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Abstract
The capabilities of a weighted least squares approach for the optimization of the intraocular

lens (IOL) constants for the Haigis formula are studied in comparison to an ordinary least

squares approach. The weights are set to the inverse variances of the effective optical ante-

rior chamber depth. The effect of randommeasurement noise is simulated 100000 times

using data from N = 69 cataract patients and the measurement uncertainty of two different

biometers. A second, independent data set (N = 33) is used to show the differences that

can be expected between both methods. The weighted least squares formalism reduces

the effect of measurement error on the final constants. In more than 64% it will result in a

better approximation, if the measurement errors are estimated correctly. The IOL constants

can be calculated with higher precision using the weighted least squares method.

Introduction
Cataract is the major cause of blindness world wide [1]. It is characterized by a clouding of the
natural human lens. Its treatment requires surgical removal of the lens. The lens can then be
replaced by an artificial intraocular lens (IOL). Proper preoperative calculation of the refractive
power of the IOL is important in order to achieve the desired visual outcome. State of the art
IOL calculation requires at least three parameters: the axial length of the eye, the refractive
power of the cornea and an estimation of the IOL position after surgery [2–4]. If a distinct
refractive outcome is desired, the target refraction will also be required as a parameter. The
Haigis formula requires the distance between the corneal epithelium and the natural lens (the
phakic anterior chamber depth) as an additional parameter [5, 6].

The estimation of the postoperative IOL position based on preoperative biometry (refractive
power of the cornea, axial length, anterior chamber depth) is a major source of error in the cal-
culation of IOL power [7]. Several formulae can be used to estimate the appropriate IOL power
[2–5, 8, 9]. The design parameters provided by the manufacturers (lens constants) allow for an
initial estimation of the best suited IOL power, but have to be refined in order to reduce the
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deviations between planned and achieved post-surgical refraction [10, 11]. These lens con-
stants are optimized according to the postoperative outcomes observed with a specific IOL, in
order to minimize the numerical errors for the sample.

Some measurements may include larger measurement errors than others. Measurements
that have larger errors should contribute less to the refinement of the parameters than those
with smaller errors. The statistical measurement uncertainty results from natural variations in
the shape of the eye, uncontrolled lens accommodation and pupil size, variations in the axis of
fixation during data acquisition, and measurement resolution [12]. The uncertainty of the axial
length Lmeasurement contributes approximately 2.8m−1 mm−1 (additional refractive power in
m−1 at spectacle plane per measurement error in mm), and the uncertainty of the anterior
chamber depth ACDmeasurements −1.4m−1 mm−1 to the error of the IOL power calculation
[7]. Measurement uncertainty is significantly reduced through the proper use of low coherence
interferometry for the measurement of the axial length [7, 13, 14]. Nevertheless, it can be bene-
ficial to prepare the data by adequate screening [9] for outliers originating from erroneous data
transfer or inaccurate measurements. An approximation method that takes the probability-dis-
tribution of measurement errors into account such as a maximum likelihood approach might
also increase the predictive potential of personalized IOL-constants.

The Haigis formula [5, 6] is based on a simplified thin lens model of the cornea using only
the keratometry values of the anterior cornea to calculate the effective corneal refractive power
Km defined as the average over both keratometry measurements using the keratometer index of
nc = 1.332. The postoperative optical anterior chamber depth d does not necessarily correspond
to the physiological post-surgical anterior chamber depth. It is defined as the parameter d in
the the prediction of the lens power D [5, 6]

D ¼ n
L� d

� n
n

Km þ Rx

1� Rx � 0:012m
� d ð1Þ

that on average results in the smallest difference between the planned refraction Rx and the
achieved post surgical refractive outcome F. The index of refraction of the aqueous humour is
accepted as n = 1.336 [15]. The phakic anterior chamber depth ACD and the axial length L are
used to predict the postoperative anterior chamber depth d of the thin lens calculation (Eq 1).

