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Abstract: Plant architecture is dynamic as plants develop. Although many genes associated with
specific plant architecture components have been identified in rice, genes related to underlying
dynamic changes in plant architecture remain largely unknown. Here, we identified two highly
similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and
RIL-Compact (C). The dynamic plant architecture of RIL-D is characterized by ‘loosetiller angle (tiller-
ing stage)–compact (heading stage)–loosecurved stem (maturing stage)’ under natural long-day (NLD)
conditions, and ‘loosetiller angle (tillering and heading stages)–loosetiller angle and curved stem (maturing
stage)’ under natural short-day (NSD) conditions, while RIL-C exhibits a compact plant architecture
both under NLD and NSD conditions throughout growth. The candidate locus was mapped to the
chromosome 9 tail via the rice 8K chip assay and map-based cloning. Sequencing, complementary
tests, and gene knockout tests demonstrated that Tiller Angle Control 1 (TAC1) is responsible for
dynamic plant architecture in RIL-D. Moreover, TAC1 positively regulates loose plant architecture,
and high TAC1 expression cannot influence the expression of tested tiller-angle-related genes. Our
results reveal that TAC1 is necessary for the dynamic changes in plant architecture, which can guide
improvements in plant architecture during the modern super rice breeding.

Keywords: rice (Oryza sativa L.); plant architecture; dynamic changes; gene mapping; TAC1

1. Introduction

Plant architecture typically refers to morphological characteristics associated with the
three-dimensional organization of the plant body, including plant height, tiller number
or angle, and inflorescence structure, which represents the major agronomic traits in the
field [1]. Ideal plant architecture is one of the physiological characteristics for high yields,
and improving plant architecture plays a vital role in the breeding of modern crops. A
better understanding of the molecular basis underlying plant architecture will contribute
to improvements in plant architecture.

Plant architecture determines planting density and substantially affects stress re-
sistance, lodging, and light capture/photosynthetic efficiency [2], and planting density
largely depends on the branch angle in plants [3], such as the tiller angle in rice [4].
Tiller Angle Control 1 (TAC1) was initially identified for controlling tiller angle in an indica
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variety IR24; a mutation from ‘AGGA’ to ‘GGGA’ (functional nucleotide polymorphism,
FNP) occurring at the splicing site of the fourth intron in the 3′-untranslated region (3′-UTR)
decreases the expression of the tac1 allele, producing a compact plant architecture with
a tiller angle close to zero. Overexpressing TAC1 in Nipponbare (NPB) leads to a larger
tiller angle, and repressing TAC1 expression through RNA interference results in a more
compact plant architecture. These results demonstrate the wide application of the tac1
allele in japonica cultivars during rice domestication [5,6]. Thereafter, TAC1 was identified
as a key regulator for enlarging the branch angle/leaf angle in other plant species, such as
maize, peach, Arabidopsis, and plum, and it was defined as a member of the IGT/LAZY
gene family [7–9]. WEEP, a sterile alpha motif protein, is involved in gravitropic responses
and controls weeping tree architecture in peach and plum species [9]; it was suggested to be
a factor downstream of the TAC1 pathway [10]. LAZY1 (LA1), which is another member of
the IGT/LAZY gene family, negatively regulates polar auxin transport (PAT) to determine
rice shoot gravitropism and tiller angle [11], and Brevis Radix-Like 4 (OsBRXL4) can interact
with LA1 at the plasma membrane; this interaction determines the nuclear localization of
the LA1 protein, thus regulating tiller angle in rice [12]. In addition, LAZY1 and the other
homologs, LAZY2 and LAZY4, were reported to perceive gravistimulation to influence the
local auxin gradient in plants [10,13,14]. Maize ZmLAZY1 regulates gravitropic responses,
but not the leaf angle [13], while another ortholog, ZmCLA4, modulates the leaf angle
by influencing the cell shape and number at the leaf axil [15]. Notably, although LAZY1
and TAC1 show opposing influences on branch angle in Arabidopsis, the connections be-
tween these two genes are complex, and they are not the direct negative regulators of each
other [16]. Furthermore, several regulators upstream or downstream of LA1 have been iden-
tified in rice. HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) acts as an upstream
regulator to positively regulate LA1 expression [17], and two class II homeodomain–leucine
zipper (HD-ZIP II) proteins, OsHOX1 and OsHOX28, act upstream of OsHSFA2D, and can
bind to the promoter of OsHSFA2D to suppress its expression [18]. LA1 can promote auxin
accumulation in lower parts of the plant upon gravistimulation, leading to the asymmet-
ric expression of the downstream auxin regulators WUSCHEL-RELATED HOMEOBOX 6
(WOX6) and WOX11. A double mutant of these two genes results in a larger tiller angle [17].
PROSTRATE GROWTH 1 (PRGO1), encoding a Cys2–His2 zinc finger protein, controls
prostrate growth in wild rice, and PRGO1 deficiency leads to erect growth in domesticated
rice cultivars [19,20]. TILLER INCLINED GROWTH 1 (TIG1), encodes a TCP transcriptional
activator, promotes cell elongation, and increases the tiller angle in wild rice; variations in
the promoter of the tig1 allele from indica lead to decreased expression, and reduced cell
length and tiller angle, resulting in erect growth of the tiller during rice domestication [21].
LAZY2 (LA2)/Large Tiller Angle 1 (LTA1) encodes a chloroplastic protein that interacts with
a starch biosynthetic enzyme, Oryza sativa plastidic phosphoglucomutase (OspPGM), to
regulate starch biosynthesis in gravity-sensing cells, thus controlling shoot gravitropism
and tiller angle [22,23]. TAC4 encodes a plant-specific, highly conserved nuclear protein,
which affects the indole acetic acid (IAA) content and auxin distribution to regulate shoot
gravitropism and tiller angle [24].

