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Abstract

Motivation: The identification of constraints, due to gene interactions, in the order of accumulation

of mutations during cancer progression can allow us to single out therapeutic targets. Cancer pro-

gression models (CPMs) use genotype frequency data from cross-sectional samples to identify

these constraints, and return Directed Acyclic Graphs (DAGs) of restrictions where arrows indicate

dependencies or constraints. On the other hand, fitness landscapes, which map genotypes to fit-

ness, contain all possible paths of tumor progression. Thus, we expect a correspondence between

DAGs from CPMs and the fitness landscapes where evolution happened. But many fitness land-

scapes—e.g. those with reciprocal sign epistasis—cannot be represented by CPMs.

Results: Using simulated data under 500 fitness landscapes, I show that CPMs’ performance (pre-

diction of genotypes that can exist) degrades with reciprocal sign epistasis. There is large variabil-

ity in the DAGs inferred from each landscape, which is also affected by mutation rate, detection

regime and fitness landscape features, in ways that depend on CPM method. Using three cancer

datasets, I show that these problems strongly affect the analysis of empirical data: fitness land-

scapes that are widely different from each other produce data similar to the empirically observed

ones and lead to DAGs that infer very different restrictions. Because reciprocal sign epistasis can

be common in cancer, these results question the use and interpretation of CPMs.

Availability and implementation: Code available from Supplementary Material.

Contact: ramon.diaz@iib.uam.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epistatic interactions between genetic alterations constraint the

order of accumulation of mutations during cancer progression (e.g.

in colorectal cancer APC mutations precede KRAS mutations—

Fearon and Vogelstein, 1990). Finding these constraints can single

out therapeutic targets and disease markers and has lead to the

development of cancer progression models (CPMs—Beerenwinkel

et al., 2015), such as CBN (Gerstung et al., 2009, 2011) or CAPRI

(Caravagna et al., 2016; Ramazzotti et al., 2015), that try to identify

these constraints using genotype frequency data from cross-sectional

samples. CPMs return directed acyclic graphs (DAGs) of restrictions

where arrows between genes indicate direct dependencies or con-

straints in the order of accumulation of mutations (Fig. 1). Under

the CPM model, only genotypes that fulfil the restrictions encoded

by the arrows in the DAG can exist (Beerenwinkel et al., 2006;

Gerstung and Beerenwinkel, 2010).

Whereas DAGs of restrictions from CPMs do not contain infor-

mation about the fitness of individual genotypes, fitness landscapes

(or genotype-fitness maps) associate to each genotype its fitness

value (de Visser and Krug, 2014). Thus, similarly to DAGs of restric-

tions, a fitness landscape, if we assume that populations will only

move uphill in fitness, specifies what genotypes can be observed

(Crona et al., 2013; Franke et al., 2011). Cross-sectional samples

taken during tumor progression should contain only genotypes that

are part of accessible mutational paths that start from the initial

wild-type genotype (accessible mutational path: a trajectory through

a collection of genotypes, where each genotype is separated from the
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preceding genotype by one mutation, along which fitness increases

monotonically—Franke et al., 2011). If we had detailed knowledge

about the fitness landscape, we could predict the possible paths of

tumor progression and identify genes that would block those paths

(Greaves, 2015; Lipinski et al., 2016). However, obtaining a com-

plete picture of the cancer fitness landscape is not currently possible

(Lipinski et al., 2016; Sprouffske et al., 2012). Here, CPMs can offer

a feasible alternative: a model that identifies the key constraints in

the order of accumulation of mutations might be enough to capture

the possible tumor progression paths (Beerenwinkel et al., 2016)

and the genotypes that can and cannot exist.

But then, we should expect a close correspondence between

DAGs of restrictions inferred by CPMs and the fitness landscapes

where tumor evolution took place. DAGs of restrictions should pro-

vide accurate predictions about what genotypes can and cannot exist

during tumor progression, and the same landscape should not lead

to inferring widely different DAGs. Are these expectations justified?

Do they hold with empirical data? And what are the consequences

of using CPMs when these expectations do not hold?

With some fitness landscapes, that correspondence might hold (if

sample sizes are sufficiently large to allow the estimation of the true

DAG). For example, we will say that the fitness landscapes in Figure

1c and g are representable by the gene DAGs of restrictions from

CPMs in Figure 1a and e, respectively: the DAGs and the landscapes

make the same predictions about what genotypes we should

observe. The landscapes are representable because the DAGs of

restrictions capture the epistatic interactions that determine what

genotypes are accessible. That a fitness landscape be representable

by a DAG of restrictions depends only on the dependencies implied

by the DAG—which determine the genotypes that can exist accord-

ing to the DAG—and the genotypes that are accessible under the fit-

ness landscape; it does not depend on the evolutionary dynamics as

affected by population size and mutation rates—but see also Section

4. In particular, the constraints reflected in the DAGs of restrictions

imply sign epistasis (Crona et al., 2013; Weinreich et al., 2005; see

also Misra et al., 2014), an interaction between genes where a muta-

tion is beneficial or deleterious (i.e. can have different sign) depend-

ing on the genetic background or what other genes are mutated (this

is the basis of the phenomenon of ‘oncogene addiction’; Sprouffske

et al., 2012). Figure 1a says that a mutation in B increases the fitness

of a cell if A is already mutated but is detrimental otherwise; Figure

1e says that a mutation in D increases fitness if A and B are mutated

but is detrimental otherwise.

For other fitness landscapes, however, the correspondence can-

not hold. Although DAGs of restrictions represent sign epistasis,

they cannot represent reciprocal sign epistasis, a genetic interaction

where two mutations that individually increase fitness reduce it

when combined (Crona et al., 2013; Poelwijk et al., 2007, 2011).

