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Identification of disulfiram as a 
secretase-modulating compound 
with beneficial effects on 
Alzheimer’s disease hallmarks
Sven Reinhardt1, Nicolai Stoye1, Mathias Luderer   2, Falk Kiefer2, Ulrich Schmitt1,  
Klaus Lieb1 & Kristina Endres1

ADAM10 is a metalloproteinase acting on the amyloid precursor protein (APP) as an alpha-secretase in 
neurons. Its enzymatic activity results in secretion of a neuroprotective APP cleavage product (sAPP-
alpha) and prevents formation of the amyloidogenic A-beta peptides, major hallmarks of Alzheimer’s 
disease (AD). Elevated ADAM10 levels appeared to contribute to attenuation of A-beta-plaque 
formation and learning and memory deficits in AD mouse models. Therefore, it has been assumed that 
ADAM10 might represent a valuable target in AD therapy. Here we screened a FDA-approved drug 
library and identified disulfiram as a novel ADAM10 gene expression enhancer. Disulfiram increased 
ADAM10 production as well as sAPP-alpha in SH-SY5Y human neuronal cells and additionally 
prevented A-beta aggregation in an in vitro assay in a dose-dependent fashion. In addition, acute 
disulfiram treatment of Alzheimer model mice induced ADAM10 expression in peripheral blood cells, 
reduced plaque-burden in the dentate gyrus and ameliorated behavioral deficits. Alcohol-dependent 
patients are subjected to disulfiram-treatment to discourage alcohol-consumption. In such patients, 
enhancement of ADAM10 by disulfiram-treatment was demonstrated in peripheral blood cells. Our data 
suggest that disulfiram could be repurposed as an ADAM10 enhancer and AD therapeutic. However, 
efficacy and safety has to be analyzed in Alzheimer patients in the future.

Alzheimer’s disease is the most prevalent dementia in the aging population. With up to 15 million cases world-
wide it represents a disease with high impact on medicinal care burden and patient numbers are estimated to 
increase further in the following years (e.g.1). The fact that the majority of diagnosed Alzheimer cases represent 
the sporadic, non-genetic form of the disease emphasizes why successful treatment has remained elusive. The 
origin of the sporadic form still remains enigmatic, hampering a targeted therapy in humans (reviewed in2). One 
of the pivotal hallmarks of the neurodegenerative process is the production, oligomerization, deposition, and deg-
radation of the Amyloid-beta (A-beta) peptide (see3). This has led to numerous therapeutic approaches, targeting 
single steps of A-beta metabolism which so far failed (for an overview on recent clinical trials4). An alternative to 
such mono-functional drugs might be offered by drugs that interfere with several pathways associated with the 
disease, therefore acting as multifunctional drugs (for example5–7).

Two proteases compete for cleavage of APP: ADAM10 (A disintegrin and metalloproteinase 108) and BACE-1 
(beta site APP cleaving enzyme-19). Shifting the balance toward the alpha-secretase ADAM10 not only pre-
vents generation of neurotoxic A-beta peptides but simultaneously increases levels of the soluble APP fragment 
sAPPs-alpha in vivo10–12. The latter has been shown to be neuroprotective and to enhance bouton density in the 
brains of intracranially infused mice13. Elevating ADAM10 resulted in increased learning and memory of AD 
model mice and strongly diminished plaque deposition10, while a reduction in BACE-1 levels also rescued AD 
phenotypes14,15. Manipulating the interplay between both of these proteases has been suggested as an attrac-
tive potential target in therapy development16,17. If such a drug could also interfere in a beneficial manner with 
other pathways contributing to AD – such as hyperphosphorylation of the cytoskeleton-associated protein Tau 
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by glycogen synthase kinase 3 beta (GSK3beta)18 – this might be of high interest. To identify such novel drug 
candidates for AD treatment, we performed an initial screening of more than 600 FDA-approved drugs to identify 
candidates regulating transcriptional activity of both genes. We identified disulfiram as one of the most prom-
ising candidates and evaluated it further in cells and in mice, as well as in an observatory clinical study. In this 
study advantage was taken of the fact that alcohol-dependent patients are often given disulfiram to discourage 
the consumption of alcohol. The so-called disulfiram-ethanol reaction is due to increased serum acetaldehyde 
concentrations resulting from lack of clearance via aldehyde dehydrogenase, one of the enzymes that are blocked 
by disulfiram. The discomfort associated with this syndrome (nausea, sweating, chest pain etc.) is intended to 
serve as a discouraging stimulus. The use of disulfiram in this clinical indication facilitated measurements of 
ADAM10 expression within peripheral blood cells in humans before and after two weeks of treatment with the 
newly identified drug.

Results
Identification of disulfiram as an alpha-secretase enhancer from a FDA-approved drug 
library.  In previous studies, identification of novel ADAM10 enhancers from phytomedical collections via 
reporter gene assay has been demonstrated to be a promising approach19,20. By analyzing drugs already approved 
by the FDA, rapid translation into clinical studies is likely, enhancing the attractiveness of such re-purposing 
strategies. Here, a library of 640 FDA-approved drugs was tested for potential influence on ADAM10 and BACE-1 
transcriptional activity in neuronal cells. A non-toxic dosage for human, neuronal SH-SY5Y cells was assessed 
by starting from a 1: 3064 dilution with subsequent dilutions for compounds that resulted in >120 or <80% of 
viability after 48 h of incubation (see Fig. 1a for the initial results, table with final concentrations: Suppl. Table 1). 
The initial dilution was chosen to reach a final concentration of 2 µM for acitretin, which served as an internal 
ADAM10-inducing control21. 627 out of 640 tested substances were found to be applicable for further testing.

