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Industrial brewing yeast engineered for the
production of primary flavor determinants in
hopped beer
Charles M. Denby1,2, Rachel A. Li2,3,4, Van T. Vu5, Zak Costello2,4,6, Weiyin Lin1,2, Leanne Jade G. Chan2,4,

Joseph Williams7, Bryan Donaldson8, Charles W. Bamforth 7, Christopher J. Petzold2,4, Henrik V. Scheller2,3,9,

Hector Garcia Martin 2,4,6 & Jay D. Keasling 1,2,4,5,10,11

Flowers of the hop plant provide both bitterness and “hoppy” flavor to beer. Hops are,

however, both a water and energy intensive crop and vary considerably in essential oil

content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report

that brewer’s yeast can be engineered to biosynthesize aromatic monoterpene molecules

that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint,

and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to

maximize product titers, tuning expression of pathway enzymes to affect target production

levels of multiple commercially important metabolites without major collateral metabolic

changes represents a unique challenge. By applying state-of-the-art engineering techniques

and a framework to guide iterative improvement, strains are generated with target perfor-

mance characteristics. Beers produced using these strains are perceived as hoppier than

traditionally hopped beers by a sensory panel in a double-blind tasting.
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During the brewing process, Saccharomyces cerevisiae
converts the fermentable sugars from grains into ethanol
and a host of other flavor-determining by-products.

Flowers of the hop plant, Humulus lupulus L., are typically added
during the wort boil to impart bitter flavor and immediately
before or during the fermentation to impart “hoppy” flavor and
fragrance (Fig. 1a). Over the past two decades, consumers have
displayed an increasing preference for beers that contain hoppy
flavor. Hops are an expensive ingredient for breweries to source
(total domestic sales have tripled over the past 10 years due to
heightened demand) and a crop that requires a large amount of
natural resources: ~100 billion L of water is required for annual
irrigation of domestic hops and considerable infrastructure is
required to deliver water from its source to the farm1,2. Further,
hops vary considerable in essential oil content, making it chal-
lenging to achieve a consistent hoppy taste in beer.

Hop flowers are densely covered by glandular trichomes, spe-
cialized structures that secrete secondary metabolites into epi-
dermal outgrowths3. These secretions accumulate as essential oil,
which is rich in various terpenes, the class of metabolites that
impart hoppy flavor to beer. Considerable research has investi-
gated which of these molecules are primarily responsible for this
flavor4; these studies are complicated by genetic, environmental,
and process-level variation5 and have suggested that the bouquet
of flavor molecules contributed to beer by hops is complex.
Nonetheless, the two monoterpene molecules linalool and ger-
aniol have been identified as primary flavor determinants by
several sensory analyses of hop extract aroma6–8 and finished
beer taste and aroma7,9–11, and together, they are major drivers of
the floral aroma of Cascade hops9, the most widely used hop in
American craft brewing12. Previous metabolic engineering efforts
have achieved microbial monoterpene biosynthesis in various
microbial hosts. Work in a domesticated wine yeast has
demonstrated the feasibility of producing monoterpene com-
pounds by biosynthesis in yeast by overexpression of a geraniol
synthase from a high-copy plasmid propagated in selective
media13. However, engineering genetically stable, controlled,
precise production of a combination of specific flavorants in any
industrial food-processing agent has remained a formidable
challenge.

In this work, we create drop-in brewer’s yeast strains capable of
biosynthesizing monoterpenes that give rise to hoppy flavor in
finished beer, without the addition of flavor hops. To achieve this
end, we identify genes suitable for monoterpene biosynthesis in
yeast; we develop methods to overcome the difficulties associated
with stable integration of large constructs in industrial strains; we
adapt genetic tools to generate a collection of engineered indus-
trial yeast strains on an unprecedented scale; we develop com-
putational methods to affect precise biosynthetic control and
leverage them to create a iterative framework towards target
production levels. Ultimately, sensory analysis performed with
beer brewed in pilot industrial fermentations demonstrates that
engineered strains confer hoppy flavor to finished beer.

Results
Identification of yeast-active linalool and geraniol synthases.
The monoterpene synthases that catalyze the reaction of geranyl
pyrophosphate (GPP) to linalool and geraniol in hops have not
yet been identified14. However, genes from other plant species
have been shown to encode these activities. To identify a linalool
synthase (LIS) gene for functional heterologous expression in
yeast, we expressed six different plant-derived LIS genes in a lab
yeast strain engineered for high GPP precursor supply (Fig. 1b).
However, none of the full-length proteins exhibited sufficient
activity to achieve target monoterpene concentrations in finished
beer (Fig. 1c). In plants, monoterpenes are biosynthesized in
chloroplasts; plant monoterpene synthases, therefore, typically
contain an N-terminal plastid targeting sequence (PTS) com-
posed of 20–80 polar amino acids, which is cleaved to produce a
mature protein. Truncation of the PTS sequence can improve
expression and activity of microbially expressed monoterpene
synthases15,16. However, methods for predicting the optimal PTS
truncation site, as well as for predicting portability of enzymes
from plant species to yeast are imperfect. We therefore screened
candidate LIS variants from different sources and with different
truncation sites for increased activity (Fig. 1b and Supplementary
Fig. 1). We tested bioinformatically predicted17 PTS sites and
observed a substantial increase in activity for the Lycopersicon
esculentum LIS (Fig. 1c). We also used a heuristic, structure-based
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Fig. 1 Engineering brewer’s yeast to express monoterpene biosynthetic pathways thereby replacing flavor hop addition. a During the brewing process, S.
cerevisiae converts wort—a barley extract solution rich in fermentable sugars—into ethanol and other by-products. Hops are added immediately before,
during, or after fermentation to impart “hoppy” flavor. Engineered strains produce linalool and geraniol, primary flavor components of hoppy beer, thereby
replacing hop additions. b Six full-length plant-derived linalool synthase genes, as well as PTS-truncated variants, were expressed on high-copy plasmids.
Full-length genes and PTS-truncated genes predicted by either ChloroP (C) or the RR-heuristic method (RR) are indicated by colored lines. c Error bars
correspond to mean ± standard deviation of three biological replicates. Asterisks indicate statistically significant increases in monoterpene production
compared with the control strain (Y) as determined by a t-test using p-value <0.025. The LIS from the California wildflower Clarkia breweri has been shown
to increase production of linalool when heterologously expressed in plants47 and in yeast48. However, when C. breweri LIS was expressed, either with native
codons (nCb) or “yeast-optimized” codons (Cb), linalool was not detected. The Mentha citrata LIS (Mc) truncated at the RR motif was identified as
sufficiently active to allow for monoterpene production at levels characteristic of commercial beer and was chosen for integration into brewer’s yeast
strains
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used to evaluate the extent to which design principles improved strain search efficiency. Variables corresponding to measured protein levels are
highlighted. b, c Transformation plate illustrating colorimetric screening method. ADE2 encodes an enzymatic step in purine biosynthesis and its deletion
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3. e Relative promoter strengths with corresponding protein and product abundances and sugar consumption (attenuation). Strains are sorted by total
monoterpene production
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approach for PTS prediction: a conserved double arginine (RR)
motif that functions as part of an active-site lid preventing water
access to the carbocationic reaction intermediate18 lies immedi-
ately C-terminal to the PTS in several well-characterized terpene
synthases15,16. We observed the highest linalool titer from the
truncated M. citrata LIS (t67-McLIS, Fig. 1c). An analogous
screen of six geraniol synthases revealed that the heterologous
expression of the full-length protein from O. basilicum (ObGES)
leads to geraniol production in yeast (Supplementary Fig. 1d).