CPMs assume that acquiring a mutation in one gene, say A in Figure

1e, does not decrease the probability of acquiring a mutation in

another gene, say C (Misra et al., 2014). The DAGs of restrictions

can only say what mutations need to be present before another

mutation is viable. Thus, neither the DAG in Figure 1e, nor any

other DAG of restrictions, could represent the fitness landscape that

would result if reciprocal sign epistasis between, say, genes A and C

turned genotype AC into a low fitness or non-viable genotype. (See

“Representable landscapes with reciprocal sign epistasis?” in

Supplementary Material for apparent exceptions).

This is a potentially serious limitation of CPMs because recipro-

cal sign epistasis is probably common in cancer (Chiotti et al.,

2014), given the extent of synthetic lethality both in the human

genome (Blomen et al., 2015) and in cancer cells (Beijersbergen

(a)

(e) (g)

(f)

(h)

(b) (c) (d)

Fig. 1. DAGs of restrictions from CPMs and representable fitness landscapes.

(a) A DAG of restrictions, as obtained from a CPM, such as CBN or CAPRI,

showing restrictions in the order of accumulation of mutations. This DAG

shows genes—not genotypes—; an arrow (directed edge) from gene i to gene

j indicates a direct dependency of a mutation in j on a mutation on i; a muta-

tion in j cannot be observed unless i is mutated. Here a mutation in gene B

can only be observed if A is mutated. (Conversely, the absence of an arrow

between two genes indicates a lack of direct dependencies between the two

genes; however, there could be indirect dependencies as in F! G! H where

mutating H requires having F mutated because of H’s dependency on G

which itself depends on F). Genes whose parent is Root do not depend on

mutations in other genes. (b) Genotypes that fulfil the restrictions encoded in

(a): these are the genotypes with mutations that can exist according to the

DAG in (a), where the notation “A” means a genotype with gene A (but not B)

mutated and “AB” a genotype with both genes A and B mutated. (c) A fitness

landscape that can be represented by the DAG in (a) (fitness landscape repre-

sentation based on Brouillet et al., 2015); genotypes as in (b) (and WT denotes

the initial “wild type” genotype—where we absorb all cancer initiation events

in this genotype as explained in “Assumptions”). Green solid segments con-

nect genotypes along accessible mutational paths and red dotted segments

denote decreases in fitness. Genotypes along accessible paths will be called

“accessible genotypes”; genotypes reachable through green segments are

accessible. DAGs of restrictions are different from fitness graphs and graphs

of mutational paths (Crona et al., 2013; de Visser and Krug, 2014; Franke

et al., 2011; Greene et al., 2014). In (d) the fitness graph for the accessible gen-

otypes of fitness landscape (c) is shown. In fitness graphs nodes correspond

to genotypes—not genes—and arrows point toward mutational neighbors of

higher fitness. Thus, graph (d) also shows all the accessible mutational paths

and adaptive walks that start from the WT genotype in fitness landscape (c).

DAGs of restrictions and fitness graphs differ in what is represented in the

nodes (genes versus genotypes) and in the meaning of the edges (dependen-

cies of mutations versus possible adaptive transitions between genotypes).

Note that the accessible genotypes in (c) are the same as the genotypes in

(b). (e–h) As in (a–d) but for a fitness landscape with four genes. Genotypes

“AB”, “AC”, “BC” and “ABC” fulfill the restrictions of DAG (e) and, thus, can

exist because mutations in genes A, B, and C can happen independently of

each other as there are no arrows connecting them in (e). This is also

reflected in fitness graph (h): e.g., genotype “AB” can arise from a clone with

genoytpe “A” or a clone with genotype “B”. In the graph of restrictions (e),

nodes with multiple parents are given a logical AND—conjunction—interpre-

tation: a mutation in gene D requires both genes A and B to be mutated; gen-

otypes “ABD” and” “ABCD” can exist under DAG (e) because the restrictions

(D can only appear if both A and B are mutated) are satisfied in those geno-

types (and note that there are no additional restrictions relating genes C and

D). Thus a mutation in gene D can only appear in genotypes “AB” or “ABC”

leading to genotypes “ABC” and “ABCD”, as shown in (h). Therefore, a fit-

ness landscapes is representable by a DAG of restrictions if the accessible

genotypes in the fitness landscape are those genotypes that are predicted to

exist under the DAG of restrictions
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et al., 2017; Leung et al., 2016; synthetic lethality is an epistatic

interaction where the combination of two mutations is lethal when

each individual mutation is not; synthetic lethality between muta-

tions that individually increase fitness constitutes reciprocal sign

epistasis). Moreover, reciprocal sign epistasis is a key structural fea-

ture of fitness landscapes: it can lead to multiple peaks and affects

ruggedness and predictability of the evolutionary process (Crona

et al., 2013; de Visser and Krug, 2014; Ferretti et al., 2016; Poelwijk

et al., 2007), which itself affects our opportunities to block tumor

progression (Greaves, 2015; Lipinski et al., 2016). But the assess-

ment of CPMs has used data simulated from generative models that

are encoded by DAGs of restrictions (Gerstung et al., 2009; Hainke

et al., 2012; Ramazzotti et al., 2015; Szabo and Boucher, 2008),

therefore assuming very restricted fitness landscapes. Two excep-

tions, none of which considered reciprocal sign epistasis explicitly,

are Sprouffske et al. (2011), who conducted simulations using

agent-based models with parameters tuned for colorectal cancer,

and Diaz-Uriarte (2015), where the restrictions encoded in DAGs

were embedded within evolutionary models that allowed to relax

some of the constraints of the DAGs. Using fitness landscapes, as

done in this article, is a more direct route to examine the consequen-

ces of different evolutionary scenarios for CPMs and it avoids the

shortcomings of both agent-based models (Sprouffske et al., 2011),

where it can be hard to understand the model in terms of generaliz-

able features, and of Diaz-Uriarte (2015), which could only use a

limited subset of deviations from DAGs.