SH-SY5Y cells were subsequently transiently transfected with a dual reporter vector for both promoter activ-
ities, human ADAM10 and BACE-1 and incubated for 24 h with the respective drugs. From the tested library, 42 
compounds were potential drug candidates as they either decreased the BACE-1 promoter activity or increased 
ADAM10 promoter activity so that a ratio for ADAM10/BACE1 promoter activity of minimally 1.25 was reached. 
For acitretin which has been already demonstrated to be a valuable ADAM10 enhancer21 an ADAM10 pro-
moter activity of 142% was obtained while BACE1 promoter activity remained unchanged (110%, ratio: 1.29, 
Fig. 1b). One of the most interesting candidates identified by the screen was disulfiram, which not only increased 

Figure 1.  Screening of a FDA-approved drug library for inducers of ADAM10 promoter activity enhancers. (a) 
SH-SY5Y cells were incubated for 48 h with 0.1% v/v substance and viability assessed using the Cell Titer Glo 
assay. DMSO (solvent) served as control and values obtained for solvent-treated cells were set to 100%. Dashed 
lines indicate the maximum tolerated proliferative or toxic effect. Concentrations were subsequently adjusted 
by further dilution until no toxic/proliferative effect could be observed. 13 substances were excluded from 
further analyses due to their remaining high toxic potential (for final conc. see Suppl. Table 1). (b) SH-SY5Y 
cells were transiently transfected with a dual reporter vector for both promoter activities, human ADAM10 and 
BACE-1 (20). Subsequently, cells were incubated with the respective drug or DMSO as a solvent-control (values 
set to 100%). The experiment was conducted three-times independently (SDs are not shown for clarity of the 
graph). The main part of the tested drugs remained without effects (dark grey box) while a small number of 
drugs revealed promoter- inducing potential (light grey box). The most promising candidate, i.e. high ADAM10 
promoter activity and low BACE-1 promoter activity (disulfiram), is indicated by an arrow.
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ADAM10 promoter activity to 168% of control but also decreased BACE1 promoter activity to 53% of control 
(ratio: 3.17). We further investigated the potential of disulfiram as a novel AD drug candidate.

Disulfiram shifts APP processing toward the non-amyloidogenic pathway in neuronal 
cells.  Disulfiram was tested in the screening at a concentration of 2.2 µM. Further analysis indicated that 
concentrations higher than 5 µM induced cytotoxicity (data not shown). Therefore, drug concentration in the 
cell culture experiments was restricted to a maximum of 5 µM. We first demonstrated dose-dependency of 
disulfiram-evoked increase in ADAM10 transcriptional activity by treating SH-SY5Y cells transfected with an 
ADAM10 promoter-reporter vector with different concentrations of disulfiram (Fig. 2a). While the empty control 
vector did not respond to disulfiram in any tested concentration, disulfiram increased ADAM10 promoter activ-
ity gaining significance for 0.22, 2.2 and 5 µM. This dose-dependent increase was also observed for the murine 
Adam10 promoter reporter although the results were only significant for concentrations of 2.2 µM and 5 µM 
(Fig. 2b).

Effects observed in promoter reporter assays can yield false positives due to the fact that an isolated DNA 
sequence is analyzed in the absence of the physiological environment and proper chromosomal location. 
Therefore, the impact of disulfiram on endogenous ADAM10 protein levels in SH-SY5Y cells was analyzed. 
Already with the lower concentration of 0.022 µM, ADAM10 protein amount was significantly elevated (Fig. 2c 
and d, the sum of proform and mature form is presented). This also led to increased amounts of sAPP-alpha 
(185% of control) while APP full-length protein was not affected. The finding of elevated ADAM10 activity was 
also confirmed by measuring directly enzymatic activity in cell lysates of SH-SY5Y cells treated for 48 h with 

Figure 2.  Disulfiram increases ADAM10 transcription dose-dependently and leads to enhanced ADAM10 
protein amount and activity. SH-SY5Y cells were transiently transfected with a reporter vector for human 
ADAM10 (hADAM10) (a) murine ADAM10 (mADAM10) (b) or the empty vector as a negative control. 
Subsequently, cells were incubated with disulfiram in the indicated concentration or DMSO as a solvent-
control (values set to 100%). The experiment was conducted three-times independently in duplicates, values 
were normalized to protein content of the cell lysate and are represented as mean + SD. Statistical analysis: 
One Way ANOVA with Tukey’s multiple comparisons test; ***p < 0.001; **p < 0.01; *p < 0.05; ns, p > 0.05). 
(c) For protein analysis, SH-SY5Y cells were incubated for 48 h with disulfiram as indicated or DMSO as 
solvent-control. Cell lysate adjusted for protein content was used for quantitation of ADAM10, full-length 
APP (antibody against APP C-terminus) and GAPDH; culture supernatants were analyzed in regard to sAPP-
alpha (antibody 6E10, directed against the N-terminus). Representative blots are shown. Blots were cropped 
for combining the figure, single blot parts are divided by a white space. For full-length blot pictures please see 
Suppl. Figure 1. (d) Values obtained by densitometrical analysis for the specific membrane-tethered proteins 
were normalized to values obtained for GAPDH for quantitative analyses. Experiments were performed at least 
three-times independently in duplicate (n ≥ 6). Statistical analysis: One Way ANOVA *p < 0.05).
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disulfiram using a pro-fluorescent peptide substrate (Fig. 3a). ADAM10 activity in drug-treated cells nearly 
was two-fold higher than activity in solvent-treated cells. In addition to ADAM10, ADAM17 (also designated 
as tumor necrosis factor alpha cleaving enzyme, TACE) can act as an alpha-secretase and lead to elevated 
sAPP-alpha levels (Endres et al., 2003). Moreover, peptide subtsrates in commercial enzyme activity kits do not 
always show perfect specificity. The protein level of TACE was thus analyzed after disulfiram-treatment: no differ-
ence could be observed in solvent- and in drug-treated SH-SY5Y cells (Fig. 3b,c; p = 0.9). For the beta-secretase 
BACE-1 a down-regulation was observed in the initial dual promoter assay and could also be confirmed in a sin-
gle promoter reporter vector for human BACE-1 (data not shown). Analysis of BACE-1 protein and its cleavage 
product sAPP-beta revealed reduction which was not statistically significant (Fig. 3b,c). Nonetheless, a reduction 
of A-beta peptides of about 20% as compared to solvent-treated cells was achieved by 48 h treatment with disul-
firam (Fig. 3d). Neuronal cells treated with synthetic A-beta42 peptides exhibited a diminished viability as shown 
in Fig. 3e. Co-treatment with disulfiram over a time period of 48 h was able to reverse this toxic effect and such 
cells were indistinguishable from control-treated cells (p = 0.65).