Strategy for engineering monoterpene biosynthesis in brewing
yeast. Once we identified monoterpene synthases that were suf-
ficiently active in S. cerevisiae, we set out to engineer brewer’s
yeast strains capable of producing monoterpenes during beer
fermentation. Yeast naturally produces the sesquiterpene pre-
cursor farnesyl pyrophosphate (FPP) through the ergosterol
biosynthesis pathway, as FPP serves as a precursor for essential
metabolites including hemes and sterols. While the flux through
this pathway is tightly regulated, extensive metabolic engineering
efforts have informed key genetic modifications that obviate
regulatory checkpoints19,20 and increase monoterpene precursor
supply21 (Supplementary Fig. 2). HMG-CoA reductase (HMGR)
is one of the key rate-limiting steps of the pathway and is con-
trolled by an inhibitory regulatory domain that responds to
product accumulation19. Overexpression of a truncated form of
yeast HMGR lacking the regulatory domain (tHMGR) results in
increased flux towards end products22. A downstream enzyme,
FPP synthase (FPPS), catalyzes the sequential condensation of
two isopentyl pyrophosphate molecules with dimethylallyl pyr-
ophosphate. GPP, the immediate precursor of monoterpene
biosynthesis, is formed as an intermediate of the sequential
reactions. While the high processivity of the wild-type FPPS
limits the intracellular availability of GPP, a mutant (FPPS*) has
been identified that reduces processivity, thereby increasing

production of GPP-derived end products21. Based on these
observations, we hypothesized that modulating the expression of
tHMGR, FPPS*, t67-McLIS, and ObGES would result in brewer’s
yeast strains capable of producing linalool and geraniol during
fermentation at concentrations encompassing those typical of
finished beer (~0.2 mg/L)9,23.

In devising a strategy to modulate pathway activity, two
challenges were considered. First, de novo design and generation
of a collection of multi-gene constructs is difficult, time
consuming, and expensive. To circumvent this challenge, we
combined an existing toolkit of yeast genetic parts with a Golden
Gate assembly strategy for facile design and rapid pathway
construction24 (Fig. 2a, d and Supplementary Fig. 3). Second,
incorporating large (i.e., >10 kb) genetically stable DNA con-
structs into brewer’s yeast has not been reported, and is
complicated by their ploidy as well as concerns regarding the
incorporation of selection markers in food-processing agents. We
therefore developed a Cas9-mediated methodology for stable and
marker-less pathway integration (Fig. 2a–c, Supplementary Fig. 4,
and Supplementary Note 1). Our method leverages a colorimetric
assay to screen for positive transformants and allows for
macroscopic visualization of successful integration events. Inter-
estingly, this method also allowed us to visualize the high degree
of genetic instability associated with heterozygous integration
(Fig. 2b, c). By combining the assembly and integration strategies,
we were able to generate strains with a diverse set of genetic
designs, where each strain contained a unique combination of
promoters driving expression of the four modulated genes
(Fig. 2d).

Iterative design refines target monoterpene levels. Without
empirical data, it is difficult to predict the relationship between
specific genetic designs and metabolic end-product concentra-
tions25,26. To improve search efficiency towards desired mono-
terpene concentrations, we separated our design–build-test
process (Fig. 2a) into two stages, thereby affording us an
opportunity to first sample a small subset of design space and
then hone subsequent designs towards desired production pro-
files. An initial set of 18 strains containing promoters predicted to
span a wide range of expression strengths were constructed and
grown under microaerobic fermentation conditions that
mimicked an industrial brewing process (Supplementary Fig. 5).
We found that these first iteration strains produced mono-
terpenes within the range of commercial concentrations, although
were generally lower (Fig. 3). Some strains exhibited a reduced
fermentation capacity (Supplementary Figs. 6 and 7) including
the strains closest to commercial concentrations. However,
reduced fermentation capacity did not correlate with mono-
terpene production, suggesting that the fermentation defects were
not primarily due to monoterpene toxicity (Supplementary
Note 2).