The main goal of this article is to understand the relationship

between fitness landscapes and CPMs inferred from evolutionary

process on those fitness landscapes. I first use evolutionary simula-

tions on 500 fitness landscapes that include from none to extensive

reciprocal sign epistasis, varying also mutation rate and time to

tumor detection (as these factors affect what genotypes are observ-

able from a landscape). Because the focus of this article is not

method comparison per se, but to identify the limits that complex

fitness landscape can impose on the use of CPMs, I use large sample

sizes of N¼1000 genotypes and infer CPMs with CBN (Gerstung

et al., 2009, 2011) and CAPRI (Ramazzotti et al., 2015), the two

widely available state-of-the-art methods that accommodate multi-

ple parents (convergent arrows) in DAGs (see Section 2.4 and

‘Cancer progression models and other software’ in Supplementary

Material). I evaluate the effects of fitness landscape, mutation rate,

tumor detection and reciprocal sign epistasis on the quality and vari-

ability of inferred DAGs. I find that method performance decreases

with reciprocal sign epistasis and that there is a large variability in

the identified restrictions even under the best conditions.

I then examine the practical consequences of variability and

non-representability using three cancer datasets: I find that fitness

landscapes that are widely different from each other can produce

genotype frequencies similar to the empirically observed ones, and

also lead to very different DAGs of restrictions (i.e. very different

inferences about restrictions in the order of accumulation of muta-

tions) when evolutionary processes run repeatedly on them. These

results cast doubts on whether restrictions from DAGs can be used

to capture the true restrictions in fitness landscapes.

1.1 Assumptions
Several assumptions were used in the arguments above and are taken

for granted in the rest of this article. As is customary in the CPM lit-

erature (Beerenwinkel et al., 2015; Misra et al., 2014; Ramazzotti

et al., 2015) I assume that the DAGs of restrictions and fitness land-

scapes represent epistatic interactions between biallelic loci. Because

we want to simulate data consistent with cross-sectional sampling,

we absorb all the cancer initiation process in the root node; as in

Attolini et al. (2010) all tumors start cancer progression without any

of the mutations shown in the DAGs (though other mutations could

already be present that caused the initial tumor growth). Also in

agreement with common models in this field (Beerenwinkel et al.,

2007; Bozic et al., 2010; McFarland et al., 2013) back mutations

are not allowed. Crossing valleys in the fitness landscape using a sin-

gle multi-mutation step is not possible, but we do not need to

exclude clonal interference (de Visser and Krug, 2014; Sniegowski

and Gerrish, 2010). Finally, I assume that there are no observational

errors and also assume that we know which are the driver genes (so

we do not consider the need to remove passengers before CPM fit-

ting; Cristea et al., 2016; Diaz-Uriarte, 2015).

2 Materials and methods

2.1 Generating random fitness landscapes
All DAGs of restrictions and fitness landscapes used biallelic—

mutated or not-mutated—loci, so the total number of possible geno-

types is 2m, where m is the number of genes. All DAGs and fitness

landscapes in the first section use seven genes. That is the number of

genes in the pancreatic cancer dataset, the execution time of CBN

increases steeply with number of genes beyond about seven genes

(Diaz-Uriarte, 2015), seven genes is probably close to the upper lim-

its of fitness landscapes that can be easily visualized and related to

their true DAGs (see ‘Plots of fitness landscapes and inferred DAGs’

in Supplementary Material), and if number of genes has an effect on

the problems reported in this article they are likely to become worse

with increasing numbers of genes.

To generate DAG-derived, representable fitness landscapes, I

first obtained the transitive reduction of random DAGs; then, I

assigned fitness to genotypes using a multiplicative fitness model for

the effects of genes with their dependencies satisfied (with the fitness

effect of each gene drawn from a uniform distribution between 0.1

and 0.7); I set to 10�9 the fitness of any genotype that is not possible

under the DAG (this makes it almost impossible to ever see a geno-

type of that kind—see ‘Paths through non-accessible genotypes’ in

Supplementary Material). Generation of DAG-derived, non-repre-

sentable fitness landscapes started by generating a representable

DAG-derived fitness landscape as just described. Then, a randomly

chosen subset of genotypes with two or more mutations and accessi-

ble under the DAG was made inaccessible. The 200 Rough Mount

Fuji (RMF) non-representable fitness landscapes were obtained from

an RMF model (Franke et al., 2011; Neidhart et al., 2014) where

the reference genotype and the decrease in fitness of a genotype per

each unit increase in Hamming distance from the reference genotype

were randomly chosen (see ‘Random fitness landscapes’ in

Supplementary Material). This gives a wide variety of fitness land-

scapes that encompass from close to additive to House of Cards

models. All fitness landscapes were checked to ensure that all seven

genes were present in at least one accessible genotype. See further

details in Supplementary Material.

2.2 Evolutionary simulations
I simulated evolution on fitness landscapes using the model in

McFarland et al. (2013), a continuous-time, logistic-like model

where death rate depends on total population size, as implemented

in OncoSimulR (Diaz-Uriarte, 2017). In addition to fitness (more

precisely, birth rates) which are given by the fitness landscape, when

using this model we need to specify initial population sizes,
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mutation rates and detection/stopping conditions. Initial population

size was set at 2000, a value within ranges used previously that

ensures that most simulations reach cancer (McFarland et al., 2013).

Three different conditions of mutation rates were used: common

mutation rate of rate of 1e�5, common mutation rate of 1e�6, and

variable, or gene-specific, mutation rates that have a geometric

mean of 1e�5, with maximum spread between successive values,

within the maximum and minimum of 5e�5 and 2e�6, respectively.