The optical anterior chamber depth d can be estimated with the Haigis formula [5, 6] given
by

d ¼ a0 þ ACD � a1 þ L � a2: ð2Þ

The constants a0, a1, and a2 in the Haigis formula characterize each IOL-type. The postopera-
tive optical anterior chamber depth can be derived by solving Eq 1 for d given the post surgical
refractive outcome F. The planned refraction Rx in Eq 1 is replaced by F. Substitution of the
effective refractive power

z ¼ Km þ F
1� F � 0:012m ; ð3Þ

allows to write the solution of Eq 1 in the simple form

d ¼ 1

2
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� �
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� �s
: ð4Þ

In clinical practice the effective optical anterior chamber depth d is calculated from Eq 4 for a

Haigis Weighted Least Squares
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large number of patients and the corrected IOL-constants for the Haigis formula are calculated
by ordinary linear least squares fitting to Eq 2.

The ordinary least squares fitting procedure is sensitive to outliers and does not take into
account the measurement uncertainties for L, ACD, Km, D, or F. In order to improve the
robustness of the optimization of lens constants against measurement uncertainty, we propose
to use a weighted least squares method. In this paper, the weighted least squares method is
tested and compared to the ordinary least squares approximation with the help of simulated
measurement noise for two different biometry devices. The method is demonstrated for the
optimization of the IOL constants for the Haigis formula, but can be applied to other IOL
power formulae as well.

Materials and Methods
The ordinary least squares method searches for the minimum of

w2
olsq ¼

X
i

a0 þ ACDi � a1 þ Li � a2 � dið Þ2: ð5Þ

The values of ACDi, Li, and di are subject to measurement noise. In a weighted least squares
method, the values with higher uncertainties are given smaller weights by multiplying Eq 5
with the reciprocal of the variances s2

i

w2wlsq ¼
X

i

a0 þ ACDi � a1 þ Li � a2 � dið Þ2
s2
i

: ð6Þ

The variances can be calculated by error-propagation

s2
i ¼

@di
@L

sL

� �2

þ @di
@D

sD

� �2

þ @di
@z

sz

� �2

þ a21s
2
ACDi

þ a22s
2
Li
: ð7Þ

The ordinary least square solution that minimizes w2olsq (Eq 5) is used as an estimate for the

IOL-constants in the calculation of the variances.
The performance of the approximation model can be tested with the help of simulated mea-

surement noise. The program work flow is illustrated in Fig 1: An ordinary least-squares
approximation (Eq 5) is performed on a real data-set. An artificial system of realistic measure-
ments is obtained by replacing the ACDi values with

ACDi ¼
di � a0 � a2 � Li

a1
ð8Þ

using the expression for di given in Eq 4. The original ordinary least-squares approximation is
thus the ideal solution for this artificial system and has no approximation error. Then, noise
with a Gaussian distribution whose width is given by the corresponding statistical uncertainty
of each measurement is added onto each of the terms ACDi, Li, Di, Ki

m, and Fi. The effective
optical anterior chamber depths di are recalculated with these perturbed values according to Eq
4. The approximation of the IOL constants for the Haigis formula by the ordinary (Eq 5) and
the weighted least squares (Eq 6) method is conducted 100000 times. Each time the result is
affected by the random noise and one method may achieve better results than the other. The
comparison of both methods therefore requires many repetitions.
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One method can be considered more effective than the other when its results deviate less
from the ideal values in more than half of all 100000 cases. This means that the variances

s2
dk
¼

X
i

di � ak0 � ak1 � ACDi � ak2 � L
� �2

N
; ð9Þ

where the ak0, a
k
1, a

k
2 refer to the solution of the perturbed system, are smaller. Another impor-

tant measure is the square-root of the mean of Eq 9 over all iterations k. Robust fitting reveals
itself in a narrow distribution of constants ak0, a

k
1, a

k
2 (that are not constant in this case, but can

vary each iteration k).
These simulations are performed using the repeatability values for two different biometers;

the IOLMaster 700 (Carl Zeiss Meditec AG, Jena, Germany) and the Aladdin (Topcon Corp.,
Tokio, Japan). The repeatability for the Zeiss instrument was studied by Kunert et al. [16] and
Srivannaboon et al. [17]. The weighted averages of both values according to the number of study-
participants are used in this study. They are σACD = 9.4 μm, σL = 10 μm, and σKm

= 0.11 m−1.
The values for the Topcon instrument were derived by Huang et al. [18]. The average values of
the measurements for the cataract group are used here: σL = 20 μm, σACD = 45 μm, and
σKm

= 0.11 m−1. The statistical uncertainty for the assessment of the final refraction F is assumed
to be σF = 0.2 m−1. In accordance with the principles of modern quality assurance, the tolerance
interval for the IOL power should be 6 standard deviations [19]. The width of the Gaussian noise

Fig 1. The flow chart for evaluation the robustness of the weighted least squares approximation
against measurement noise.

doi:10.1371/journal.pone.0158988.g001
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σD for IOL-power D is thus set to 1/6th of the total tolerance interval defined by the International
Organization for Standardization (ISO) [20] which depends on the absolute value ofD (Table 1).

