorescence (YO-PRO-1)
showed LSF and c47 significantly protecting β-cells from PIC-induced cell death (p< 0.01).
Representative images and quantitation are shown in Fig 6D and 6E respectively.

Inhibitor c47 was used to disrupt the IL-12 pathway in mouse islets. Mouse islets treated
with PICs showed a significant increase in β-cell apoptosis measured by caspase-3 cleavage rel-
ative to untreated (Ctl) islets (Fig 7A; PIC, 156.9 ± 14.1 RFU vs Ctl, 132.1 ± 5.8 RFU; p< 0.05).
Following addition of c47, PIC-induced caspase-3 cleavage was significantly decreased (PIC +
c47, 132.3 ± 3.1 RFU; p< 0.05). Cell death was additionally measured by fluorescence. Pre-
served β-cell survival was observed when mouse islets were treated with PICs and c47. Repre-
sentative images of fluorescent tagged cell death and quantitation of apoptotic index are shown
in Fig 7B and 7C respectively. Measurement of fluorescence showed PIC-treatment signifi-
cantly increased apoptosis of islets (p< 0.001). Consistent with the caspase-3 study, addition
of c47 to PIC stimulation significantly decreased PIC-induced apoptosis (Fig 7C; p< 0.001).

Inhibition of the IL-12 pathway through transcriptional down-regulation of IL-12 p40 and
IL-12 p35 by STA-5326 or inhibition of IL-12 activity through LSF or c47 leads to a decrease in
PIC-induced β-cell/islet death.

STAT4 signaling is a key component of the IL-12 pathway in PIC-
induced islet death
A characteristic consequence of IL-12 ligand/receptor ligation is expression of IFN-γ. To exam-
ine whether IL-12 induces IFN-γ gene expression in β-cells agents that uncouple IL-12 (IL-12
p40 neutralizing antibody, STA-5326, LSF, or c47) were tested in the presence of PICs (Fig 8A–
8D). PIC-stimulation of the mouse β-cell line, βTC-3 induced IFN-γ expression. Expression of
the IFN-γ gene by PIC-treatment (defined as 100%) was significantly reduced with inclusion
of either the IL-12 p40 neutralizing antibody (27% ± 5.0%), STA-5326 (19% ± 9.1%), LSF
(28% ± 8.8%), or c47 (34% ± 9.4%) (p< 0.05).

STAT4 is a second messenger activated by IL-12 receptor ligation that transcriptionally acti-
vates the IFN-γ gene. To determine if STAT4 signaling is important for cytokine-induced islet
apoptosis, the effect of cytokine combinations was compared between wild-type islets and islets
from mice genetically deficient in STAT4 (STAT4ko islets). Cell death in mouse islets was
determined by fluorescence (representative images in Fig 9A). Islet death occurred in WT islets
treated overnight either with PICs (1.44 ± 0.11 RFU), IL-1β/TNF-α (1.37 ± 0.09 RFU), and IL-
1β/IFN-γ (1.37 ± 0.08 RFU) relative to control (1.00 ± 0.16 RFU) (Fig 9C). Fluorescent inten-
sity was measured for each treatment in the STAT4ko islets and plotted (Fig 9B). Following
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treatment with PICs, cell death in STAT4ko islets was significantly less than in PIC-treated
WT islets (p< 0.001). Cell death that was observed in the STAT4ko islets treated with the dual
cytokine combinations was not significantly different to control. Comparing islets fromWT

Fig 6. Lisofylline protects β-cells from PIC-induced apoptosis. (A) IL-12 p40 and (B) IL-12 p35 gene expression in PIC-treated βTC-3 cells without or
with 20μM Lisofylline (LSF). (C) PIC-induced caspase-3 activation in the absence or presence of 20μM LSF or 50μM c47 in βTC-3 cells. Graph shows pro-
caspase-3 cleavage relative fluorescent units (RFU). (D) Apoptosis was measured in PIC-treated βTC-3 cells without or with 20μM LSF or 50μM c47. Cells
were examined microscopically following labeling with the viability dye, YO-PRO-1 (green). Representative images are shown for untreated (Ctl), PIC-
treated, PIC with 50μM c47, or PIC with 20μM LSF respectively. (E) Graph shows quantified apoptotic index. ** p < 0.01, *** p < 0.001 relative to ctl,
## p < 0.01 relative to PIC and n� 3.

doi:10.1371/journal.pone.0142735.g006
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mice to STAT4ko mice, islets that lacked STAT4 were protected from apoptosis after treatment
with PICs, IL-1β/TNF-α, and IL-1β/IFN-γ (p< 0.001) (Fig 9C). Treatment with TNF-α/IFN-γ
did not induce significant apoptosis in either WT islets or STAT4ko islets. Disruption of

Fig 7. c47 confers protection to mouse islets from PIC-induced apoptosis. (A) PIC-induced caspase-3
activation in the absence or presence of 50μM c47 in mouse islets. Graph shows pro-caspase-3 cleavage.
(B) Apoptosis was measured in PIC-treated islets without or with 50μM c47. Cells were examined
microscopically following labeling with YO-PRO-1 (green) and PI (red). Representative images are shown for
untreated (Ctl), PIC-treated, or PIC with 50μM c47 respectively. (C) Graph shows quantified apoptotic index.
* p < 0.05, *** p < 0.001 relative to ctl, # p < 0.05, ### p < 0.001 relative to PIC and n > 3.

doi:10.1371/journal.pone.0142735.g007
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STAT4 signaling protected islets from apoptosis induced by PICs, and the dual-cytokine com-
binations of IL-1β/TNF-α and IL-1β/IFN-γ.