To further explore the relationship between genetic design and
monoterpene production, the relative abundance of the four
modulated proteins was measured for each strain during the
active phase of fermentation. Protein abundance was strongly
correlated with previously characterized promoter strength
(Supplementary Table 1 and Supplementary Fig. 8), demonstrat-
ing that the qualitative relationship between promoter strengths
generally extends from a lab strain grown aerobically in rich
medium to a brewing strain grown in industrial brewing
conditions. Furthermore, total monoterpene production was
correlated with tHMGR and FPPS* abundance and linalool
production was correlated with t67-McLIS abundance, verifying
that the selected genes indeed control monoterpene production as
anticipated (Fig. 2e and Supplementary Table 1). An interesting

Geraniol (mg/L)

0 0.01 0.1 1 10

Iteration 1
Iteration 2
Commercial beers

0

0.01

0.1

1

10
Li

na
lo

ol
 (

m
g/

L)

Fig. 3 Production of monoterpenes by engineered strains. Linalool and
geraniol production of engineered yeast strains compared to concentrations
found in commercial beers, plotted in log10 space. For relationships
between flavor determinant concentration and taste intensity, the logarithm
of a stimulus is typically proportional to the logarithm of the perceived
intensity, such that the distance between points in log10 space is expected
to be directly proportional to the magnitude of taste difference. First and
second iteration points represent the mean of three biological replicates.
Standard deviation values are listed in Supplementary Table 14. In
ascending order of monoterpene concentration, commercial beers are Pale
Ale, Torpedo Extra IPA, and Hop Hunter IPA, obtained from the Sierra
Nevada Brewing Company
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anomaly was that ObGES abundance was not correlated with
geraniol production. We reasoned that since ObGES and t67-
McLIS compete for GPP supply, variation in t67-McLIS
abundance may obscure the relationship between ObGES and
geraniol production. Indeed, we observed that the fraction of
geraniol in total monoterpene composition correlated with the
ratio between ObGES and t67-McLIS (p-value < 0.05; t-test).
Together, these findings were encouraging, as they firmly
demonstrated that genetic design can be used to control
monoterpene production and that the knowledge gained from
our initial test set could guide subsequent design.

We next set out to generate a second iteration of designs with
target production levels defined by three commercially hopped
beers that span a wide range of monoterpene concentrations and
perceived hop flavor/aroma intensity. The salient trends observed
in the test set informed two guiding principles: (1) to shift overall
monoterpene production towards higher levels, designs were
composed of strong promoters driving tHMGR, FPPS*, and
ObGES and (2) to ensure variation in the ratio of linalool to
geraniol, designs encompassed a range of promoter strengths
driving expression of t67-McLIS. (Supplementary Table 11 and
Supplementary Fig. 9). We anticipated that applying these design
principles towards desired performance characteristics would
improve search efficiency. In order to evaluate the extent of
improvement, we established a mathematical modeling-based
framework to predict the relationship between genetic design and
monoterpene production (Online Methods, Supplementary
Note 3, and Supplementary Tables 2–5). Using this framework,
we predicted that the selected design principles significantly
improved our search efficiency (Supplementary Fig. 10). Impor-
tantly, we observed a consistent improvement in comparing
actual distance-from-target monoterpene levels between the first
and second iteration strains (Fig. 4).

Engineered strains affect consistent hop flavor. The anticipated
commercial value of generating hop flavor molecules through
yeast biosynthesis is predicated on three assumptions: (1) because

the conditions inside a fermenter can be precisely controlled, the
final concentrations of yeast-biosynthesized monoterpenes in
beer are likely to be more consistent compared with those given
by conventional hop additions, (2) the biosynthesized mono-
terpenes linalool and geraniol confer hoppy flavor as perceived
through human taste, and (3) the variation in hop flavor molecule
concentrations correspond to differences on the order of those
discernable by human taste. To test the consistency of yeast-
biosynthesized monoterpene levels, replicate fermentations were
performed at 8 L scale with a subset of engineered strains. To test
the consistency of hop-derived monoterpene levels, Cascade hop
preparations originating from five different farms in the North-
western United States were used to supplement fermentations
performed with the parent strain (Fig. 5a,b). We observed little
variation in final monoterpene concentrations between replicate
samples fermented with engineered strains, whereas fermenta-
tions hopped with different preparations yielded significantly
greater variation (linalool p-value <1 × 10−5, geraniol p-value
<1 × 10−3; t-test) (Fig. 5a,b). This result demonstrates that engi-
neered strains biosynthesize monoterpenes more consistently
than can be achieved by randomly selecting Cascade hop pre-
parations from different farms. Next, to test whether yeast-
biosynthesized monoterpenes conferred hop flavor, beer was
produced in an authentic, pilot-scale brewhouse, following a
recipe for a classic American Ale, using three engineered strains
and the parent strain (WLP001) as a control (Supplementary
Fig. 11 and Supplementary Table 17). A panel of tasters deter-
mined that the finished beers exhibited a range of hop flavor/
aroma intensity (Fig. 5c). In addition, the apparent difference in
hop flavor/aroma intensity between beer fermented with JBEI-
16652 and JBEI-16669 was considerable, despite only a ~twofold
difference in linalool and geraniol concentrations. Taken toge-
ther, these results demonstrate that monoterpenes derived from
yeast biosynthesis during fermentation give rise to hop flavor/
aroma in finished beer and that biosynthesis provides greater
consistency than traditional hopping. Finally, in order to compare
the intensity of hop flavor conferred by traditional dry hopping
with the hop flavor conferred by engineered strains,
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fermentations were performed both with the parent strain with
dry-hop additions as well as with JBEI-16652 without dry-hop
additions (Supplementary Fig. 11 and Supplementary Table 18).
Conventionally dry-hopped beers consistently exhibited increased
hop flavor/aroma as perceived by a sensory panel; however, these
effects were not statistically significant compared to the parental
control (Fig. 5d). In contrast, beer produced with JBEI-16652
again exhibited significantly higher hop flavor/aroma than
the parental control. Similar monoterpene concentrations were
observed between the two batches, demonstrating the consistent
performance of the engineered strain.