Additionally, many genes or related regulatory factors can simultaneously control
several components of plant architecture to modulate overall plant architecture in rice.
Ideal Plant Architecture 1 (IPA1) encodes squamosa promoter binding protein-like 14
(OsSPL14), which negatively regulates tiller development (shoot branching) in the vege-
tative stage, and promotes panicle branching in the reproductive stage, increasing grain
yield [25–27]. Overexpression of the auxin efflux transporter gene OsPIN2 increases tiller
number and tiller angle, and decreases plant height [28]. Loose Plant Architecture 1 (LPA1)
encodes a plant-specific INDETERMINATE DOMAIN protein and a functional ortholog of
the AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene in Arabidopsis, and regulates the
sedimentation rate of amyloplasts to affect gravity perception or signal transduction in
coleoptile gravitropism. Additionally, it can suppress the auxin signaling that interacts
with C-22-hydroxylated and 6-deoxo BRs, thus simultaneously controlling tiller angle and
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leaf angle [29,30]. The PLANT ARCHITECTURE AND YIELD 1 (PAY1) mutant displays a
smaller tiller angle, higher plant height, lower tiller number, larger panicles, thicker stems,
and enhanced grain yield in comparison with the control line YIL55. Further studies have
demonstrated that PAY1 affects PAT activity and alters endogenous IAA distribution to
improve rice plant architecture [31]. A transcription factor OsbZIP49 from the bZIP family
of the TGA class influences local auxin homeostasis to modulate tiller angle and plant
height [32].

Most studies have focused on the molecular mechanisms underlying the specific
components of plant architecture, such as plant height, tiller angle or number, and panicle
branching or development. Notably, plant architecture is related to growth and develop-
ment, and changes in response to internal and external factors, making it dynamic as plants
develop [33,34]. However, the underlying molecular basis of plant architecture remains
largely unclear, likely due to the complexity of such dynamic changes during plant develop-
ment. In this study, we identified and characterized two highly similar recombinant inbred
lines (RILs) with different plant architecture: the RIL-D (Dynamic) is characterized by
‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem (maturing stage)’
under natural long-day (NLD) conditions, and ‘loosetiller angle (tillering and heading stages)–
loosetiller angle and curved stem (maturing stage)’ under natural short-day (NSD) conditions,
while RIL-C (Compact) is characterized by a compact plant architecture throughout their
growth. Gene mapping, sequencing, and transgenic tests all demonstrated that TAC1 was
the target gene responsible for the dynamic plant architecture. Our results demonstrate
that the TAC1 gene modulates the dynamic plant architecture in rice, indicating a potential
target for improving plant architecture during the breeding of modern super rice.