Collectively, triple cytokine treatment and the dual cytokine treatments of IL-1β/TNF-α
and IL-1β/IFN-γ significantly induce β-cell death. These pathways involve IL-12. Triple cyto-
kines (IL-1β/TNF-α/ IFN-γ), IL-1β/TNF-α and IL-1β/IFN-γ but not TNF-α/IFN-γ induce IL-
12 p40 and IL-12 p35 gene expression. By uncoupling the IL-12 pathway, PIC-treated β-cells
are protected from PIC-induced cell death. Islets from STAT4ko mice are resistant to cytokine-
induced cell death relative to WT mouse islets.

Discussion
This study has explored the relationship of cytokine soluble mediators elevated in inflamma-
tion to β-cell dysfunction. Specifically, identification of pathways key to inflammation-

Fig 8. Inhibition of the IL-12 pathway reduces PIC-induced IFN-γ gene expression in β-cells. The β-cell line βTC-3 was treated with PICs in the
absence or presence of (A) 1μg/mL IL-12 p40 neutralizing antibody, (B) 100nM STA-5326, (C) 20μM LSF, or (D) 50μM c47 prior to determination of IFN-γ
gene expression. # p < 0.05 relative to PIC and n = 3.

doi:10.1371/journal.pone.0142735.g008
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mediated β-cell apoptosis have been made. Induced β-cell dysfunction following acute expo-
sure to a triple cytokine cocktail (IL-1β/TNF-α/IFN-γ) has been extensively reported (reviewed

Fig 9. Islets from STAT4 deficient mice are resistant to PIC-induced apoptosis. (A) Fluorescence microscopy was used to image apoptotic islets labeled
with YO-PRO-1 (green) and PI (red). Islets fromWTmice (top row) or islets from STAT4ko mice (bottom row) were treated with PICs, IL-1β/TNF-α, IL-1β/IFN-
γ, or TNF-α/IFN-γ. (B) Graph shows quantified apoptosis from cytokine treated STAT4ko islets. (C) Graph shows quantified apoptotic index from cytokine
treatedWT islets vs STAT4ko islets. * p < 0.05, ** p < 0.01, *** p < 0.001 relative to ctl, +++ p < 0.001, ### p < 0.001 relative to WT PIC treatment. Three
groups of each condition were treated and analyzed.

doi:10.1371/journal.pone.0142735.g009
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in [4];[33]). Inflammation is an increasingly recognized feature of diabetes pathogenesis [34–
36]. Clinical focus has recently concentrated on the contribution IL-1β to β-cell dysfunction. A
number of approaches have aimed to neutralize IL-1β in a bid to assess the therapeutic effec-
tiveness in human diabetes [37–39].

The relative efficacy for inflammatory cytokines, in combination, to induce β-cell apoptosis
have been assessed using the model systems of this study. The cytokine cocktail of IL-1β/TNF-
α/IFN-γ effectively induced β-cell dysfunction/death. Each single cytokine alone at equivalent
concentration, or up to four-fold that used in the triple cocktail, did not induce β-cell apoptosis.
These data suggest that second messengers specific for each cytokine combine to induce β-cell
death rather than a mere stimulation of a critical density in common signaling pathways. Dual
cytokine combinations showed an apparent hierarchy for induction of β-cell apoptosis such
that pairs including IL-1β (IL-1β/TNF-α or IL-1β/IFN-γ) were more potent than the combina-
tion of TNF-α/IFN-γ. Paired cytokines were less effective than triple cytokines. These results
support an important role for IL-1β for induction of β-cell dysfunction and death while addi-
tionally highlighting the necessitated contribution of other inflammatory factors. As a thera-
peutic in diabetes, reduction of IL-1β, either by soluble receptor antagonism or antibody
sequestration and neutralization was not effective in human clinical trials [40].