Discussion
In this study, we have engineered brewer’s yeast for production of
flavor molecules ordinarily derived from hops. We developed new
methods to overcome the difficulties associated with stable inte-
gration of large constructs in industrial strains. Unlike classical
microbial metabolic engineering efforts that focus on maximizing
the titer of a single molecule, we focused on tuning the expression
of key genes in a biosynthetic pathway to simultaneously make
precise concentrations of multiple flavor molecules. This appli-
cation promises to generate hop flavors with more consistency
than traditional hop additions, as hop preparations are

notoriously variable in the content of their essential oil and the
flavor they impart to beer23. It should be noted that blending hop
preparations from different sources can be used to reduce var-
iation. However, blending is ultimately limited by practical con-
straints: In the best case, large craft breweries create one single
hop blend per year, which fails to mitigate year-to-year variation.
Our strategy is favored over plant or microbial bioprocess
extraction because it avoids the use of non-renewable chemicals
typical of industrial extraction. While historic consumer trepi-
dation towards genetically engineered foods is of concern for
widespread adoption, the general increase in consumer accep-
tance of such foods when tied to increased sustainability27 is
encouraging.

Previous studies have demonstrated the feasibility of engi-
neering brewer’s yeast by incorporation of heterologous
genes13,28,29; however, the scope and commercial relevance of
these efforts have been limited, in part due to methodological
difficulties of incorporating an array of large, genetically stable
DNA constructs into industrial yeasts. Recent studies have
resorted to alternative methods such as breeding hybrid strains30.
While this has proven to be a powerful approach for generating
diverse aroma phenotypes, it is intrinsically limited to enzymes
and aromas associated with native yeast metabolism. Here, we
developed a complementary methodology that allows for stable
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brewing strain fermentations compared with variation in concentrations generated by traditional dry hopping. For engineered strain samples, horizontal
lines correspond to the mean of three biological replicates. For traditional dry hopping, the horizontal line corresponds to the mean of five Cascade hop
samples obtained from different farms. Vertical lines correspond to standard deviation. c Sensory analysis of the pilot-scale beers fermented with three
engineered strains compared to beer fermented with the parental strain. d Sensory analysis of pilot-scale beers fermented with engineered strain JBEI-
16652 compared to beer fermented with the parental strain, with or without traditional Cascade dry-hopping. Asterisks (c, d) indicate statistically
significant differences in hop aroma intensity as compared to the control beer (p-value < 0.05; Dunnett’s test). Difference from control, DFC, was
measured on a 9-point scale
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incorporation of plant secondary metabolism genes into indus-
trial brewer’s yeast. We provide evidence that incorporating
linalool and geraniol biosynthesis confers hop flavor to beer. We
note that the full flavor imparted by traditional hopping is likely
to rely on a more diverse bouquet of molecules. The methodol-
ogies described herein provide a foundation for generating more
complex yeast-derived hop flavors, and broaden the possibilities
of yeast-biosynthesized flavor molecules to those throughout the
plant kingdom.

Methods
Cloning. All strains, expression plasmids, and additional plasmids used for strain
construction are listed and described in Supplementary Tables 6–13. The sequence
files corresponding to each plasmid can be found in the JBEI Public Registry
(https://public-registry.jbei.org/)31. Plasmids were propagated in Escherichia coli
strain DH10B and purified by Miniprep (Qiagen, Germantown, MD, USA). The
“pathway” plasmids used to construct the engineered brewing strains were
assembled by the standard Golden Gate method using type II restriction enzymes
and T7 DNA Ligase (New England Biolabs, Ipswich, MA, USA)24,32 (for additional
detail, see schematized assembly strategy in Supplementary Fig. 3). All other
plasmids generated in this study were constructed by Gibson assembly33 using
Gibson assembly master mix (New England Biolabs, Ipswich, MA, USA). Con-
structs were designed using the DeviceEditor bioCAD software34, and assembly
primers were generated with j5 DNA assembly design automation software35 using
the default settings. PCR amplification was performed using PrimeSTAR GXL
DNA polymerase according to the manufacturer’s instructions (Takara Bio,
Mountain View, CA, USA). Genes coding for full-length linalool and geraniol
synthases were ordered either from IDT (San Diego, CA, USA) as G-blocks or from
Life Technologies (Carlsbad, CA, USA) as DNA strings. The coding sequences of
heterologous genes in all plasmids were validated by Sanger sequencing (Genewiz,
South Plainfield, NJ, USA and Quintara, South San Francisco, CA, USA).

Strain construction. Yeast lab strains were transformed by the high-efficiency
lithium acetate method36. Strains were cultivated in yeast extract+ peptone+
dextrose (YPD) medium unless otherwise noted. To select for transformants
containing auxotrophic complementation cassettes, transformed cells were plated
on standard dropout medium (Sunrise Science Products, San Diego, CA, USA). To
select for transformants containing drug resistance cassettes, cells were recovered in
YPD medium for 4 h after transformation, and then plated on YPD medium
supplemented with 200 μg/L geneticin (Sigma-Aldrich, St. Louis, MO, USA) or
hygromycin B (Sigma-Aldrich, St. Louis, MO, USA). Minor modifications were
made to cultivation conditions for brewer’s yeast transformations: pre-
transformation cultures were grown in YPD medium supplemented with 200 mg/L
adenine sulfate at 20 °C in glass test tubes with shaking at 200 rpm. A single colony
was used to inoculate an initial 5 mL culture, which was grown overnight to tur-
bidity. This culture was used to inoculate a second 5 mL culture to an OD600

(optical density at 600 nm) of 0.01, which was grown for 18 h. The second culture
was then used to inoculate 50 mL cultures in 250 mL Erlenmeyer flasks to OD600 of
0.05. After ~8 h of growth, strains were transformed by the lithium acetate
method36, cells were recovered in YPD medium for 4 h, plated on YPD supple-
mented with 200 μg/L geneticin, and then grown for 5–7 days at 20 °C.