These are mutation rates within ranges previously used in the litera-

ture (Bozic et al., 2010; McFarland et al., 2013), with a bias toward

larger numbers (since we use only seven genes relevant for popula-

tion growth and we could be modeling pathways, not individual

genes). With these settings, crossing fitness valleys in the simulations

was extremely unlikely (see ‘Paths through non-accessible gen-

otypes’ in Supplementary Material). Each simulation was stopped

when the tumor was detected and a whole tumor sample was then

taken. The probability of tumor detection increased with total

tumor size and two conditions were used: ‘fast’ and ‘slow’ that cor-

respond to detection probabilities of 0.1 and 0.01 when tumor size

was twice the initial population size (see ‘Simulations: parameters

and detection’ in Supplementary Material); total tumor sizes at time

of detection were very variable (mean, median, first, and third quar-

tiles: 120 000, 23 000, 7000 and 103 000, respectively).

2.3 Cancer datasets: fitness landscapes and simulations
I repeatedly simulated data using a modified RMF random fitness

landscape model where the observed genotype combinations in the

empirical datasets were guaranteed to be accessible (see Section 2.1

and ‘Random fitness landscapes for the cancer datasets’ in

Supplementary Material). Once the fitness landscape had been gen-

erated, I choose randomly selected parameters for mutation rates

and detection regime (see ‘Simulations: parameters and detection’ in

Supplementary Material). I simulated the same number of genotypes

as genotypes with mutations were in the original datasets (90

for pancreatic and colorectal cancer and 67 for glioblastoma). I

repeated this process 10 times. For each of the 10 times, I compared

the genotype distributions of the observed and the simulated geno-

types with a v2 test. I kept those fitness landscapes (together with

the mutation and detection settings), where in at least three of the

10 repetitions the simulated dataset fulfilled that the P-value was

>0.6 (for both the reference v2 distribution and a permutation test,

because of possible cells of low counts) and all genes had been

observed. Some of these thresholds are arbitrary, but the large

P-value is used to ensure that no user would claim the genotype fre-

quencies are different, and the requirement of the minimal of three

cases is used to prevent occasionally achieving a large P-value from

a fitness landscape that rarely produces data comparable with the

observed one. Finally, for each fitness landscape that fulfilled the

requirements, I simulated 20 000 evolutionary trajectories, which

were analyzed as described in Section 3.2 (see scheme of the design

in ‘Three cancer datasets: scheme’ in Supplementary Material).

2.4 CPMs: CBN and CAPRI
Detailed descriptions of CAPRI an CBN can be found in Ramazzotti

et al. (2015), Caravagna et al. (2016) and Gerstung et al. (2009,

2011). Here, only a summary is provided. CPMs try to identify fea-

tures of tumor progression that are common to a homogeneous type

of cancer; they assume that each subject or individual sample is an

independent realization of an evolutionary process where the same

constraints hold for all tumors (Beerenwinkel et al., 2015, 2016;

Gerstung et al., 2011). Both CBN and CAPRI can be regarded as

extensions of oncogenetic trees (Desper et al., 1999; Szabo and

Boucher, 2008) that describe the accumulation of mutations with

order constraints that can be represented as trees. CBN and CAPRI

are the two widely available, state-of-the-art methods, that allow

modeling the dependence of an event on more than one previous

event, so the output of the model are graphs (DAGs) where some

nodes have multiple parents, instead of a single parent (as in trees).

As oncogenetic trees and other CPMs, CAPRI and CBN use cross-

sectional data with information about genomic aberrations in a set

of tumor samples. The input for both methods is a matrix of subjects

or samples by driver alteration events, where each entry in the

matrix is binary coded as mutated or not-mutated; the driver altera-

tion events are referred in this article, generically, as ‘genes’ but they

can actually be individual genes, specific parts or states of genes, or

modules made from several genes; for example, Gerstung et al.

(2011) model pathways, and Caravagna et al. (2016) model amplifi-

cations and deletions of genes. From that input, both methods return

a DAG of restrictions. CBN models that mutations accumulate sto-

chastically on each patient; the fixation of these mutations respect a

set of order restrictions (the DAG of restrictions that CBN will try

to infer). CAPRI tries to identify events (alterations) that constitute

‘selective advantage relationships’, where an alteration in one gene

‘selects’ for a later alteration in another gene (CAPRI’s algorithm

builds upon Suppe’s probabilistic causation framework and the

identification of selectivity relations requires establishing temporal

priority—a mutation in one event occurs earlier—and probability

rising—the probability of observing one event increases the proba-

bility of observing another). Both CBN and CAPRI can accommo-

date errors in the observational data (e.g. genotyping errors) and

both assume that each genotype contains all alterations that

appeared in its parent genotypes (i.e. there is no back mutation).

CBN uses simulated annealing with a nested EM algorithm to esti-

mate the parameters of the model: the error rate and rate of fixation

of mutations and, of main interest to us, the best fitting DAG of

restrictions. CAPRI uses Mann–Whitney U-tests (from bootstrap

resamples of the input data) to examine temporal priority and prob-

ability rising and then optimization (e.g. using hill climbing) of the

penalized (AIC or BIC) maximum likelihood fit to find the final

DAG. I used CBN and CAPRI with their default settings (see

‘Cancer progression models and other software’ in Supplementary

Material) to obtain inferred DAGs.

2.5 Measures of performance and variability
Reciprocal sign epistasis is the fraction of all pairs of mutations that

had reciprocal sign epistasis. The distance between two DAGs of

restrictions is the number of the edges that differ between the

transitive reduction of the two DAGs. CAPRI can return DAGs that

contain both direct and indirect edges between nodes and thus all

comparisons involved the transitive reduction of the DAGs. The

relative distance between DAGs is the distance between two DAGs

divided by the total number of distinct edges in the two DAGs.