2. Results
2.1. RIL-D Shows the Dynamic Plant Architecture under Natural Long-Day Conditions

To identify the gene responsible for regulating dynamic plant architecture, we con-
structed a recombinant inbred line (RIL) population of F6:7 by crossing the indica variety
(ZH8015) with a japonica variety (02428), and identified two highly similar RILs with differ-
ent plant architecture, named RIL-D (the RIL with dynamic plant architecture) and RIL-C
(the RIL with compact plant architecture).

Under natural long-day (NLD) conditions (the summer growing season in Fuyang
(119◦95′ E, 30◦05′ N), Zhejiang province, China), RIL-D displayed a loose plant architecture
characterized by a tiller angle that gradually increased until 60 days after sowing (DAS60,
tillering stage), and reached a maximum of ~16.7◦ at DAS60 (Figure 1a,d). In contrast, the
average tiller angle of RIL-C increased until DAS45, reached a maximum of ~6.4◦, after
which it steadily decreased until DAS60, where it was close to zero (Figure 1a,d). After
DAS60, the RIL-D tiller angle sharply decreased, and by the heading stage (DAS90) its
architecture was compact with no obvious difference from RIL-C plants (Figure 1b–d). At
the late-maturing stage (DAS120), RIL-D showed a loose plant architecture due to greater
curvature in the stem, although its tiller angle remained close to zero (Figure 1i–k), and
there was no significant difference in the panicle weight of RIL-D and RIL-C (Figure 1l). This
suggests that the curved stem of RIL-D was unrelated to differences in panicle weight. These
observations indicate that RIL-D had an overall dynamic plant architecture characterized by
‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem (maturing stage)’,
while RIL-C had a relatively compact plant architecture throughout the growth period
under NLD conditions.
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Figure 1. Phenotypic analysis of RIL-D and RIL-C from DAS40 to DAS110 under natural long-day 
(NLD) and short-day (NSD) conditions. (a–c) RIL-D and RIL-C plants under NLD conditions at the 
tillering stage (a), heading stage (b), and maturing stage (c). (d) The dynamic tiller angle of RIL-D 
and RIL-C under NLD conditions. (e–g) RIL-D and RIL-C plants under NSD conditions at the tiller-
ing stage (e), heading stage (f), and maturing stage (g). (h) The dynamic tiller angle of RIL-D and 
RIL-C under NSD conditions. (i) RIL-D and RIL-C plants under NLD conditions. (j,k) Stems of RIL-
D and RIL-C under NLD conditions. (l) Comparison of the panicle weight between RIL-D and RIL-
C under NLD conditions. (m) RIL-D and RIL-C plants under NSD conditions. (n,o) Stems of RIL-D 
and RIL-C under NSD conditions. (p) Comparison of the panicle weight between RIL-D and RIL-C 
under NSD conditions. The upper and lower parts of red dotted lines indicate curved stems and 
tiller angle, respectively, and white arrows indicate the curved site (node) of the stem. All data 
shown represent mean ± SD (standard deviation; n = 10). Two-tail Student’s t-tests were used for 
statistical analysis. Bar = 10 cm. 