DNA used for genomic integration was prepared either by PCR-amplifying
plasmid DNA or by digesting a plasmid with restriction enzymes. For construction
of the GPP-hyper-producing strain, integration fragments were amplified from the
corresponding plasmids by PCR (Supplementary Table 7). For construction of
pathway-integrated brewing strains, plasmid DNA was linearized by restriction
digestion with NotI-HF and PstI-HF (New England Biolabs, Ipswich, MA, USA)
(Supplementary Tables 10 and 11).

All integration events were confirmed by diagnostic PCR using GoTaq Green
Master Mix (Promega, Madison, WI, USA). For brewer’s yeast strains,
homozygosity at the integration locus was tested using primers targeted to the 5′
and 3′ junctions of desired allele and the parental allele. The identity of the multi-
gene integration was verified with primers targeted to each of the four promoter/
gene junctions. The promoter identities corresponding to each strain can be found
in Supplementary Tables 12 and 13.

Screening synthases. For the linalool and geraniol synthase screening, single
colonies were picked from the transformation plate and used to inoculate cultures
in 5 mL CSM-Leu (Sunrise) +2% raffinose (Sigma-Aldrich, St. Louis, MO, USA)
medium. After 24 h, the precultures were diluted into fresh CSM-Leu+ 2%
galactose (Sigma-Aldrich, St. Louis, MO, USA) medium to an OD of 0.05 and
grown for 72 h with shaking at 200 rpm. An organic overlay was added 24 h after
inoculation to capture hydrophobic monoterpenes. Decane was used as the overlay
for the cultures expressing LIS and dodecane was used for those expressing GES.
The overlay was chosen so as to minimize overlap of retention times between
solvent and product for subsequent gas chromatography–mass spectrometry (GC/
MS) analysis.

Microaerobic fermentation. Strains were streaked on YPD medium and grown for
2 days at 25 °C. Single colonies were used to inoculate initial 2 mL precultures in
24-well plates (Agilent Technologies, Santa Clara, CA, USA), which were grown for
3 days at 20 °C with shaking at 200 rpm. Strains were grown in a base medium
composed of 100 g/L malt extract (ME) (Sigma-Aldrich, St. Louis, MO, USA). Each
well contained a 5 mm glass bead (Chemglass Life Sciences, Vineland, NJ, USA).
The resulting cultures were used to inoculate second 6 mL precultures in fresh 24-
well plates to an OD of 0.1, which were then grown for 3 days at 20 °C with shaking
at 120 rpm. The resulting cultures were then used to inoculate 25 mL cultures in
glass test tubes to an OD of 1.0. These cultures were equipped with a one-way
airlock for microaerobic fermentation and grown for 5 days at 20 °C (Supple-
mentary Fig. 5). Test tubes were vortexed for 30 s every 24 h.

High-performance liquid chromatography. Maltotriose, maltose, glucose, and
ethanol were separated by high-performance liquid chromatography (HPLC) and
detected by a refractive index (RI) detector. On day 5, fermentation samples were
centrifuged at 18,000 × g for 5 min, filtered using Costar® Spin-X® Centrifuge Tube
Filters, 0.22-µm pore, transferred to HPLC tubes, and loaded into an Agilent 1100
HPLC equipped with an Agilent 1200 series auto-sampler, an Aminex HPX-87H
ion exchange column (Bio-Rad, Hercules, CA USA), and an Agilent 1200 series RI
detector. Metabolites were separated using 4 mM H2SO4 aqueous solution with a
flow rate of 0.6 mL/min at 50 °C. Absolute sample concentrations were calculated
using a linear model generated from a standard curve composed of authentic
maltotriose, maltose, glucose, and ethanol standards (Sigma-Aldrich, St. Louis,
MO, USA) diluted in water over a range of 0.2–20 g/L. All data are provided in
Supplementary Table 15.

Monoterpene quantification. Monoterpenes were quantified by GC/MS analysis,
using an Agilent GC system 6890 series GC/MS with Agilent mass selective
detector 5973 network. In all experiments, 1 μL of the sample was injected (split-
less), using He as the carrier gas onto a CycloSil-B column (Agilent, 30 m length,
0.25 mm inner diameter (i.d.), 0.25 μm film thickness, cat. no. 112-6632). The
carrier gas was held at a constant flow rate of 1.0 mL/min and EMV mode was set
to a gain factor of 1.