We next adressed potential mechanisms of disulfiram-mediated increase of ADAM10. Interestingly, ADAM10 
can be activated by dopaminergic agonists22. As disulfiram is a known inhibitor of dopamine-beta-hydroxylase, 
this might explain the increase in ADAM10 expression. Dopamine would be expected to accumulate with 
disulfiram-treatment while norepinephrine levels should decrease (Fig. 4a). SH-SY5Y cells are a suitable model 
to investigate this hypothesis, as these cells have been described to exhibit functional dopamine metabolism 
(reviewed in23). However, when SH-SY5Y cells were incubated with increasing amounts of dopamine the activity 
of the human ADAM10 promoter was reduced by about 40% as compared to control (100 µM dopamine, Fig. 4b). 
Incubation with norepinephrine resulted in a statistical significant increase of reporter gene activity to 125% of 
control for 5 µM while all other tested concentrations remained without effect. This result strongly suggests the 
effect of disulfiram on ADAM10 gene expression is independent of dopamine metabolism.

Figure 3.  Disulfiram selectively increases ADAM10 expression and leads to decrease in A-beta production. 
SH-SY5Y cells were incubated with disulfiram at a concentration of 2.2 µM, or DMSO as a solvent-control 
(values set to 100%) for 48 h. (a) The cell lysate was used for measurement of ADAM10 activity by using a pro-
fluorescent specific substrate. Additionally, aliquots of cell lysate were subjected to SDS-PAGE and Western 
blotting for analysis of levels of TACE and BACE-1. GAPDH served as a loading control. Soluble proteins from 
cell supernatants after 5 h of secretion were precipitated by trichloroacetic acid and subjected to SDS-PAGE and 
Western blotting with a sAPP-beta specific antibody (b). All measured densitometric values were normalized 
to values obtained for GAPDH of the respective sample (c) (n ≥ 5 for all quantifications). For TACE, the sum of 
mature and proform was quantified. Cropped blot pictures are separated by a white space, for full-length blot 
pictures please see Suppl. Figure 2. A-beta peptide secretion (A-beta 1-x) was measured by ELISA in samples 
from a 16 h secretion period (d). Statistical analysis: unpaired Student’s t-test (***p < 0.001; *p < 0.05; ns, 
p > 0.05). (e) Cells treated for 48 h with solvent (control), human A-beta42 peptides or peptides in combination 
with disulfiram (A-beta/Dis) were analyzed for viability (n = 15, two independent experiments). Statistical 
analysis: One Way ANOVA **p < 0.01; ***p < 0.001).
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In a further assessment of the effects of disulfiram on aspects of AD pathogenesis, we found that disulfiram 
inhibited the aggregation of A-beta in vitro with 1 and 2 µM (Fig. 4b). Moreover, with 2.2 and 5 µM disulfiram an 
inhibition of Tau-kinase GSK3beta was seen in vitro (Fig. 4c). This in sum indicates that disulfiram might have 
the potential for being a multifunctional therapeutic compound with both, potential to prevent amyloidogenic 
aggregation as well as over-activation of Tau kinase.

ADAM10-enhancing properties of disulfiram in AD model mice.  To ascertain whether disulfiram 
also exhibits therapeutic potential in vivo, Alzheimer model mice (5xFAD) were treated for two days with the 
drug (52 mg/kg per day). This represents the human equivalent dosage (HED) calculated as described previously24 
for a daily dosage of 250 mg in an adult weighing 60 kg (maintenance dose in alcohol dependent patients: 200 to 
500 mg/day). Using the full HED, resulted in gastrointestinal difficulties in the mice (diarrhea, apathy, changes 
in gut tissue) and therefore it was decided to reduce the daily dosage to 26 mg/kg. This abolished undesired side 
effects and mice showed no signs of gastrointestinal impairment (see also Suppl. Figure 3). After two days of 
treatment with this comparably low dose, no increase of Adam10 mRNA in the brain was observed on the third 
day (Fig. 5a). Interestingly, Adam10 mRNA quantitation in blood cells revealed a disulfiram-dependent induction 
to 123% of control-treated animals. This was accompanied by decreased amounts of Bace-1 mRNA levels (60% of 
control; Fig. 5b) that were also only observed in blood but not in brain. This could indicate that the mechanism of 
regulation observed in cell culture experiments is different to that in the murine brain, that mRNA kinetics do not 
allow detection of elevated Adam10 and decreased Bace-1 mRNA 24 h after the last injection, or that disulfiram 
was administered in too low a concentration. In order to understand whether disulfiram is able to penetrate the 