Figure 1. Phenotypic analysis of RIL-D and RIL-C from DAS40 to DAS110 under natural long-day
(NLD) and short-day (NSD) conditions. (a–c) RIL-D and RIL-C plants under NLD conditions at the
tillering stage (a), heading stage (b), and maturing stage (c). (d) The dynamic tiller angle of RIL-D and
RIL-C under NLD conditions. (e–g) RIL-D and RIL-C plants under NSD conditions at the tillering
stage (e), heading stage (f), and maturing stage (g). (h) The dynamic tiller angle of RIL-D and RIL-C
under NSD conditions. (i) RIL-D and RIL-C plants under NLD conditions. (j,k) Stems of RIL-D and
RIL-C under NLD conditions. (l) Comparison of the panicle weight between RIL-D and RIL-C under
NLD conditions. (m) RIL-D and RIL-C plants under NSD conditions. (n,o) Stems of RIL-D and RIL-C
under NSD conditions. (p) Comparison of the panicle weight between RIL-D and RIL-C under NSD
conditions. The upper and lower parts of red dotted lines indicate curved stems and tiller angle,
respectively, and white arrows indicate the curved site (node) of the stem. All data shown represent
mean ± SD (standard deviation; n = 10). Two-tail Student’s t-tests were used for statistical analysis.
Bar = 10 cm.
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Under natural short-day (NSD) conditions (the winter growing season in Lingshui
(110◦02′ E, 18◦48′ N), Hainan province, China), RIL-D displayed a loose plant architecture
featuring a large, continuously increasing tiller angle (~25.5◦ maximum) until DAS70
(Figure 1e–h). Although the tiller angle of RIL-D decreased after DAS70, it stabilized at
~20.0◦ from DAS80 to DAS100, and increased after DAS100 (Figure 1h). In contrast to
this loose, dynamic architecture, RIL-C showed a relatively compact plant architecture
(Figure 1e–h and m–o). In addition, RIL-D also exhibited a curved stem, with no significant
difference in panicle weight between RIL-D and RIL-C at the late maturation stage (DAS120;
Figure 1m–p). Moreover, the RIL-D and RIL-C plants grown in the winter season (the
NSD conditions of the Fuyang greenhouse) had a plant architecture similar to that of their
respective counterparts grown under the NSD conditions (Figure S1a–d). Taken together,
RIL-D showed a loose plant architecture characterized by ‘loosetiller angle (tillering and
heading stages)–loosetiller angle and curved stem (maturing stage)’, while RIL-C had a relatively
compact plant architecture throughout their growth stages under NSD conditions.

2.2. Genetic Analysis and Fine Mapping of the Candidate Gene

To investigate whether the RIL-D phenotype is controlled by a single gene, we pheno-
typically scored 500 plants at maturing stage (DAS110) for each line of three segregated
lines (HNPF-270/273/274; Figure S2) in the F6:7 RIL population under NSD conditions.
The segregation models for loose-to-compact plants fit a 3:1 Mendelian ratio (Table S1),
suggesting that the phenotype of RIL-D was controlled by a single dominant locus.

To map the candidate gene, we initially selected 30 plants with loose plant architec-
ture and 64 plants with compact plant architecture from different F6:7 lines, which were
genotyped using the rice 8k chip (Table S2 and Figure S3). This produced 25 heterozygous
or cross-over regions (Figure S4 and Table S3). The general linear model (GLM) and mixed
linear model (MLM) were then used to detect the candidate region using the Tassel 5.0
software (Ithaca, New York, NY, United States), and the results show that the candidate
region was located at the tail of chromosome 9, which was used as the preliminary link-
age interval within 2371.5 Kb between the SNP markers AX-115869042 and AX-95959392
(Figures S4 and S5).

To finely map the candidate gene, 16 polymorphic insertion/deletion (InDel) mark-
ers evenly distributed on the preliminary linkage interval were developed to genotype
20 loose plants and 17 compact plants from F6:7 at DAS110 under NSD conditions. There-
fore, the preliminary linkage interval was mapped to a region within 1633.9 Kb be-
tween the InDel markers SCR-16 and QP-36 (Figure 2a). To narrow down the interval,
1400 compact plants from F6:7 were genotyped, and then the interval was mapped to the
region within 271.5 Kb flanked by the InDel markers between SCR-16 and SC-16 (Figure 2b).
Two new polymorphic InDel markers were developed in the 271.5 Kb region, and a total
of four polymorphic InDel markers (including SCR-16 and SC-16) were used to genotype
592 loose plants from F6:7. This enabled the candidate region to be narrowed down to a
174.8 Kb interval between SCR-22 and SC-16 (Figure 2c). Unfortunately, we could not
obtain the expected interval using all the sampled individuals, but we did obtain two
heterozygous plants genotyped by SCR-26 (Figure 2c). We then harvested all the seeds
of these two heterozygous plants and generated two residual heterozygous lines (RHLs),
RHL-1 and RHL-2, under natural long-day (NLD) conditions. These included segregated
individuals only found in RHL-2. Subsequently, 740 loose plants in RHL-2 were sampled
to map the candidate region with five polymorphic InDel markers (two newly developed
markers) to a 51.15 Kb region, which contained 10 open reading frames (ORFs; Figure 2d)
according to the Rice Annotation Project (RAP) database (https://rapdb.dna.affrc.go.jp/
(accessed on 25 February 2019)).