This is a collaborative work between Saarland University and the University Hospital in
Vienna (AKHWien). The data sets for this study were recorded routinely from patients before
and after cataract surgery at AKHWien by Leydolt and Menapace using the Zeiss IOLMaster
700 device. All data were anonymized and de-identified before they were sent to Saarland Uni-
versity for analysis. Since this is a retrospective study of routinely recorded data, no ethics com-
mittee approval was required.

The simulations were performed using N = 69 measurements of the EyeCeeOne NS-60YG
lens (Croma Pharma GmbH, Leobendorf, Austria). Finally, the method was applied to an inde-
pendent data set consisting of N = 33 measurements on patients that had the Acrysof SN60WF
(Alcon Inc., Ft. Worth, TX, USA) implanted. This is intended to show the differences that can
be expected between both methods. The refraction was measured six months postoperatively.
Mean values and standard deviations of the relevant measurements in both data sets are shown
in Tables 2 and 3.

Results
The first data set contains data of patients which having an EyeCeeOne NS-60Y implant. It
comprises N = 69 valid equations. The original ordinary least squares approximation results
for the IOL-constants is the ideal solution given in Table 4.

Firstly, the uncertainty values of the IOLMaster 700 were used. In 64.9% of all 100000 cases
the weighted least squares procedure proved to be superior to the ordinary least squares fitting
procedure according to Eq 9. The development of this ratio with iteration number is shown in
Fig 2a. The root mean square error (RMSE) given by the square-root of the mean of the 100000
s2
dk
given by Eq 9 is RMSEwlsq = 40.97 μm ± 0.05μm, which is better than the RMSE value for

Table 1. The standard deviations σD of the IOL power as a function of the intervalsDmin < D�Dmax

where the IOL powerD can be found. It is set to 1/6th of the total tolerance interval defined by ISO [20].

Dmin/m
−1 Dmax/m

−1 σD/m
−1

0 15 0.1

15 25 4
30

25 30 5
30

30 1 1
3

doi:10.1371/journal.pone.0158988.t001

Table 2. The number of right N(OD) and left N(OS) eyes included in the calculations, mean keratometer readings and standard deviation for both
lens types.

lens N(OD) N(OS) K1/m
−1 K2/m

−1 Km/m
−1

NS-60YG 33 36 43.0 ± 1.7 43.9 ± 1.8 43.5 ± 1.7

SN60WF 17 16 43.3 ± 1.7 44.2 ± 1.6 43.7 ± 1.6

doi:10.1371/journal.pone.0158988.t002

Table 3. The mean and standard deviation of preoperative anterior chamber depth ACD, axial length L, lens powerD and final refraction F for both
lens types.

lens ACD/mm L/mm D/m−1 F/m−1

NS-60YG 3.09 ± 0.44 23.57 ± 1.4 21.8 ± 3.5 −0.43 ± 1.04

SN60WF 2.95 ± 0.27 23.00 ± 0.66 22.6 ± 2.3 −0.67 ± 0.77

doi:10.1371/journal.pone.0158988.t003
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an ordinary least squares approach RMSEolsq = 44.34 μm ± 0.06 μm. The RMSE fitting error of
the weighted fit approach is smaller, and its distribution (Fig 3a) has a smaller width compared
with the ordinary least squares fitting approach. The median value of the square-root of the s2

dk

is 36.0 μm with the weighted least squares, and 38.8μm with the ordinary least square method.
The distributions of the IOL-constants for the Haigis formula with the weighted approach have
smaller widths than those calculated with the ordinary least squares method (Fig 4). The mean
and standard deviation of the calculated constants are shown in Table 4.