Sampling, oven temperature schedule, and ion monitoring was optimized for
each experiment: for quantifying linalool and geraniol production in terpene
synthase screens, the samples were spun down and the organic phase (solvent
overlay) was collected, diluted 1:10 in ethyl acetate (Sigma-Aldrich, St. Louis, MO,
USA), transferred to a glass GC vial, and injected into the GC column. For samples
corresponding to the LIS screen, the oven temperature was held at 50 °C for 12
min, followed by a ramp of 10 °C/min to a temperature of 190 °C and a ramp of 50
°C/min to a final temperature of 250 °C, and then held at 250 °C for 1 min. The
solvent delay was set to 20 min, and the MS was set to SIM mode for acquisition,
monitoring m/z ions 80, 93, and 121. For samples corresponding to the geraniol
synthase screen, the oven temperature was held at 50 °C for 5 min, then ramped at
30 °C/min to a temperature of 135 °C, then ramped at 5 °C/min to a temperature of
145 °C, then ramped at 30 °C/min to a temperature of 250 °C, and held at 250 °C
for 1 min. The solvent delay was set to 10.8 min and the MS was set to monitor m/z
ions 69, 93, 111, and 123. For quantifying linalool and geraniol in microaerobic
fermentations performed with brewer’s yeasts, samples were extracted on day 5
using ethyl acetate. Fermentation samples were collected and spun down, 1600 μL
of the supernatant was mixed with ethyl acetate at a 4:1 ratio in a 96-well plate, the
plate was sealed and vortexed for 2 min, then spun at 3000 × g for 5 min, and 30 μL
of the ethyl acetate was transferred into a glass GC vial. The resulting preparation
was injected into the GC column. For quantifying linalool and geraniol in various
commercial beers, 2 mL of ethyl acetate was added to 8 mL of the beer in glass
tubes (Kimble Chase, Rockwood, TN, USA). This was mixed by hand for 2 min and
spun at 1000 × g for 10 min. Thirty microliters of the ethyl acetate layer was
transferred to glass GC vials, and the resulting preparation was injected into the GC
column. For both the microaerobic fermentation experiments and sampling of
commercial beers, the oven temperature was held at 50 °C for 5 min, followed by a
ramp of 5 °C/min to a temperature of 200 °C and a ramp of 50 °C/min to a final
temperature of 250 °C, and then held at 250 °C for 1 min. The solvent delay was set
to 5 min and the MS was set to monitor m/z ions 55, 69, 71, 80, 81, 93, 95, 107, 121,
123, and 136.

Peak areas for linalool and geraniol were quantified using MSD Productivity
ChemStation software (Agilent Technologies, Santa Clara, CA, USA). Absolute
sample concentrations were calculated using a linear model generated from a
standard curve composed of authentic linalool and geraniol standards (Sigma-
Aldrich, St. Louis, MO, USA). For monoterpene synthase screening experiments,
standards were diluted in ethyl acetate over a range of 0.2–50 mg/L. For the
microaerobic fermentation experiments and sampling of commercial beers,
standards were spiked into a preparation extracted from the parent strain
fermentation sample (i.e., a control preparation used to ensure accurate baseline
signal) over a range of 0.2–10 mg/L. In calculating actual concentrations, apparent
concentrations were scaled based on dilution or concentration in GC injection
preparation.
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Proteomics. Protein abundance data are reported in Supplementary Table
16. Culture (5 mL) was sampled after 2 days, vortexed, and spun at 3000 × g for 5
min. The supernatant was discarded, and the pellet was flash frozen. Plate-based
cell pellets were lysed by chloroform-methanol precipitation, described below,
while samples in tubes were lysed by re-suspending the pellets in 600 µL of yeast
lysis buffer (6 M urea in 500 mM ammonium bicarbonate), followed by bead
beating with 500 µL zirconia/silica beads (0.5 mm diameter; BioSpec Products,
Bartlesville, OK, USA). Samples in tubes were bead beat for five cycles of 1 min
with 30 s on ice in between each cycle. Subsequently, they were spun down in a
benchtop centrifuge at a maximum speed for 2 min to pellet cell debris, and the
clear lysate was transferred into fresh tubes. Plate-based cell lysis and protein
precipitation was achieved by using a chloroform-methanol extraction37. The
pellets were re-suspended in 60 µL methanol and 100 µL chloroform, and then 50
µL zirconia/silica beads (0.5 mm diameter; BioSpec Products, Bartlesville, OK,
USA) were added to each well. The plate was bead beat for five cycles of 1 min with
30 s on ice in between each cycle. The supernatants were transferred into a new
plate and 30 µL water was added to each well. The plate was centrifuged for 10 min
at a maximum speed to induce the phase separation. The methanol and water
layers were removed, and then 60 µL of methanol was added to each well. The plate
was centrifuged for another 10 min at a maximum speed and then the chloroform
and methanol layers were removed and the protein pellets were dried at room
temperature for 30 min prior to re-suspension in 100 mM ammonium bicarbonate
with 20% methanol.

The protein concentration of the samples was measured using the DC Protein
Assay Kit (Bio-Rad, Hercules, CA, USA) with bovine serum albumin used as a
standard. A total of 50 µg protein from each sample was digested with trypsin for
targeted proteomic analysis. Protein samples were reduced by adding tris 2-
(carboxyethyl)phosphine to a final concentration of 5 mM, followed by incubation
at room temperature for 30 min. Iodoacetamide was added to a final concentration
of 10 mM to alkylate the protein samples and then incubated for 30 min in the dark
at room temperature. Trypsin was added at a ratio of 1:50 trypsin:total protein, and
the samples were incubated overnight at 37 °C.

Peptides were analyzed using an Agilent 1290 liquid chromatography system
coupled to an Agilent 6460 QQQ mass spectrometer (Agilent Technologies, Santa
Clara, CA, USA). The peptide samples (10–20 µg[LC2]) were separated on an
Ascentis Express Peptide ES-C18 column (2.7 μm particle size, 160 Å pore size, 5
cm length × 2.1 mm i.d., coupled to a 5 mm × 2.1 mm i.d. guard column with
similar particle and pore size; Sigma-Aldrich, St. Louis, MO, USA), with the system
operating at a flow rate of 0.400 mL/min and column compartment at 60 °C.
Peptides were eluted into the mass spectrometer via a gradient with initial starting
condition of 95% Buffer A (0.1% formic acid) and 5% Buffer B (99.9% acetonitrile,
0.1% formic acid). Buffer B was held at 5% for 1.5 min, and then increased to 35%
Buffer B over 3.5 min. Buffer B was further increased to 80% over 0.5 min where it
was held for 1 min, and then ramped back down to 5% Buffer B over 0.3 min where
it was held for 0.2 min to re-equilibrate the column to the initial starting condition.
The peptides were ionized by an Agilent Jet Stream ESI source operating in
positive-ion mode with the following source parameters: gas temperature= 250 °C,
gas flow= 13 L/min, nebulizer pressure= 35 psi, sheath gas temperature= 250 °C,
sheath gas flow= 11 L/min, VCap= 3500 V. The data were acquired using Agilent
MassHunter, version B.08.00. Resultant data files were processed by using Skyline38

version 3.6 (MacCoss Lab, University of Washington, Seattle, WA, USA) and peak
quantification was refined with mProphet39 in Skyline.