PFD genotype mispredictions is the ratio of false positive genotype

mispredictions (the DAG predicting that a non-accessible genotype

should exist) over the total number of genotypes that can exist

according to the DAG; this is equivalent to 1—precision or

1—positive predictive value. PND genotype mispredictions is the

ratio of false negative genotype mispredictions (the DAG failing to

predict that a genotype should exist) over the total number of geno-

types that are accessible in a landscape. A genotype, even if accessi-

ble under a given landscape, might never be observable under

small mutation rates and fast detection regimes. To avoid penalizing
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inferences for non-observable genotypes, I corrected the count

of false negatives using, as reference, the subset of accessible

genotypes that had been observed with a frequency larger than 5

in 1000 (measured on the 20 000 simulations) so that the probabil-

ity of not observing the minimal frequency genotype in a sample

of 1000 genotypes is <1%. PND is equivalent to 1—recall or

1—sensitivity. The relative pairwise difference of accessible geno-

types is the ratio of the sum of the number of genotypes accessible

under one landscape and not accessible under the other over

the total number of distinct accessible genotypes in the two

landscapes.

2.6 Linear mixed-effects models
I used linear mixed-effects models to examine how type of land-

scape, mutation rate, detection scheme, reciprocal sign epistasis and

number of accessible genotypes, affected PND, PFD and the two rel-

ative pairwise DAG distances (‘Linear mixed-effects models’ in

Supplementary Material). Models used fitness landscape as random

effect except for relative pairwise DAG distance over mutation and

detection (because I averaged over all mutation�detection regimes

only a single value per landscape was used). For ease of interpreta-

tion (to avoid presenting coefficients from models with four way

interactions), Figures 2 and 3 present results from models for each

method and landscape type separately, but I also fitted a single

model to assess the interactions of method and landscape type with

the other factors. To examine the significance of the differences in

Figures 2a, b and 3b, I fitted models than only had landscape type

and method as explanatory variables (these models are equivalent to

multistratum models for split-plot designs: Pinheiro and Bates,

2000). In all cases, models were fitted using sum-to-zero contrasts

(McCullagh and Nelder, 1989). Continuous regressors were scaled

(mean 0, variance 1) for easier interpretation and so that the inter-

cept term is interpreted as the predicted response at the average

value of the regressors. See further details in Supplementary

Material.

3 Results

3.1 Reciprocal sign epistasis, genotype mispredictions,

DAG variability
3.1.1 Steps of simulations and analysis

The following steps are used to understand the consequences of fit-

ness landscape characteristics, tumor detection and mutation rates

on the quality and variability of DAGs. Details of each step are pro-

vided below. (i) Generate 500 random fitness landscapes that differ

in reciprocal sign epistasis and whether or not they are representable

by DAGs of restrictions (Section 3.1.2). (ii) Simulate 20 000 geno-

types under each one of the 3000¼500�3�2 combinations of 500

fitness landscapes, 3 mutation rates and 2 detection regimes (Section

3.1.3). (iii) Split each set of 20 000 simulated genotypes into 20 sets

of 1000 genotypes and run CBN and CAPRI on each set of 1000

genotypes to obtain DAGs of restrictions. (iv) For each inferred

DAG of restrictions, measure the errors in the predictions of the gen-

otypes by comparing against the accessible genotypes under the true

fitness landscape (Section 3.1.4), where the true fitness landscape is

the landscape generated in step (i) (and used for the simulations in

(ii)). (v). Measure the variability of the DAGs inferred for each fit-

ness landscape (Section 3.1.5).

3.1.2 Fitness landscapes and simulation framework

I generated a total of 500 fitness landscapes. Of these, 100 were

directly derived from DAGs of restrictions and are thus perfectly

representable. These fitness landscapes, which contain no reciprocal

sign epistasis, will be called ‘DAG-derived, Representable’.

Another 200 fitness landscapes were obtained by modifying rep-

resentable fitness landscapes to turn them into non-representable fit-

ness landscapes. I first generated a set of 200 representable fitness

landscapes; then, for each landscape, randomly selected genotypes

predicted to exist by the DAG of restrictions were made inaccessi-

ble—i.e., turned into synthetic lethals. Thus, I created DAG-derived,

but non-representable, fitness landscapes with varying amounts of

reciprocal sign epistasis (see ‘Fitness landscapes characteristics’ in

Supplementary Material). These landscapes will be called ‘DAG-

derived, Non-representable’.

Another set of 200 fitness landscapes were obtained from RMF

models, which have been useful to model empirical fitness landscapes

(de Visser and Krug, 2014; Neidhart et al., 2014) and have very differ-

ent characteristics from DAG-derived fitness landscapes (see ‘Fitness

landscapes characteristics’ in Supplementary Material). All of the RMF

models were non-representable. RMF landscapes had both more
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Fig. 2. Genotype mispredictions: PFD and PND. (a, b) Boxplots of PFD and

PND by method and type of fitness landscape. (c, d) Coefficients from linear

mixed-effects models, with separate models fitted for each combination of

method and type of fitness landscape. Within each panel, coefficients have

been ordered from left to right according to decreasing absolute value of

coefficient. The dotted horizontal gray line indicates 0 (i.e. no effect). Only

coefficients that correspond to a term with a P-value <0.05 in Type II F

(ANOVA) tests are shown. Coefficients involving landscape type “DAG-

derived” and detection fast are not shown (they are minus the corresponding

coefficient shown for the other value of the factor—see Section 2).

Coefficients that correspond to main effects color coded as shown in the

legend; the rest of the coefficients (“Other”) correspond to interaction terms;

“Epist.RS”: fraction of pairs with reciprocal sign epistasis; “Mut.(vrbl)”: varia-

ble or gene-specific mutation
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reciprocal sign epistasis and larger numbers of peaks than DAG-derived

fitness landscapes (average fraction of pairs of loci with reciprocal sign

epistasis; Ferretti et al., 2016: 0.27 versus 0.02 for RMF- and non-

representable DAG-derived landscapes; two-sample t-test, t240¼45,

P<0.0001; mean number of peaks among the accessible genotypes:

11.5 and 2.8 in the RMF and DAG-derived, respectively; two-sample t-

test, t240¼24, P<0.0001).