Figure 4.  Disulfiram does not act via dopamine-metabolism on ADAM10 gene expression but has additional 
beneficial side effects in regard to Alzheimer’s disease. (a) SH-SY5Y cells were transiently transfected with a 
reporter vector for human ADAM10 (hADAM10) and incubated with 0.22 µM disulfiram or dopamine or 
norepinephrine in the indicated concentration. DMSO served as a solvent-control (values set to 100%). The 
experiment was conducted three-times independently in duplicates, values were normalized to protein content 
of the cell lysate and are represented as mean + SD. Statistical analysis: One Way ANOVA with Dunnett’s 
multiple comparisons test; ***p < 0.001; **p < 0.01. (b) To investigate a potential effect of disulfiram on 
A-beta aggregation, the fluorescent Thioflavin T test and human A-beta42 peptides were used. Peptides were 
supplemented with disulfiram as indicated or with the solvent at 37 °C. Three independent experiments were 
conducted (n ≥ 5) and slopes of fluorescence increase used for quantitation. The slopes obtained for the 
control were set to 100%. Statistical analysis was performed by One Way ANOVA with Bonferroni’s multiple 
comparisons test (***p < 0.001). (c) GSK3beta activity was measured by a commercial in vitro kit in two 
independent experiments performed in duplicates. Measurement values for control-treated reactions were set 
to 100% and values are presented as mean + SD. Statistical analysis was performed by One Way ANOVA with 
Dunnett’s multiple comparisons test (***p < 0.001; **p < 0.01).
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brain in sufficient amounts and if it was systemically effective, zinc concentrations in brain tissue and in urine 
were measured. The chelator disulfiram should lead to an increase of its urinary excretion (in analogy to data 
on nickel25). Zinc levels remained relatively unaffected within the brain (Fig. 5c). However, urinary excretion of 
zinc was drastically elevated to about 300% of control animals. Therefore, disulfiram acts in a systemic manner: 
however, its concentration within the brain might have been too low or its effect might already have been reversed 
due to chemical conversion26 at the chosen time-point of investigation (24 h after the last injection). Because 
the half-life time of the Adam10 protein is rather long (72 h27) and increased amounts of the enzyme might still 
persist 24 h after the last drug administration, we nevertheless decided to analyze its catalytic activity in brain 
tissue: Adam10 activity was nearly doubled in brain material derived from disulfiram-treated mice as assessed 
by a pro-fluorescent substrate cleavage assay (Fig. 5d). Moreover, the amount of soluble A-beta42 was found to 
be decreased (Fig. 5e) although not reaching statistical significance in the small group of investigated animals.

To assess potential pathomechanistic relevance of disulfiram-treatment in the Alzheimer mouse model brain 
slices of mice treated by two daily injections of disulfiram (26 mg/kg/day) were stained for A-beta depositions 
with antibody 6E10 (Fig. 6a I). Representative cortical regions and subiculum displayed only non-significant 
decrease in staining signals that represent oligomeric as well as plaque-deposited A-beta peptides. The dentate 
gyrus, on the contrary, showed a reduced staining intensity and plaque number in mice treated with disulfiram 
(Fig. 6a II and b; 71% of control).

We conducted two behavioral tests that rely on hippocampal integrity28,29 to investigate a potential beneficial 
effect of the short-term treatment with disulfiram on the AD model mice. In the nest building test, 5xFAD mice 
showed an impaired performance as compared to wild type mice as indicated by a lower score and higher amount 
of nesting material which was not incorporated in the nest (Fig. 6c; both mouse groups, wt and control, were 
injected with the solvent). AD model mice treated with disulfiram showed significantly increased nest build-
ing ability as measured by the score and amounts of integrated nesting material as compared to solvent-treated 
AD model mice. Additionally, the impairment of the 5xFAD mice observed in the novel object recognition test 
(Fig. 6d) in comparison to wild type mice was totally rescued upon treatment with disulfiram.

Induction of ADAM10 in blood cells by clinical treatment with disulfiram.  Disulfiram is used in 
alcohol dependent patients as a relapse-preventing treatment. This allows an analysis in a natural clinical setting 
of the capacity of disulfiram to induce ADAM10 in human peripheral blood cells (for demographics see Fig. 7a). 

Figure 5.  Impact of disulfiram on pathological hallmarks in AD model mice. Female 5xFAD mice were treated 
for 2 days with disulfiram or DMSO as control. On day three they underwent behavioral assessment and/or 
sacrifice and sample collection. Adam10 (a) or Bace-1 (b) mRNA was quantified from total RNA preparation of 
brain and blood cells (n = 10 animals per group for Adam10, n = 8 for Bace-1). RNA amount was normalized to 
18 SrRNA levels and is presented as mean + SEM. (c) Quantitation of zinc concentration in brain homogenates 
or urine was performed using a fluorimetric assay (n ≥ 8 per group). Values are presented as mean + SEM. (d) 
Adam10 activity was measured by using a pro-fluorescent substrate. Slopes of the enzymatic reaction were 
assessed over 35 min and are presented as % of values (mean + SEM) obtained for control-treated animals 
(n = 7 per group). (e) Soluble A-beta42 peptides were quantified using a commercial ELISA assay (n = 4 animals 
per group). Values are presented as mean + SEM in % of values of control-treated animals. Statistical analysis: 
unpaired Student’s t-test (***p < 0.001; *p < 0.05; ns, p > 0.05).
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Blood was sampled at two time points: before the start of treatment (baseline) and after approximately two weeks 
(17 ± 3 days) of treatment. As stability of ADAM10 expression in blood cells over time has not been investigated 
so far to our knowledge, we also included a healthy control group without treatment and analyzed ADAM10 
expression over a time frame of two weeks. While most healthy subjects displayed an unaltered ADAM10 
expression, the vast majority of the disulfiram-treated patients showed an increase of levels of ADAM10 mRNA 
(Fig. 7b). Induction of ADAM10 in humans in peripheral tissue by disulfiram treatment is thus feasible but effi-
cacy and safety has to be tested in AD patients in the future.