The calculations are repeated using the uncertainty values of the Aladdin. In 64.3% of all
100000 cases the weighted least squares procedure proved to be superior to ordinary least
squares fitting. The development of this ratio with iteration number is shown in Fig 2b. The
RMSE errors are RMSEwlsq = 41.72 μm ± 0.056 μm, and RMSEolsq = 45.03 μ ± 0.061 μm for the
weighted and ordinary least squares method respectively. The RMSE fitting error of the
weighted fit approach is smaller, and its distribution (Fig 3b) has a smaller width compared
with the ordinary least squares fitting approach. The corresponding median values of the
square-root of the s2

ck
are 36.7 μm for the weighted fits and 39.4 μm for the ordinary least

squares fits. The distributions of the IOL-constants for the Haigis formula with the weighted
approach have smaller widths than those calculated with the ordinary least squares method
(Fig 4). The mean and standard deviation of the calculated constants are shown in Table 4.

Table 4. Mean and standard deviation of the IOL-constants for the Haigis formula calculated with the ordinary least squares (OLS) and weighted
least squares (WLS) method.

a0/mm a1 a2
Ideal 1.168 0.3172 0.1403

Aladdin

OLS 1.155 ± 0.470 0.3168 ± 0.0200 0.1410 ± 0.0205

WLS 1.152 ± 0.424 0.3167 ± 0.0184 0.1412 ± 0.0182

IOLMaster

OLS 1.162 ± 0.464 0.3172 ± 0.0197 0.1406 ± 0.0202

WLS 1.161 ± 0.407 0.3172 ±0.0181 0.1407 ± 0.0178

doi:10.1371/journal.pone.0158988.t004

Fig 2. The percentage of cases in which the weighted least squares is superior to the ordinary least
squaresmethod as a function of the number of iterations using the repeatability values of the
IOLMaster 700 (a) and the Aladdin (b) biometer.

doi:10.1371/journal.pone.0158988.g002

Haigis Weighted Least Squares

PLOS ONE | DOI:10.1371/journal.pone.0158988 July 8, 2016 6 / 11



The second data set comprises 33 valid equations. The resulting IOL-constants are shown in
Table 5 together with their corresponding weighted RMSE (wRMSE) values given by the root
mean square of (di − a0 − a1 � ACDi − a2 � Li)/σi. The uncertainty σz of the effective refractive
power zmakes the greatest contribution to the weights s�2

i (Eq 7). The mean value and stan-
dard deviation of each contribution are shown in Table 6.

Discussion
The weighted least squares approximation method provided superior results in most cases
compared with the ordinary least squares method. More than 64% of its results produce
smaller deviations from data that have been cleaned from measurement error than the ordinary
least squares method, and the distributions of the IOL-constants for the Haigis formula show
smaller widths. Thus, the weighted least squares approximation method delivers results with
higher precision than the ordinary least squares method. This is expected as the weighted fit
reduces the influence of data with higher uncertainty, and the uncertainties were set corre-
spondingly. This holds true for the uncertainty values of both the Aladdin and the IOLMaster
biometer. The results are not limited to these lens types or biometers. Similar improvements
can be expected for other IOLs and biometers.

A data set consisting of 69 valid equations was used in order to simulated the influence of
Gaussian measurement noise on the approximation. Usually, the IOL constants are optimized
on a larger data basis. The data set provides realistic values which were modified before each of
the 100000 iterations. The height number of iteration enables us to report very precise results
(< 0.1%) concerning which method is superior for the eyes in this data set. Their statistical
data is shown in Tables 2 and 3. The differences in the resulting constants between both meth-
ods tested on an independent second data set are small compared to the statistical error. The
wRMSE value of the weighted least squares approach is smaller for the weighted least squares
method. Bigger sample size is required in order to study possible differences in the resulting
constants.

In applying this method to calculate the personalized IOL constants it is important that the
statistical uncertainties of axial length, anterior chamber depth, corneal refraction,

Fig 3. The distribution of the approximation error given by the square root of the mean of Eq 9 using
the repeatability values of the IOLMaster 700 (a) and the Aladdin (b) biometer. The values for the
weighted least squares approach are shown in blue, the distribution for the ordinary least squares in
red.

doi:10.1371/journal.pone.0158988.g003
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Fig 4. The distribution of the IOL-constants for the Haigis formula a0, a1, a2 calculated with the weighted
least squares (blue) and ordinary least squares approach (red). Subfigures (a)–(c) are based on the
repeatability values of the IOLMaster 700, subfigure (d)–(f) are based on the repeatability values of the
Aladdin device.