3.1.3 Evolutionary simulations

Next, I simulated evolutionary processes on the 500 fitness landscapes

using a logistic-like model, following McFarland et al. (2013), where

death rate depends on total population size. I used a factorial design

(see Section 2) where on each one of the 3000 combinations of 500

landscapes by three mutation rates by two tumor detection regimes, I

run 20 000 evolutionary processes that resulted in 20 000 simulated

sampled genotypes per condition. The 20 000 simulated genotypes

were split into 20 sets of 1000 genotypes and each one of the 20 sets

was analyzed with CBN and CAPRI (yielding, therefore, 20 DAGs of

restrictions per method for each one of the 3000 combinations of land-

scape�mutation�detection). Plots of the 500 fitness landscapes and

the modal inferred DAG are provided in the Supplementary Material.

3.1.4 Genotype mispredictions in inferred DAGs

For each genotype, I compared the status accesible/non-accessible

predicted by each DAG of restrictions with the true status from the

fitness landscape. The proportion of false discoveries (PFD) is the

number of genotypes that are erroneously predicted to exist relative

to the number of genotypes predicted to exist by a DAG of restric-

tions. The proportion of negative discoveries (PND) is the number

of accessible genotypes that a DAG fails to predict relative to the

total number of accessible genotypes (the PND statistic corrects for

genotypes that are not observable for a given combination of detec-

tion and mutation rates—see Section 2). Figure 2a and b shows the

PFD and PND for each method and landscape type. Both PFD and

PND differed between landscape type and method, and the effect of

landscape was different for each method. PFD increased from repre-

sentable, to DAG-derived non-representable, to RMF landscapes,

but CBN and CAPRI were affected differently by landscape type, as

PFD was larger with CBN than CAPRI in the two DAG-derived

landscapes (interaction term method by landscape in linear mixed-

effects model of PFD as dependent variable: Type II Wald F tests

with Kenward–Roger d.f. adjustment: F2,5493¼189.2, P<0.0001).

PND increased from representable, to DAG-derived non-represent-

able, to RMF landscapes with CBN but showed no trend with

CAPRI (interaction term method by landscape: F2,5493¼524.20,

P<0.0001). Regardless of these interactions, PFD and PND were

around 50% for both methods in the RMF landscapes.

I examined how PFD and PND were affected by mutation rate,

detection regime, number of accessible genotypes, and reciprocal

sign epistasis and their two-way interactions using linear mixed-

effects models. Figure 2c and d shows the relative magnitude of the

coefficients in the models (see ‘Coefficients of linear models’ in

Supplementary Material for the complete set of coefficients). Mainly

for PND, the effects of some predictors differed between CBN and

CAPRI: in particular, the slow detection regime was associated with

worse performance when using CAPRI but with better performance

when using CBN, and the larger mutation rate was associated with

worse performance when using CAPRI but better performance

when using CBN (interactions between method and the effects of

mutation and detection, P<0.0001, from Type II Wald F tests with

Kenward–Roger d.f. adjustment). For PND there were also other

large interactions that involved mutation and detection regimes.

Increasing reciprocal sign epistasis was associated with increasing

PFD and PND for both methods and landscape types. Remarkably,

the increase in mispredictions with reciprocal sign epistasis did not

differ between CBN and CAPRI (we cannot reject the hypothesis

that the increase in mispredictions with reciprocal sign epistasis is

similar in CBN and CAPRI, P>0.15). But both PFD and PND

showed a faster increase with reciprocal sign epistasis in DAG-

derived than in RMF landscapes (interactions between type of land-

scape and reciprocal sign epistasis: P<0.0001).

3.1.5 DAG variability from the same fitness landscape

To examine within-landscape variability in the inferred DAGs of

restrictions I computed the average relative pairwise DAG distance

between all possible DAGs of: (i) the 20 replicate inferences for each

landscape by mutation by detection regime—i.e. same mutation and

detection (‘Same’ in Fig. 3); (ii) the 20�6 replicates for each land-

scape over the six conditions of mutation by detection regime

(‘Over’ in Fig. 3). Multiple, substantially different, DAGs of restric-

tions were inferred from the same landscape, even under the same

mutation rates and detection regimes (Fig. 3a and b). Similar to

what we saw in the previous section, the effect of landscape type on

relative pairwise distance differed between methods, with CAPRI

showing a decrease in relative distance from representable, to DAG-

derived non-representable, to RMF landscapes (interactions,
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Fig. 3. Variability of DAGs of restrictions inferred from a landscape. “Same

mut�dtct”: values from the 20 replicates under each combination of land-

scape by mutation rate by detection. “Over mut�dtct”:20� 6 replicates of a

landscape over the 3 mutation by 2 detection regimes. (a) Gini-Simpson’s

diversity index, the probability that two DAGs from the given scenario are dif-

ferent. (b) Relative pairwise DAG distance (see Section 2). The value shown

for a landscape is the average relative pairwise DAG distance for all pairs of

inferred DAGs for a landscape. (c, d) Coefficients from linear models; see

legend of Figure 2. In panel (d) only accessible genotypes, reciprocal sign

epistasis and their interaction could, by design, be examined
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P<0.0001, between method and landscape type in relative pairwise

distance in both ‘Same’ and ‘Over’). Linear models (Fig. 3c and d)

showed that increasing the number of accessible genotypes increased

the variability of inferred DAGs. But, as we saw before, the rele-

vance and sign of other terms depended on the method: mutation,

detection, and landscape type had different effects in CAPRI and

CBN (P<0.0001 for all two-way interactions with method;

P¼0.0009 for the interaction mutation by landscape type by

method; and P<0.0001 for the interaction mutation by detection

by method). Increasing reciprocal sign epistasis was associated to

increased variability when using CBN under the DAG-derived land-

scape but it had no effect with CAPRI nor with CBN under RMF

(there was a three-way interaction method by landscape type by

epistasis; P¼0.002 and P¼0.033 for ‘Same’ and ‘Over’, respec-

tively). Note that an unavoidable consequence of the large variabil-

ity between DAGs inferred from the same fitness landscape is that

the same DAG of restrictions can be inferred from quite different fit-

ness landscapes (see Supplementary Material, section ‘Inferring the

same DAG from different fitness landscapes’).