Discussion
Development of novel drugs for the treatment of Alzheimer’s disease has to face a variety of challenges such as 
late-life disease diagnosis, lack of well-understood therapeutic targets and additionally penetrance of the blood 
brain barrier. Drug re-purposing may offer an important strategy to accelerate process (as shown in30). As an 
example, the cancer drug AM-80 has been demonstrated to contribute beneficial therapeutic value in AD model 
mice31,32. However, efficacy in human patients has always to be verified because most AD model mice rely on 
genetic manipulation and inadequately represent the typical patient suffering from sporadic AD. In the case of 
acitretin, a drug prescribed for psoriasis33, we showed that it is not only an ADAM10 inducer in cell culture and 
mice, but also has a positive effect in mild to moderately affected human patients21,34. Here, we took an unbiased 
approach and analyzed a library of FDA-approved drugs for their potential to enhance ADAM10 expression. We 
identified disulfiram as one of the most promising candidates, resulting in lowering of BACE-1 promoter activity 
but also an increase in ADAM10 promoter activity. This is important as drugs that only aim at reducing A-beta 
peptide levels failed to show therapeutic effects in clinical trials published to date. Increasing the amount of 
sAPP-alpha might be a more reliable therapeutic strategy as this protein fragment has been shown to exert neu-
rotrophic and neuroprotective properties in many publications. For example, recombinant sAPP-alpha protected 
primary hippocampal neurons from cell death via activation of the Akt-survival pathway35.

To our surprise, treatment of the 5xFAD Alzheimer model mice with disulfiram did not elevate Adam10 
mRNA levels in the brain, although the murine Adam10 promoter, similar to the human promoter, could be 
induced by the drug in cell culture experiments. However, the intensity of the increase in promoter activity was 
much lower for the murine gene than for the human and the response necessitated higher drug concentrations. 

Figure 6.  Influence of disulfiram on A-beta depositions and behavior in AD model mice. (a) Deposition of 
APP-cleavage products derived from transgenic human APP was assessed in brain slices of mice (description 
of treatment: see Fig. 4) by staining with antibody 6E10. Two cortical regions (c), subiculum (s) and dentate 
gyrus (dg) were used for densitometric quantitation from two slices per animal and corrected by a same-size 
background area as indicated in the scheme (I: whole area; II: magnification of dentate gyrus). Values are 
given as mean + SEM (b), n = 6 for control and 5 for disulfiram-treatment). (c) In the morning of day three, 
nest-building performance of the animals was determined by a scoring and also by weighing material that 
was not incorporated in the nest (n ≥ 7 per group). (d) Learning capability was tested in the mice by a novel 
object recognition paradigm performed in a Y-maze (n = 8 per group). Discrimination index is presented as 
mean ± SEM. Statistical analysis: unpaired Student’s t-test (***p < 0.001; *p < 0.05).
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Measurement of the zinc chelating property of disulfiram in mouse brain tissue demonstrated no change of 
the zinc concentration within the brain parenchyma as a result of the treatment, while the urinary excretion 
was significantly increased. It is thus possible that the effective concentration of disulfiram in brain is insuffi-
cient to increase Adam10 expression in spite of the observed increase in Adam10 levels in blood. One of the 
metabolites of disulfiram, N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC), could be detected in the 
nucleus accumbens and the medial prefrontal cortex of rats treated with 200 mg/kg disulfiram intraperiton-
ally36. However, the concentration reached in these brain areas was much lower (1.1 and 2.5 nM) compared with 
plasma levels (80 nM) 6 h after application. The injected concentration used in the study presented here was much 
lower to avoid toxic effects and possibly insufficient to increase ADAM10 transcriptional activity in the brain. 
Additionally, measurement of mRNA levels was conducted 24 h after the last injection and disulfiram is – due to 
the instability of its disulfide bond – is highly reactive and therefore subjected to fast degradation26. Nevertheless, 
an increase of Adam10 activity as well as a tendency for reduced soluble A-beta42 peptides could be demon-
strated in the brain of 5xFAD mice treated with disulfiram. An effect on the proteases Adam10 and Bace-1 might 
indeed have occurred but was only visible at the protein level due to the relative long stability of the protein in 
contrast to the stability of the respective mRNAs27,37. In peripheral blood cells, however, the ratio of Adam10 and 
Bace-1 mRNA was affected in favor of Adam10. Besides the assumed beneficial effect in brain, ADAM10 has been 
reported to produce a truncation product of Trx1, thioredoxin 80 (Trx80), from monocytes38. This blood-derived 
proteolysis product has been detected in human brain and seems to be protective against aggregation of A-beta 
peptides. This fact, together with the in vitro observed aggregation-inhibiting property of disulfiram and its influ-
ence on Adam10 activity might be sufficient to explain the observed reduction in 6E10-positive staining within 
the dentate gyrus of the mice and the resulting increase in behavioral performance in two tasks that at least partly 
depend on hippocampal function. Nevertheless, we cannot exclude that additional effects on the immune system, 
on mitochondrial function or on other relevant molecules contribute to the beneficial outcome. For example, our 
own study revealed that disulfiram has the capability to lower GSK3β activity in vitro which might result in altered 
Tau posttranslational modification also in vivo.

Along with the clinical use of disulfiram in the treatment of alcohol dependence, side effects of cognitive 
performance such as drowsiness, impaired attention and memory impairment have been described39,40. In addi-
tion, cases of psychosis have been associated with high dosage in alcohol dependent patients41,42 and worsening 
of symptoms in schizophrenic patients43. An early investigation on intellectual function of patients treated with 
disulfiram reported no impairment44, while Prigatano and colleagues demonstrated a reduced improvement in 
neuropsychological functioning in disulfiram-treated patients versus a milieu treatment program group three 
weeks after acute alcohol detoxification45. In sum, disulfiram might act as a deleterious substance on cognitive 
functioning in the context of alcohol abuse and patients with increased vulnerability (personal or familial ante-
cedents of psychosis). However, in healthy prisoner volunteers, high dosage of the drug (0.5 g/day to 1.5 g/day) 
also resulted in impaired immediate memory and e.g. color naming43. Using a more typical dosage of 0.5 g/day, 
Peeke and colleagues reported in non-alcoholic volunteers over two weeks on a psycholocigal test battery very 
few significant differences between baseline and disulfiram-treated sessions. Interestingly, these were in the 
opposite direction to that expected and demonstrated improvement under disulfiram-medication (DSS task, 