https://rapdb.dna.affrc.go.jp/
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Figure 2. Map-based cloning, sequencing, and promoter activity assay of TAC1. (a) The preliminary 
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271.5 Kb region flanked by SCR-16 and SC-16 using 1400 compact plants from the F6:7 RIL population. 
(c) The mapping interval was further narrowed down to a 174.8 Kb region between SCR-22 and SC-16 
using 592 loose plants from the F6:7 RIL population, while two heterozygous plants were selected for 
generating RHL-1 and RHL-2. (d) The candidate region containing 10 ORFs was finally mapped to a 
51.15 Kb interval between SC-3 and SC-16 using 740 loose plants from RHL-2 at DAS60 under natural 

Figure 2. Map-based cloning, sequencing, and promoter activity assay of TAC1. (a) The preliminary
linkage interval was mapped to a 1633.9 Kb interval between InDel markers SCR-16 and QP-36 at the
tail of chromosome 9 using 20 loose plants and 17 compact plants from the F6:7 RIL population at
DAS110 under natural short-day (NSD) conditions. (b) The candidate locus was narrowed down to a
271.5 Kb region flanked by SCR-16 and SC-16 using 1400 compact plants from the F6:7 RIL population.
(c) The mapping interval was further narrowed down to a 174.8 Kb region between SCR-22 and SC-16
using 592 loose plants from the F6:7 RIL population, while two heterozygous plants were selected
for generating RHL-1 and RHL-2. (d) The candidate region containing 10 ORFs was finally mapped
to a 51.15 Kb interval between SC-3 and SC-16 using 740 loose plants from RHL-2 at DAS60 under
natural long-day (NLD) conditions. (e) Sequencing analysis of the 5354 bp TAC1 genomic sequence.
(f) The TAC1 (tac1) promoter activity assays with the Dual-Luciferase® Reporter Assay System. Data
are displayed mean ± SD (n = 3). Two-tail Student’s t-test was used for statistical analysis. (g) DNA
sequencing chromatograms of the splicing sites of 3′-untranslated region of TAC1 between RIL-D
and RIL-C.
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Of the 10 ORFs in the candidate region, ORF3 is the TAC1 gene previously identified
as a major QTL for rice tiller angle [5]. Given that the loose plant architecture of RIL-D
was characterized by a relatively large tiller angle under NSD conditions (Figure 1e–h), we
hypothesized that TAC1 (ORF3) was the candidate locus. To test this possibility, we first
sequenced the 5354 bp TAC1 genomic region (including the 2244 bp predicted promoter)
from RIL-D and RIL-C, and found 11 single nucleotide polymorphisms (SNPs) in the
promoter region, eight SNPs in the introns, one SNP in the exon 3, and one InDel in the
intron 1 (Figure 2e). In particular, SNP20 (Figure 2g), which was located at the splicing site
in the fourth intron in 3′-UTR of tac1 in RIL-C, was the previously described functional
SNP (FNP) that leads to abnormal splicing of the 3′-UTR of the tac1 allele, and thus
results in its decreased expression level [5,6]. To determine whether the SNPs in the
promoter region contribute to differences in the promoter function, we transformed the
plasmids TAC1pro::Luciferase (LUC) and tac1pro::LUC into rice protoplasts, and used the
Dual-Luciferase® Reporter Assay System to compare promoter activities of TAC1 and tac1
in RIL-D and RIL-C, respectively. The results showed no significant difference between
alleles (Figure 2f), suggesting that these 11 SNPs in the promoter region may not affect the
transcriptional activities of the two alleles. In addition, other mutations occurred in introns,
such as SNP12 and SNP14-19, or produced a synonymous mutation (ACG to ACA), such
as SNP13 (Figure 2e). Therefore, we speculated that the SNP20 (FNP) between TAC1 and
tac1 could lead to a transition from the dynamic plant architecture observed in RIL-D to the
relatively compact plant architecture observed in RIL-C.