Data analysis. Data analysis was performed using the R statistical programming
language40. Additional libraries were used for data visualization functionalities41–
45. For protein and metabolite analysis heatmaps (Fig. 2e and Supplementary
Fig. 9), relative levels were reported as follows: promoter strengths were repre-
sented as a fraction of their previously reported rank order24 ranging from PRNR2
(0) to PTDH3 (1). Feature scaling was used to standardize the range of protein,
monoterpene, and sugar abundances. Let si equal the log10-transformed abundance
value for species S in strain i. Normalized values were computed according to Eq.
(1) as:

s′i ¼
si �minðSÞ

maxðSÞ �minðSÞ ð1Þ

For sugar analysis, unfermented ME was included in max/min calculations. For
fermentable sugars (i.e., maltotriose, maltose, glucose), the scaled values were
subtracted from 1 in order to represent proximity to desired sugar consumption
profile.

The distance metric of an engineered strain with respect to a given commercial
beer was calculated using the Manhattan length as the distance of monoterpene
production from beer monoterpene concentrations and the distance in sugar
consumption from the parent strain. First, the difference between log10-
transformed values of engineered strain monoterpene concentration and target
beer monoterpene concentration was calculated for each species, linalool and
geraniol. Second, the absolute values of these differences were calculated. Finally,
the resulting values, together with the fraction of total sugar remaining after
fermentation, were averaged.

Mathematical modeling. Three different models were constructed in Python to
predict monoterpene production from protein levels (for detailed description and
implementation, see Supplementary Data File 1). Files containing data used to
generate predictive models are included as Supplementary Data Files 2 and 3. Both
the Gaussian regressor and linear models were implemented using Scikit-learn46.
Additional equations needed to describe the linear model are given in Supple-
mentary Table 3. Equations describing the Michaelis–Menten kinetics model are
given in Supplementary Table 4 and a schematic of the model structure is provided
in Supplementary Fig. 13. Kinetic parameters were scraped from the literature
(Supplementary Table 5) and protein concentrations are given in Supplementary
Data File 2. Free parameters were included to convert relative protein counts to
absolute protein values. Additionally, a parameter β determined the relative ratio
between the endogenous FPPS and FPPS*.

Both the linear and Gaussian regressor models were fit using standard methods
from the Scikit Learn library. The kinetic model was manually constructed without
external libraries. To fit the kinetic model, a differential evolution algorithm was
used to perform parameter optimization on a nonlinear cost function. Specifically,
the sum of the squared residual error of the model predictions from the first
iteration strains was minimized with respect to the previously described
parameters. The kinetic coefficients were bounded to vary over an order of
magnitude from the values described in the literature. In order to cross-validate the
models and minimize overfitting, a leave-one-out methodology was applied to each
model. The error residuals from this cross-validation technique are reported in
Supplementary Table 2.

Analysis performed for predicting the extent of performance improvement for
second iteration strains (Fig. 4 and Supplementary Fig. 10) compared with
randomly designed strains is described in Supplementary Note 3.

Toxicity assay. OD600 measurements were taken in 48-well clear flat bottom plates
(Corning Inc., Corning, NY, USA) using a Tecan Infinite F200 PRO reader, with
acquisition every 15 min. Analysis was performed using custom python scripts.
Growth curves were calculated by averaging six biological replicates; shaded areas
represent one standard deviation from the mean. Growth rates were calculated with
a sliding window of 5 h, solving for maximum growth rate. Growth rates are
presented as the average of six biological replicates; error bars represent 95%
confidence intervals (Supplementary Fig. 12).

Pilot fermentations. Strains were streaked on YPD medium and grown for 2 days
at 25 °C. Single colonies were used to inoculate initial 5 mL cultures in glass test
tubes, which were grown for 2 days at 20 °C with shaking at 200 rpm. The resulting
cultures were used to inoculate 1 L cultures in 2 L glass Erlenmeyer flasks, which
were then grown for 3 days at 20 °C with shaking at 200 rpm. Strains were grown in
a base medium composed of 100 g/L ME (Sigma-Aldrich, St. Louis, MO, USA). The
resulting cultures were then used to inoculate industrial fermentations in wort
produced in a 1.76 hL pilot brewery.

For the first set of fermentations, 35 kg of 2-Row malt was milled and added to
105 L of DI water treated with 79.15 g of brewing salts. Mashing was performed for
30 min at 65 °C, 10 min at 67 °C, and 10 min at 76 °C. The wort was allowed to
recirculate for 10 min and was separated by lautering. Sparging occurred for 58
min, giving a final pre-boil volume in the brew kettle of 215 L. The wort was boiled
until it reached a final volume of 197 L and a gravity of 11.65 °Plato. Kettle
additions included 125 g of Magnum hop pellets, 15.1 g of Yeastex yeast nutrients,
and 15 g Protofloc (Murphy and Son, Nottingham, UK). Ingredients were sourced
from Brewers Supply Group (Shakopee, MN, USA), except where otherwise noted.
After the wort was separated from the hot trub, it was transferred to four 56 L
custom fermenters (JVNW, Canby, OR, USA), each filled to 40 L. The beers were
fermented at 19 °C until they reached terminal gravity, held for an additional 24 h
for vicinal diketone (VDK) removal, and then cold conditioned at 0 °C. The length
of fermentation, and in turn the length of cold conditioning, was strain dependent.
Samples were taken every 24 h to measure °Plato and pH (see Supplementary
Fig. 11). The resulting beer was filtered under pressure and carbonated prior to
storage in 7.75 gallon kegs. Samples were collected during the kegging process for
Alcolyzer (Anton Paar, Ashland, VA) analysis (see Supplementary Table 17).