3.2 Three cancer datasets: a many-to-many mapping

between DAGs and landscapes
Using three cancer datasets I will show the implications that non-

representability and variability have for the analysis of empirical

data. These data, for pancreatic cancer, colorectal cancer and pri-

mary glioblastoma, are originally from Jones et al. (2008), Wood

et al. (2007) and Parsons et al. (2008), respectively, and were ana-

lyzed by Gerstung et al. (2011) and have 90, 90 and 67 patients with

at least one mutation, respectively, in the 7, 8 and 8 genes analyzed.

Since we do not know the true fitness landscapes that generated

those data we cannot assess the quality of the inferences. What I

have done instead is find, for each cancer dataset, 150 random fit-

ness landscapes (plus mutation rates and detection regimes) that can

produce genotype frequencies similar to the observed ones (similar:

in at least three out of 10 repetitions, all genes are observed mutated

and a v2 test comparing genotype frequencies of observed and simu-

lated data has a P-value>0.6—see Section 2). Next, from each one

of those 150 fitness landscapes per dataset I generated 20 000 geno-

types, and analyzed 20 subsets of 90 (or 67) genotypes and 20 sub-

sets of 1000 genotypes with CAPRI and CBN. The 150 landscapes

and the modal DAGs inferred with CBN and CAPRI for each of

the datasets and sample sizes are provided in the Supplementary

Material. I am not claiming any of these landscapes are the true fit-

ness landscapes of these cancers: I am using them to examine the

implications of the many-to-many problem for the analysis of empir-

ical data.

The characteristics of the 150 fitness landscapes for each dataset

are shown in the Supplementary Material; there was substantial

reciprocal sign epistasis (medians: 0.09, 0.15, 0.1, for pancreas,

glioblastoma and colon) and the fitness landscapes were multi-

peaked (median number of peaks: 6, 15, 13, for pancreas,

glioblastoma and colon). These results, per se, are not necessarily

surprising given the way we searched for fitness landscapes, but

these fitness landscapes are clearly not representable and yet they

can consistently produce data similar to the empirically observed

ones.

For each cancer dataset, the fitness landscapes were widely dif-

ferent among themselves, with median pairwise difference in accessi-

ble genotypes of 18, 46 and 87 genotypes for pancreas, glioblastoma

and colon; relative to the number of distinct accessible genotypes,

these were median pairwise differences of 47, 62 and 65%, respec-

tively, as shown in Figure 4a.

As in Section 3.1.5, there was considerable DAG-to-DAG varia-

tion within landscape (see Supplementary Fig. S7). More relevant to

us, however, are the differences between DAGs inferred from differ-

ent landscapes. These are shown in Figure 4b: pairs of DAGs of

restrictions differed in a median of more than 50% of their edges,

probably an unavoidable consequence of the large differences

between landscapes mentioned above (Fig. 4a).

Thus, these fitness landscapes, all of which can consistently pro-

duce genotype frequency data similar to the empirically observed

data, not only were non-representable and showed large differences

among themselves but, when evolutionary processes were run

repeatedly on them, lead to very different inferences about the

restrictions in the order of accumulation of mutations.

4 Discussion

CPMs assume restrictive fitness landscapes that, for instance, are

devoid of reciprocal sign epistasis. Yet reciprocal sign epistasis may

be common in cancer fitness landscapes (Chiotti et al., 2014). What

would be the consequences of using CPMs if tumors evolved on fit-

ness landscapes that cannot be represented by DAGs of restrictions?

We saw (Fig. 2) lower performance of CPMs in RMF landscapes

relative to representable landscapes, and decreasing performance

(a)

(b)

Fig. 4. Fitness landscapes characteristics and DAG differences in three cancer

datasets. (a) Histograms of relative pairwise differences in accessible geno-

types over all possible 150� 149/2 pairs of landscapes for each dataset. (b)

Box-plots of relative pairwise differences between all pairs of DAGs inferred

from different landscapes (each box-plot plot is based on 150�149/2 points;

each point itself is the average of 400 (20�20) comparisons)
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with increasing reciprocal sign epistasis in both RMF and DAG-

derived landscapes. CPMs assume that acquiring a mutation in one

gene does not decrease the probability of acquiring a mutation in

another gene (Misra et al., 2014). CBN, Oncogenetic Trees (Desper

et al., 1999; Szabo and Boucher, 2008) and CAPRESE (Loohuis

et al., 2014) all share these features: even with unlimited data that

faithfully represents the accessible genotypes in a landscape, they

cannot fit non-representable fitness landscapes such as those that

result from reciprocal sign epistasis. CAPRI can model XOR rela-

tionships (Caravagna et al., 2016; Ramazzotti et al., 2015) and,

thus, for example, synthetic lethality, but it requires specifying the

XOR hypothesis a priori; therefore, it is not suitable for automated

usage in non-representable landscapes. Separating patients into sub-

types prior to analysis (Caravagna et al., 2016) cannot solve these

problems as they are not the result of using CPMs on a collection of

individuals with different underlying fitness landscapes; here all

individuals have the same fitness landscape. Therefore, non-

representability forces us to ask what is the meaning and how to

interpret an inferred DAG of restrictions in the presence of recipro-

cal sign epistasis.