2.3. TAC1 Is the Target Gene Responsible for the Dynamic Plant Architecture of RIL-D

To test whether the TAC1 gene is responsible for the dynamic plant architecture of RIL-
D, we generated the complementation (COM) lines COMRIL-C by introducing the plasmid
TAC1pro::TAC1 harboring the 6765 bp genomic DNA sequence (including a 2290 bp region
upstream of the start codon, a 1280 bp coding region, and a 3195 bp region downstream
of the stop codon; Figure S6a) of the TAC1 gene from RIL-D into the RIL-C background.
Moreover, we also generated the TAC1 gene knockout lines (CR-tac1-1/2/3) on the RIL-D
background using the CRISPR/Cas9 (CR) system (Figure S6b). Under NLD and NSD
conditions, a complementary line (COMRIL-C-3) displayed the same plant architecture as
that of RIL-D (Figures 3a–c, 4a–c and S7c,g). A previous study demonstrated that TAC1
is primarily expressed in the tiller base [5]. To understand whether TAC1 expression is
the same in these lines, we detected TAC1 expression in the tiller base using real-time
quantitative PCR (qRT-PCR). As expected, COMRIL-C-3 showed similar TAC1 expression
levels to that of RIL-D in the tiller base (Figures 3d and 4d). In addition, TAC1 knockout
lines (the TAC1 frameshift mutants, CR-tac1-1/2/3 (Figure S6b)) with extremely low TAC1
expression had a compact plant architecture similar to that of RIL-C (Figures 3, 4 and S7d,h).
Similar results were also obtained under NSD conditions in the winter season of the Fuyang
greenhouse (Figure S1e,f). Furthermore, we also detected the TAC1 and tac1 expression
levels in RIL-C and RIL-D at different development stages under NLD conditions, and the
results show that TAC1 expression reached the highest levels at DAS50 and had the greatest
difference in tac1 expression, whereas it was lowest at DAS90 and showed no difference
in tac1 expression (Figure S8), which was consistent of the dynamic plant architecture in
RIL-D and the compact plant architecture in RIL-C. These results demonstrate that TAC1 is
responsible for the dynamic plant architecture of RIL-D.

2.4. Transgenic Lines with High TAC1 Expression Displayed Looser Plant Architecture

In the COMRIL-C lines, we found that the COMRIL-C-1 and COMRIL-C-2 lines exhibited
different and looser plant architecture than those of RIL-D and COMRIL-C-3. Under NLD
conditions, their respective tiller angles could reach ~27.8◦ and ~24.0◦ at DAS60 (tillering
stage), and ~26.3◦ and ~22.1◦ at DAS90 (heading stage), corresponding to ~17.5◦ at DAS60
and ~0◦ at DAS90 in the RIL-D and COMRIL-C-3 lines (Figure 3a–c). At the maturation
stage, they showed a looser plant architecture with a larger tiller angle and a more curved
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stem (Figure S7a,b). Consistent with the looser plant architecture, the expression levels
of the TAC1 gene in these two lines significantly increased (Figure 3d). We then renamed
COMRIL-C-1 and COMRIL-C-2 as the TAC1 overexpression (OE) lines, TAC1-OERIL-C-1 and
TAC1-OERIL-C-2. Similarly, under NSD conditions, the COMRIL-C-1 (TAC1-OERIL-C-1) and
COMRIL-C-2 (TAC1-OERIL-C-2) lines also displayed a looser plant architecture than those
of RIL-D and COMRIL-C-3 (Figure 4a–c and Figure S7e,f), and their respective tiller angles
were ~30.0◦ and ~25.5◦ at DAS60, and ~30.7◦ and ~24.3◦ at DAS90, corresponding to ~23.8◦