The cytokine interleukin-12 (IL-12) has been shown to be upregulated in β-cells following
exposure to triple cytokines [19]. Exogenous IL-12 stimulated β-cell dysfunction and death
[19]. IL-12 is a heterodimeric ligand formed by two protein chains IL-12 p40 and IL-12 p35. A
heterodimer of IL-12 p40 and a distinct protein chain IL-23 p19, forms functional interleukin-
23 (IL-23). The effect of dual cytokine stimulation was assessed on expression of IL-12 chains
in β-cells. Dual cytokine pairings that included IL-1β induced expression of IL-12 to levels
comparable to triple cytokines. Induction of IL-12 with TNF-α/IFN-γ was significantly lower.
Overall the pattern of IL-12 expression by inflammatory cytokine combinations conformed
with induction of cell death. These data show IL-12 expression is concomitant with cell death
and suggested the importance of IL-12 as a mediator of cell death induced by the three cyto-
kines. The studies in this report further explore the role of IL-12 and IL-12 mediated signaling
in beta cell apoptosis. Activation of the IL-12 axis was interrupted in three separate approaches;
inhibition of IL-12 ligand expression, inhibition of IL-12 receptor ligation and inhibition of IL-
12 signaling. Disruption of IL-12 was effective at protecting β-cells from apoptosis associated
with inflammatory cytokine stimulation.

Expression of IL-12 has been linked with autoimmune diabetes. In NODmice, IL-12 plays a
significant role in the transition from non-destructive to destructive insulitis [41]. In human
type 1 diabetes (TIDM), the genetic susceptibility locus, IDDM18, is located near a regulatory
allele of the IL-12 p40 gene (IL-12B) [42], and single nucleotide polymorphisms in this region
associate with an earlier age of T1DM onset and accelerated deterioration in glycemic control
[43, 44]. Systemic daily administration of IL-12 to NODmice increased T1DM incidence
whereas addition of an IL-12 antagonist decreased T1DM incidence [41, 45, 46]. During the
development of diabetes in NODmice and BB rats the expression of endogenous IL-12 p40
and IFN-γ increase prior to diabetes onset [47, 48]. To address if local expression of IL-12 in β-
cells could initiate diabetes, Holtz et al, generated transgenic mice expressing IL-12, or mono-
mer IL-12 chains in the β-cell [49]. RIP-IL-12, but not monomer–p35 or–p40, mice developed
pancreatic islet inflammation. This was associated with an elevation in IFN-γ. Transgenic dele-
tion of IL-12 or IFN-γ did not fully protect against diabetes development [50, 51]. Thus, addi-
tional pathways may contribute to β-cell dysfunction or mechanisms that are independent of
IL-12 and IFN-γmay develop as a homeostatic response in transgenic mice lacking IL-12 or
IFN-γ [51–53]. Studies with the IL-12 natural antagonist (p40)2 identified a key role for IL-12
in the development of T1DM [45, 46, 54].
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The model systems studied indicate that intracellular signaling resulting from IL-12/IL-
12-receptor ligation contribute to PIC-induced β-cell death. This conclusion was based on the
fact that STA-5326, an inhibitor of c-Rel translocation that blocks transcriptional activation of
IL-12 genes, reduced expression of IL-12 ligand chains but not the IL-23-specific chain p19
[20, 21, 23]; second, Lisofylline, an inhibitor of IL-12 signaling, did not inhibit production of
IL-12 protein chains.

A primary response of IL-12/IL-12 receptor ligation is induction of IFN-γ expression. The
three cytokine cocktail (PIC) induced endogenous IFN-γ gene expression in β-cells. Cytokine
induction of IFN-γ in β-cells and islets has previously been reported [19]. The three approaches
used to disrupt IL-12 in this study each blocked production of endogenous IFN-γ gene expres-
sion associated with PIC stimulation.

A principle signaling pathway linking IL-12 receptor ligation and expression of IFN-γ is
activation of STAT4 [55]. Studies in STAT4-deficient mice show that STAT4-mediated
IL-12-signaling regulates IFN-γ production and the generation of Th1 responses [55]. Pro-
inflammatory cytokines are stimulators of IL-12 expression [56, 57]. Elevation in serum pro-
inflammatory cytokines is a feature of both TIDM and T2DM [4–12]. The importance of
STAT4 signaling in PIC-induced islet death was demonstrated. Islets from STAT4 deficient
mice were protected to the effects of PICs when compared to islets from wild type mice. Inhibi-
tion of STAT4 may be an approach to more selectively target IL-12 unlike strategies to neutral-
ize/sequester IL-12p40 that impact both IL-12 and IL-23 [31]. Human polymorphisms link
STAT4 to autoimmune disorders including T1DM [58–61]. In experimental diabetes, a genetic
disruption of STAT4 activation prevented the spontaneous development of diabetes in NOD
mice [30, 31].

In summary, this study supports the susceptibility of islet β-cells to inflammation and high-
lights synergy with inflammatory cytokine combinations, especially those paired with IL-1β. A
key event in inflammation induced β-cell death is IL-12 receptor ligation. Blockade of the IL-
12 axis preserve β-cells from inflammatory-cytokine induced cell death. Activation of STAT4
is implicated. Agents that disrupt IL-12 signaling or STAT4 signaling may be effective thera-
peutic tools to prevent or treat diabetes.
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