For the second set of fermentations, 35 kg of 2-Row malt was milled and added
to 105 L of DI water treated with 79 g of brewing salts. Mashing was performed for
30 min at 65 °C, 10 min at 67 °C, and 10 min at 76 °C. The wort was allowed to
recirculate for 10 min and was separated by lautering. Sparging occurred for 52
min, giving a final pre-boil volume in the brew kettle of 214 L. The wort was boiled
until it reached a final volume of 194 L and a gravity of 11.25 °Plato. Kettle
additions included 97.01 g of Galena hop pellets, 15.1 g of Yeastex yeast nutrients,
and 15 g Protofloc (Murphy and Son, Nottingham, United Kingdom). Ingredients
were sourced from Brewers Supply Group (Shakopee, MN) except where otherwise
noted. After the wort was separated from the hot trub, it was transferred to four 56
L custom fermenters (JVNW, Canby, OR), each filled to 40 L. The beers were
fermented at 19 °C until they reached terminal gravity, held for an additional 24 h
for VDK removal, and then cold conditioned at 0 °C. The length of fermentation,
and in turn the length of cold conditioning, was strain dependent. Samples were
taken every 24 h to measure °Plato and pH (see Supplementary Fig. 11). After 48 h
at 0 °C, 88.5 g Cascade dry hops (either from Washington or from Idaho) were
added to two fermenters containing parent strain WLP001. The dry hops were left
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on the beer at 1.67 °C for 1 week before filtering. The resulting beer was filtered
under pressure and carbonated prior to storage in 7.75 gallon kegs. Samples were
collected during the kegging process for Alcolyzer (Anton Paar, Ashland, VA,
USA) analysis (see Supplementary Table 18).

Sensory analysis. Institutional Review Board approval for human research was
obtained from the UC Berkeley Office for Protection of Human Subjects (CPHS
protocol number 2017-05-9941). The Committee for Protection of Human Subjects
reviewed and approved the application under Category 7 of federal regulations.

Panelists: Sensory analysis of the brewed beer was conducted at Lagunitas
Brewing Company (Petaluma, CA, USA). The first panel consisted of 27 employee
participants (17 males and 10 females), the second of 13 employee participants (11
males and 2 females), ranging in experience from 2 to 154 tasting sessions attended
in calendar year 2017. Ages ranged from mid-20s to 50s. All participants received
basic sensory training per Lagunitas standards.

Sensory analysis: Samples of 2 ounces were presented in clear 6 oz brandy
glasses (Libbey, Toledo, OH, USA). Each panelist received five glasses, one control
and four samples (one blind control and three variables) arranged randomly by
balanced block design. Block design and data gathering were accomplished using
the EyeQuestion® software (Logic8 BV, The Netherlands). In a single sitting,
panelists were asked to rank hop aroma intensity as compared to the control on a
9-point ordinal scale anchored on one end with “No difference” and the other end
with “Extreme difference.”

Data analysis: Data were analyzed using Dunnett’s test in conjunction with one-
way analysis of variance using EyeOpenR® (Logic8 BV, The Netherlands). Analysis
was performed at the 95% confidence level. The blind control is used as the
reference sample to account for any scoring bias that might occur.

Dry hopping for evaluation of variation between hop preparations. Parental
strain WLP001 was streaked on YPD medium and grown for 2 days at 25 °C. A
single colony was used to inoculate an initial 50 mL preculture in a 250 mL glass
Erlenmeyer flask, which was grown for 1 day at 20 °C with shaking at 200 rpm. The
strain was grown in a base medium composed of 100 g/L ME (Sigma-Aldrich, St.
Louis, MO, USA) supplemented with YPD. The resulting culture was used to
inoculate a 1 L preculture in a 2 L glass Erlenmeyer flask, which was then grown for
2 days at 20 °C with shaking at 200 rpm. The resulting culture was then used to
inoculate four 2 L cultures in 4 L glass Erlenmeyer flasks, which were then grown
for 1 day at 20 °C with shaking at 200 rpm. The resulting cultures were then used to
inoculate 8 L cultures in 3-gallon glass carboys (Midwest Supplies, Roseville, MN,
USA). These cultures were equipped with a one-way airlock for microaerobic
fermentation and grown for 6 days at 20 °C. In the meantime, five different Cas-
cade hop samples grown on farms across the Pacific Northwest were obtained from
YCH Hops (Yakima, WA, USA). The hop samples were ground using a mortar and
pestle and liquid nitrogen. On day 6, samples were taken from the fermentations
(as un-hopped controls) and 25 g of hops was added to each fermentation. Hops
were left to steep for 3 days, after which samples were collected for GC/MS analysis.

Batch-to-batch variation. Strains were streaked on YPD medium and grown for
2 days at 25 °C. Single colonies were used to inoculate initial 5 mL precultures in
glass test tubes, which were grown for 2 days at 20 °C with shaking at 200 rpm.
Strains were grown in a base medium composed of 100 g/L ME (Sigma-Aldrich, St.
Louis, MO, USA). The resulting cultures were used to inoculate 500 mL precultures
in 2 L glass Erlenmeyer flasks, which were then grown for 1 day at 20 °C with
shaking at 200 rpm. The resulting cultures were then used to inoculate 8 L cultures
in 3-gallon glass carboys (Midwest Supplies, Roseville, MN, USA). These cultures
were equipped with a one-way airlock for microaerobic fermentation and grown
for 12 days at 20 °C. Samples were taken on day 12 for GC/MS analysis.

Data availability. The authors declare that all data supporting the findings of this
study are available within the paper and its supplementary information files.
Sequence data and strains generated in this study have been deposited in the JBEI
public registry. See Supplementary Tables 6–13 for construct sequences and strain
information. Computer code used in this study can be accessed from Supple-
mentary Data 1.
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