Figure 7.  Longitudinal ADAM10 mRNA measurement in untreated healthy controls and in alcohol addicted 
patients treated with disulfiram. (a) Two groups of subjects were included in the investigation: healthy controls 
and alcohol dependent subjects. Both groups were matched for age and smokers rate. The gender rate differs 
significantly between the groups but represents normal ratios found in the healthy as well as the alcohol 
dependent part of the population (28). The alcohol dependent subjects were treated with disulfiram following 
the normal treatment schedule of the clinical centres (Department of Psychiatry and Psychotherapy, Mainz or 
CIMH, Mannheim). From both groups blood was sampled by venipuncture on day 1 and approx. 17 days later. 
One patient was excluded from the investigation due to lack of compliance and extremely extended time point 
for the second blood draw (3 months). (b) ADAM10 mRNA level was quantified from total RNA preparations 
in healthy controls and alcoholic dependent patients treated with disulfiram and is presented as the ratio 
between values obtained after ca. two weeks and at baseline (RNA amount was normalized to PGK-1 RNA 
levels). Mean and SEM are indicated. Statistical analysis: unpaired Student’s t-test (*p < 0.05).
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confusion assessment46). Predicting a beneficial outcome for Alzheimer patients under therapy with disulfiram 
thus remains difficult, even in the light of the encouraging data from the mouse model. In regard to the clinical 
study presented here, it also has to be considered that stability of ADAM10 over the two weeks of investigation in 
untreated condition has only been demonstrated in healthy controls. In the alcohol-dependent patients treated 
with disulfiram, the pre-post-comparison revealed an increase of ADAM10 expression. However, it cannot be 
excluded that the condition of non-alcohol intake enforced by disulfiram alone might also affect ADAM10 levels. 
Another aspect to be considered are the effects on the cholinergic system that have been reported for disulfiram, 
for example effects on the autonomous nervous system in rodents. A decrease in the histochemical reactivity 
for acetylcholine-esterase was observed in the nerve plexuses of the gut wall in rats treated with 220–580 mg/kg 
for 1–3 weeks47. In the treatment presented here which included a paradigm with lower dosage, no significant 
changes in acetylcholine-esterase levels in gut or brain tissue were observed (shown in Suppl. Figure 3).

Nevertheless, a 15 days treatment of rats with disulfiram, even at low doses (50 mg/kg/day) showed a selective 
elevation of acetylcholine in the hippocampus of the animals48. The assumption that acetylcholine deficit is one 
of the major drivers of cognitive decline in Alzheimer’s disease underpins the clinic treatments used today for 
Alzheimer patients, namely acetylcholine esterase inhibitors such as Donepezil (e.g. reviewed by49,50). In our 
study we did not test the release or synthesis of acetylcholine, but such an effect could clearly contribute to the 
observed amelioration of cognitive deficits. Such an add-on effect might also be contributed by effects on struc-
tural properties of the amyloid precursor protein or its cleavage products. It has been shown that sAPP-alpha 
production increased upon disulfiram application by inhibiting dimerization of the APP ectodomain in 7W-CHO 
non-neuronal cells51. In addition, Nagai and Ito reported that inhibition of hydrogen peroxide production via 
disulfiram attenuated the increase in Abeta1-42 in the lens capsule-epithelium of a rat cataract model52.

In conclusion, disulfiram may influence AD pathology in multiple ways, resulting in an increase of func-
tional behavior at least in mice at low doses. Low compliance by demented patients can be partially circum-
vented as disulfiram can be administered by subcutaneous implantation53. Development of novel encapsulated 
or nanoparticle-assisted forms of the drug54,55 might additionally help in the establishment of a potential therapy. 
However, safety in AD patients and impact on cognition have to be investigated in the future.

Materials and Methods
Material.  The FDA approved drug library (Enzo) was kept at −80 °C. Aliquots were prepared on clear 96 well 
plates using the Liquidator (Qiagen). Disulfiram for further analyses was purchased from Sigma.

Cell culture.  The human cell line SH-SY5Y was maintained at humidified air (95%), 5% CO2, 37 °C, and cul-
tured in DMEM/F12 (Life Technologies, Darmstadt, Germany) supplemented with 10% FCS and 1% Glutamine 
(GE Healthcare, Piscataway, NJ, USA).

Toxicity assay.  Cells were seeded at a density of 45 000 cells per well of a white glass-bottom 96 well plate 
(Greiner Bio-OneGmbH, Frickenhausen, Germany) in OptiMEM (Life Technologies, Darmstadt, Germany) and 
incubated with the substances of the FDA-approved library. Cell viability was assessed using the Cell Titer Glo 
Assay (Promega). Concentrations that were found toxic (decrease in viability of >20% in comparison to solvent 
control) or pro-proliferative (increase in viability >20%) were reduced until appropriate.

For measuring a potential protective effect of disulfiram on A-beta treatment of cells, SH-SY5Y cells were 
seeded at a density of 38 000 cells per well of a 96 well plate (Greiner Bio-OneGmbH, Frickenhausen, Germany) 
in culture medium supplemented with solvent (DMSO), human A-beta42 peptides (2.5 µM, Anaspec) or peptides 
combined with 2.2 µM disulfiram for 48 h. Subsequently, MTT reagent was added (5 µl of 5 mg/ml stock solution) 
and viability assessed as described before56.

Reporter gene assay.  The dual luciferase reporter assay was performed as described previously57. In brief, 
a reporter vector was used for simultaneously detecting human BACE-1 promoter activity and human ADAM10 
promoter activity with the dual luciferase reporter kit (Promega) after incubating the cells for 48 h. Substances 
were diluted following results from the toxicity assay and the assay was at least performed three times inde-
pendently for each substance. Both promoter sequences as well as the single reporter vector for ADAM10 pro-
moter are described in a former publication57. The reporter vector for murine ADAM10 promoter activity has 
also been reported previously21.