We also saw that the same fitness landscape produced genotype

frequency data that lead to inferring widely different DAGs (Fig. 3).

Even in representable landscapes with the same mutation and detection

and sample sizes as large as N¼1000, DAGs of restrictions differed in

about 20% of their edges (Fig. 3b, bottom row). Thus, even under the

best conditions, currently available datasets are unlikely to be large

enough to provide stable estimates of genotype frequencies that lead to

stable, low-variability, inferences of DAGs of restrictions. Moreover,

we can think of a DAG of restrictions as the output from applying

a method on genotype frequency data that are the result of the

function composition Observed Genotype Frequencies¼Detection8
f (Mutation, PopulationSize, FitnessLandscape), where f (Mutation,

PopulationSize, FitnessLandscape) is a function that reflects the evolu-

tionary dynamics and that depends non-additively on mutation rates,

population sizes and fitness landscape. It is known that very different

mutational paths can be observed from the same fitness landscape

under different mutation rates and population sizes (de Visser and

Krug, 2014); in our case, the same fitness landscape can lead to differ-

ent observed genotype frequency data and, thus, different inferred

DAGs if we change detection and mutation rates (see also Diaz-

Uriarte, 2015). In fact, adding variation in detection and mutation

rates made the problem worse and leads to inferred DAGs of restric-

tions that differed, on average, in 50% of their edges (Fig. 3b, top

row). These results highlight the relevance of these two often neglected

effects (see also Diaz-Uriarte, 2015). A practical consequence is that,

because detection and mutation vary between tissues and cancer types

(Hao et al., 2016; Martincorena and Campbell, 2015), we could be

inferring very different DAGs (and, thus, direct dependencies between

mutational events) from similar underlying fitness landscapes.

We saw next that non-representability due to reciprocal sign epis-

tasis and the difficulty of obtaining stable estimates of genotype fre-

quencies, lead to a many-to-many relationship between fitness

landscapes and DAGs of restrictions that affects the analysis of empir-

ical data. In the three cancer datasets examined, genotype frequencies

similar to the empirically observed ones were obtained under fitness

landscapes that were very different from each other (Fig. 4a); these

landscapes, when evolutionary processes run repeatedly on them, pro-

duced datasets that lead to very different and varied inferences about

the restrictions in the order of mutations (Fig. 4b).

I have focused on the role of reciprocal sign epistatis. Other devi-

ations from these models are possible in the absence of reciprocal

sign epistasis, most notably disjunctive (OR) relationships. (With

disjunctive relationships, an event can happen if at least one of its

parents has occurred; for example, in Fig. 1e, gene D would need

one of genes A or B to be mutated, not both.) Most common pro-

gression models that allow multiple incoming arrows interpret them

as an AND, not an OR. This is what CBN does; CAPRI can examine

ORs if provided as prior hypotheses but otherwise the convergent

arrows should be interpreted as ANDs (noisy ANDs; see Ramazzotti

et al., 2015). Some of the issues caused by disjunctions might be

solved if we used pathways or modules instead of individual genes

(e.g. Cristea et al., 2016; Diaz-Uriarte, 2017; Raphael and Vandin,

2015). And, compared with reciprocal sign epistasis, disjunctions do

not violate that a mutation in a genes does not decrease the proba-

bility of another mutation so, in terms of relevance, assuming lack

of reciprocal sign epistasis seems a more fundamental assumption of

CPMs. But how much of a problem disjunctions are in landscapes

with and without reciprocal sign epistasis is an open question.

Finally, CAPRI and CBN methods were affected differently by

mutation rate, detection regime and even landscape type (Figs 2 and

3). CAPRI’s DAG variability (Fig. 3a and b) decreased in the RMF

landscapes; this, however, does not mean that the quality of infer-

ences was better in those landscapes, as it was not (see Fig. 2a and

b), but simply that it was less variable around the error. The contrast

in the behavior of CBN and CAPRI is probably caused by the differ-

ent algorithms used by CAPRI and CBN. But there is an additional

difference that affects interpretation. CBN (like Oncogenetic Trees

and CAPRESE) should only place an arrow between two genes, A

and C, if C cannot be observed without A. This is not necessarily the

case for CAPRI. The arrows in CAPRI’s models (Ramazzotti et al.,

2015, p. 3017) “(. . .) imply ‘probability raising’ (. . .) [which] signi-

fies that the presence of the earlier genomic alteration (. . .) increases

the probability with which a subsequent advantageous genomic

alteration (. . .) appears in the clonal evolution of the tumor.”

Therefore, with CAPRI a simple interpretation of arrows as ‘needed

for occurrence’ could be precluded (of course, CBN, as any other

method, could make mistakes and add arrows when it should not—

these comments refer to possible differences between methods in the

intended meaning of the arrows). This difference in the intended

meaning of the arrows is probably one of the reasons behind some

of the behavior of CAPRI and its larger PNDs in the DAG-derived

(both representable and non-representable) fitness landscapes. False

negatives means failing to predict as possible an accessible genotype,

and are the result of DAGs that encode too many restrictions,

dependencies between genes that do not hold in the fitness

landscapes.

5 Conclusion

How much of a problem are non-representable fitness landscapes

and the many-to-many phenomenon for using the inferences

obtained by CPMs, for instance to identify therapeutic targets to

block the progress of disease? CPMs produce at best blurry maps of

the underlying epistatic relationships in the fitness landscape. But

differences in the underlying fitness landscape can have a large effect

in the evolutionary dynamics of cancer and, thus, our opportunities

for blocking the progress of disease. This raises the questions of

whether we can asses from empirical data if landscapes are repre-

sentable and, more importantly, what are the biomedical implica-

tions of errors and variability in the inferences of restrictions; even

for representable landscapes, it might be extremely difficult to iden-

tify the correct dependency relationships between genes and, thus,

the possible tumor progression paths, from cross-sectional data.
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