doi:10.1371/journal.pone.0158988.g004
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postoperative spherical equivalent, and IOL-power measurements are estimated. The uncer-
tainties of the biometer have only minor influence. This can be seen when the distributions of
the Gaussian noise is set according to the uncertainties of one biometer and the weights accord-
ing to those of another. For comparison, we used data of the EyeCeeOne NS-60YG lens, and
set the distributions of the Gaussian noise according to the statistical measurement uncertain-
ties of the Aladdin, but the weights according to the statistical measurement uncertainties of
the IOLMaster. The results were identical with those obtained using the statistical uncertainties
of the Aladdin for both the Gaussian noise and the calculation of the weights. The weighted
least squares method is superior in 64.3% of all cases. Consequently, the weighted least squares
approximation approach can be helpful even when the exact values of the statistical uncertain-
ties are unknown. The uncertainty is clearly dominated by the contribution of the effective cor-
neal power z (Eq 3). The statistical uncertainty of the measurement of the postoperative
refraction σF has the strongest influence.

The statistical uncertainties of the measurements are assumed to have Gaussian distribu-
tions. The weighted least squares approximation method performs well in the presence of
Gaussian noise. However, in the presence of outliers the weighted least squares method might
be improved by eliminating them prior to the fit or implementing a robust approximation
method that might include a more sophisticated description of the measurement uncertainties,
for example by applying lower weights to particularly long eyes. A more realistic description of
the uncertainties of the refractive power of the lens D, or the uncertainties of the pseudophakic
refraction F, might improve the performance of the weighted least squares approximation on
real data.

Conclusion
An ordinary and a weighted least squares approach for the refinement of the IOL-constants for
the Haigis formula were compared. The differences in the resulting constants are small. How-
ever, using a weighted fitting method offers superior robustness against randommeasurement
error and should be used with the correct uncertainties. If the uncertainties are estimated cor-
rectly the weighted least squares approximation will have a probability higher than 64% of
delivering superior results compared to ordinary least squares fitting. Further studies could test
the weighted least square approach for larger data sets and/or different formulae. The proce-
dure can be extended by applying more sophisticated models for the statistical measurement
uncertainties. The dominant contribution to the statistical uncertainty in this approximation
model originated from the statistical uncertainty of the postoperative refraction measurement.

Table 5. The approximation solutions for the Acrysof SN60WF IOL and their weighted RMSE calculated with the ordinary least squares (OLS) and
weighted least squares (WLS) methods.

a0/mm a1 a2 wRMSE

OLS 1.90 ± 3.1 0.80 ± 0.34 0.027 ± 0.14 0.8863

WLS 1.69 ± 3.3 0.82 ± 0.36 0.034 ± 0.15 0.8861

doi:10.1371/journal.pone.0158988.t005

Table 6. The average contributions to the variances s2
i (Eq 7) and their standard deviation as observed for the Acrysof SN60WF IOL, in mm2.

∂d
∂L sL

� �2 ∂d
∂D sD

� �2 ∂d
∂z sz

� �2 a2
1s

2
ACD a2

2s
2
L

(2.57 ± 0.26)10−4 (2.50 ± 0.52)10−3 0.321 ± 0.048 5.63 � 10−5 7.32 � 10−8

doi:10.1371/journal.pone.0158988.t006
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Supporting Information
S1 File. EyeCeeOne data. The biometric information for patients who got the EyeCeeOne NS-
60YG implanted. Right eyes are indicated with OD, left eyes with OS. The table shows the steep
and flat keratometry values (D1, D2) their angles, the anterior chamber depth (ACD), the
power of the implanted IOL (IOL power), target refraction and the refraction six month after
surgery. Visual acuity is abbreviated VA and SE is the spherical equivalent refraction after six
month.
(XLSX)

S2 File. Acrysof data. The biometric information for patients who got the Acrysof SN60WF
implanted. Right eyes are indicated with OD, left eyes with OS. The table shows the steep and
flat keratometry values (K1, K2) their angles, the anterior chamber depth (ACD), the lens
thickness (LT), the power of the implanted IOL (lens power), target refraction (ZR) and the
refraction (in diopters) six month after surgery along with the spherical equivalent refraction
(SE_6m).
(XLSX)
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