Western blotting.  Cells were seeded on 12-well plates at a density of 500 000 per well and incubated with the 
substances as indicated for 48 h. Cell supernatant from a 5 h secretion period was collected and soluble proteins 
precipitated via TCA21. Cells were harvested in PBS, protein content determined, and half of the supernatant or 
20 µg proteins subjected to SDS polyacrylamide gel electrophoresis. Proteins were blotted onto nitrocellulose and 
blocked with 0.2% I-Block (Thermo Fisher Scientific) solution including 0.05% Tween20. Primary antibodies 
were as follows: ADAM10 rabbit polyclonal antibody (Merck, Darmstadt, Germany), ADAM17 rabbit polyclonal 
antibody (Chemicon, Merck), BACE-1 rabbit monoclonal antibody (D10E5, Cell Signaling Technology, Danvers, 
MA, USA), APP N-terminal mouse monoclonal antibody (for detection of sAPP-alpha, 6E10, Covance, Madison, 
WI, USA), anti-sAPP-beta (Covance, Madison, WI, USA) or APP C-terminal antibody58. As a loading control, 
GAPDH was detected (14C10, Cell Signaling, Danvers, MA, USA). Blots were incubated with respective second-
ary antibody coupled with horseradish peroxidase (Thermo Scientific, Karlsruhe, Germany) and signals obtained 
by applying SuperSignal West Femto chemiluminescent substrate (Thermo Scientific, Karlsruhe, Germany) were 
captured using a CCD-camera imaging system (Raytest, Straubenhardt, Germany).
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Amyloid-beta aggregation assay.  The amyloid aggregation assay was conducted in 50 mM Tris/150 mM 
NaCl (pH7.2) supplemented with 125 µM Thioflavin T (Sigma) and 0.1 mg/ml human AggreSure beta-Amyloid 
(1–42) (Anaspec) in black 384 well plates. Fluorescence was measured in a Fluostar Omega (BMG Labtech, 
Cary,NC, USA) (Ex/Em = 440/484 nm) to analyze A-beta aggregation.

GSK3-beta activity assay.  The luminescent GSK3-beta assay was performed as recommended by the ven-
dor (Promega).

Animals.  Male 5xFAD mice (Jackson Lab) were crossbred with C57BL/6 J female mice for maintenance. 
Non-transgenic female offspring was used as control. All animals were group-housed in cages in a 12 h light/
dark cycle with food and water available ad libitum unless otherwise stated (three to five animals/cage). All pro-
cedures were performed in accordance with the European Communities Council Directive regarding care and 
use of animals for experimental procedures and were approved by local authorities (Landesuntersuchungsamt 
Rheinland-Pfalz; approval number G14-1-087).

Disulfiram treatment.  Mice aged 3 months were assigned randomly into the control group (solvent, 
DMSO) or the disulfiram group (26 mg/kg per day). Disulfiram (stock solution of 100 mg/ml, kept in aliquots at 
−20 °C) was diluted freshly in DMSO to 0.8 mg/150 µl injection solution. Animals were injected i.p. at a fixed time 
in the morning of two consecutive days.

Behavioral procedures.  For the assessment of nest building capability, animals were single-caged and 
habituated to the nesting material used for scoring (Sizzle Pet Nesting Material, Claus GmbH, Germany; 10 g 
per cage) for 24 h in the presence of their former nest building material (paper towel). Animals then received 
fresh nesting material for three days. Subsequently, animals were deprived for 24 h to enhance nest building 
motivation and also received their first injection. On day six, mice were injected the second time and cages were 
supplemented with fresh nesting material to allow nest building for overnight. The following morning, quality of 
the nest was scored as described by Deacon59 (e.g. 0: no nest built; 5: perfectly closed dome built). Additionally, 
the nesting material that has not been introduced into the nest was weighed.

For the novel object recognition (NOR) test, mice were injected on day one and two. On day two they were 
additionally habituated for 6 min to the Y-maze which was used for the NOR test. On the third day, mice were 
represented in a first session for 6 min to two identical objects in two arms of the Y-maze. Two hours later, one of 
the objects was replaced by a novel object and mice allowed to explore the maze for another 6 min. A computer-
ized video system registered moving-path and presence in the defined areas (non-displaced (NDO) and displaced 
object (DO)) automatically (hardware consisted of an IBM-type AT computer combined with a video digitizer 
and a CCD video camera). The software used for data acquisition and analysis was EthoVision XT release 8.5 
(Noldus Information Technology, Utrecht, Netherlands). Analysis of the data was performed using the discrimi-
nation index (time (DO-NDO)/ time (DO + NDO)).

Clinical study.  Human healthy controls and patients were recruited from the Clinic of Psychiatry and 
Psychotherapy (Mainz) or from the CIMH (Mannheim). Exclusion criteria for the patients were a diagnosed 
Alzheimer dementia and a treatment with disulfiram less than four weeks before baseline assessment. Patients 
were included that were treated with disulfiram for alcohol relapse prevention. Exact treatment schedule was 
chosen by the medicating physician. In general, a dosage of 1500, 1000 and 500 mg is used for the first three days, 
and then a dose of 500 mg three times a week is prescribed. Patients that were compliant for 14 days were included 
in the study. All patients gave informed consent for study participation; the study has been approved by local 
authorities (Landesärztekammer Rheinland-Pfalz), and is registered with clinical trials.gov (NCT03212599). All 
experiments were performed in accordance with relevant guidelines and regulations.

Tissue dissection and sample collection.  Mice were anaesthetized with isofluran and sacrificed by 
decapitation. Truncal blood was mixed with RNA later (Qiagen, Hilden) and urine was collected. One brain 
hemisphere was drop fixed in 4% formaldehyde for IHC and the other hemisphere immediately cut in cubes and 
submerged in RNA later for preservation or snap frozen for zinc measurements and assessment of Acetylcholine 
esterase levels by the method of Ellman (see Suppl. Figure 2). In addition, sections of the gut were taken to assess 
Acetylcholine esterase levels. All samples were stored at −80 °C before usage despite IHC samples.

For human blood, samples were collected in a 2.5 ml EDTA monovette (Sarstedt, Nümbrecht, Germany), 
inverted three times, stored upright and processed within maximal 20 minutes after puncture. 0.5 ml blood was 
pipetted to 1.3 ml RNAlater and mixed by inverting. Samples were stored at −80 °C before further use.

Zinc quantitation.  Snap frozen hemispheres were grinded manually under nitrogen cooling and 1 mg mate-
rial suspended in water used for assessment of zinc amount with the fluorogenic zinc quantification kit (Abcam). 
Values were corrected for background fluorescence calculated as ng/mg tissue wet weight. Urine was used undi-
luted and obtained values corrected for autofluorescence.

A-beta ELISAs.  SH-SY5Y cells were seeded on 12 well plates at a density of 500 000 cells per well and 
medium was exchanged 5 h after passage with medium containing 2.2 µM disulfiram or solvent (DMSO). 24 h 
later, cell supernatant was exchanged by 1 ml fresh drug-containing medium per well and secreted proteins were 
collected for 16 h. 200 µl of cell supernatant were subjected to human A-beta 1-x ELISA as recommended by the 
vendor (IBL).



www.nature.com/scientificreports/

1 1SCIEntIFIC Reports |  (2018) 8:1329  | DOI:10.1038/s41598-018-19577-7

Brain tissue grinded under nitrogen cooling was suspended in extraction buffer (100 mg/800 µl; 10 mM 
Tris HCl pH7.4; 100 mM NaCl, 1% TritonX100, 0.1% SDS, 1 mM EDTA, Protease-Inhibitor without EDTA 
(RocheMini complete)) and homogenized with a tissue mill (TissueLyzer, Qiagen, Hilden, Germany) and stain-
less steel beads (5 mm, Qiagen). The suspension was incubated on ice with vortexing every 10 min for 30 min, 
centrifuged (13 000 g, 4 °C, 10 min) and the supernatant diluted 1:200 in standard diluent buffer of the ELISA kit 
(Human Abeta42, Invitrogen, Camarillo, CA, USA). The assay was performed as recommended by the vendor.

ADAM10 activity assay.  SH-SY5Y cells were seeded on 24 well plates at a density of 260 000 cells per well 
and medium was exchanged 5 h after passage with medium containing 2.2 µM disulfiram or solvent (DMSO). 
After 48 h of incubation, cells were scraped and collected by centrifugation (13 000 g, 4 °C, 3 min). The cell pellet 
was resuspended in 20 µl assay buffer (AnaSpec) and incubated for 15 min on ice. 8 µl of cell suspension were 
supplemented with 2 µl DMSO or GM6001 solution in black 384 well plates.

Tissue was prepared as described for A-beta ELISA. The pellet from centrifugation was washed in 200 µl PBS 
with protease inhibitors. 50 µl of tissue suspension was pelleted (3 min, 3,000 g, 4 °C) and washed two-times in 
assay buffer provided by the vendor (100 µl, AnaSpec, Seraing, Belgium) with 10 min incubation on ice. 5 µl of 
tissue suspension was supplemented by 3 µl assay buffer and 2 µl of DMSO or GM6001 solution in black 384 well 
plates.

For both, cell suspension or tissue lysate, 10 µl of pre-warmed substrate solution were added and kinetics 
measured by a FluoStarOmega (BMG Labtech; 60 min measurement with measuring every 2 min after orbital 
shaking, 37 °C). Slopes of fluorescent signal-increase over time as measured by Em485 nm/Exc520 nm for 
non-inhibited reaction (DMSO) were corrected by values obtained from inhibited reaction (GM6001) to make 
sure that only substrate digestion by metalloproteinases is taken into account.

Plaque analysis.  IHC sections were prepared and stained with anti-APP antibody 6E10 (Covance) as 
described previously56. Two sections per mouse were used for densitometric analysis in a total magnification 
of 40 × : five areas were determined to be measured as shown in Fig. 6a. All areas were corrected for the value 
of the background area. For cortical tissue, two distinct areas were analyzed and integrated into a mean value. 
Experimenters were blinded for the treatment of the mice during analysis.

Quantitative real-time PCR.  Total RNA was extracted according to the manufacturer’s instructions (RNA 
II, Qiagen, Hilden). For human and murine blood, RNA was extracted with the RiboPure Blood Kit (Ambion) 
as recommended by the manufacturer. 20ng (mouse blood) or 100 ng RNA were used for quantitative Real-time 
PCR with the QuantiTectSYBRGreen Kit (Qiagen, Hilden) performed in a StepOnePlusCycler (Life Technologies, 
Darmstadt, Germany). Primers were as follows: Adam10 (QT00106351), Bace-1 (QT00493948), murine 
18SrRNA (QT02448075), ADAM10 (QT00032641), PGK-1 (QT00013776). Levels of mRNA were normalized to 
the mRNA levels of the house keeping genes (18SrRNA/PGK-1) using a standard curve.

Quantification and imaging.  Quantitative analysis of Western blot chemiluminescent signals or chromog-
enic signals from IHC sections was carried out with AIDA image analyzer 4.26 software (Raytest, Straubenhardt, 
Germany). Microscopic pictures of the IHCs were acquired by an EVOS XL microscope (Life Technologies, 
Darmstadt, Germany). Scale bars were inserted by using ImageJ software60.

Statistical analysis.  For comparison of two groups, data were analyzed by Student’s t-test, followed by 
Bonferroni’s correction. One-way analysis of variance (ANOVA) was performed for three or more groups, fol-
lowed by the LSD post hoc test. P-values < 0.05 were considered statistically significant and results were rep-
resented as mean ± SD (cell culture/in vitro experiments) or ± SEM (animal experiments/clinical study). Data 
analyses were performed using GraphPad Prism 6 (Graph Pad Software, La Jolla, CA, USA).

Data availability statement.  The datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.
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