at DAS60 and ~19.8◦ at DAS90 in the RIL-D and COMRIL-C-3 lines (Figure 4c). Consistently,
the expression levels of the TAC1 gene in these two lines were still markedly increased
(Figure 4d).
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Figure 3. Plant architecture and TAC1 expression of RIL-D, RIL-C, COMRIL-C, and CR-tac1 lines under
natural long-day (NLD) conditions. (a,b) Plant architecture of RIL-D, RIL-C, COMRIL-C-1 (TAC1-
OERIL-C-1), COMRIL-C-2 (TAC1-OERIL-C-2), COMRIL-C-3, and CR-tac1-1/2/3 at the tillering stage
(DAS60) (a) and heading stage (DAS90) (b). (c) Multiple comparisons of tiller angle of RIL-D, RIL-C,
COMRIL-C-1 (TAC1-OERIL-C-1), COMRIL-C-2 (TAC1-OERIL-C-2), COMRIL-C-3, and CR-tac1-1/2/3.
(d) TAC1 expression of RIL-D, RIL-C, COMRIL-C-1 (TAC1-OERIL-C-1), COMRIL-C-2 (TAC1-OERIL-C-2),
COMRIL-C-3, and CR-tac1-1/2/3 in the tiller base. Different letters indicate statistical difference at
p < 0.01 using Duncan’s test. Data are shown as mean ± SD (n = 10 for tiller angle measurements,
n = 3 for expression detection). Bar = 10 cm.
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Figure 4. Plant architecture and the TAC1 expression of RIL-D, RIL-C, COMRIL-C, and CR-tac1 lines
under natural short-day (NSD) conditions. (a,b) Plant architecture of RIL-D, RIL-C, COMRIL-C-1
(TAC1-OERIL-C-1), COMRIL-C-2 (TAC1-OERIL-C-2), COMRIL-C-3, and CR-tac1-1/2/3 at the tiller-
ing stage (DAS60) (a) and heading stage (DAS90) (b). (c) Multiple comparisons of tiller angle
of RIL-D, RIL-C, COMRIL-C-1 (TAC1-OERIL-C-1), COMRIL-C-2 (TAC1-OERIL-C-2), COMRIL-C-3, and
CR-tac1-1/2/3. (d) The TAC1 expression of RIL-D, RIL-C, COMRIL-C-1 (TAC1-OERIL-C-1), COMRIL-C-2
(TAC1-OERIL-C-2), COMRIL-C-3, and CR-tac1-1/2/3 in the tiller base. Different letters indicate statisti-
cal difference at p < 0.01 using Duncan’s test. Data are shown as mean ± SD (n = 10 for tiller angle
measurements, n = 3 for expression detection). Bar = 10 cm.

2.5. Complementary Lines in the Nipponbare (NPB) Background Show Different Degrees of
Looseness in Plant Architecture

To further confirm TAC1 function in the regulation of plant architecture, we also
introduced the TAC1pro::TAC1 into the NPB (containing the tac1 allele [5]) background
to generate the COMNPB lines, in which a similar phenomenon to that of the COMRIL-C

lines was found (Figure 5). Notably, the respective tiller angles of COMNPB-1 (renamed
TAC1-OENPB-1) and COMNPB-2 (renamed TAC1-OENPB-2) reached ~44.2◦ and ~31.2◦ at
the tillering stage, and ~59.9◦ and ~34.1◦ at the heading stage, under NLD conditions
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(Figure 5c), corresponding to ~27.8◦ at the tillering stage and ~26.3◦ at the heading stage
in the TAC1-OERIL-C-1 line under NLD conditions (Figure 3c). Under NSD conditions, the
respective tiller angles of the TAC1-OENPB-1 and TAC1-OENPB-2 lines appeared to be ~56.8◦

and ~34.6◦ at the tillering stage, and ~62.7◦ and ~45.5◦ at the heading stage (Figure 5d),
corresponding to ~30.0◦ and ~30.7◦ in the TAC1-OERIL-C-1 line under NSD conditions
(Figure 4c). Altogether, the COMNPB lines showed different degrees of looseness in plant
architecture, and the TAC1-OENPB-1 and TAC1-OENPB-2 lines had a looser plant architecture
than TAC1-OERIL-C-1, indicating that TAC1 has a greater effect on plant architecture in NPB
than in RIL-C.
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Figure 5. Plant architecture of NPB and COMNPB-1/2/3 under natural long-day (NLD) and short-
day (NSD) conditions. (a,b) Plants of NPB (containing the tac1 allele) and COMNPB-1/2/3 at the
heading stage under NLD (a) and NSD (b) conditions. (c,d) Multiple comparisons of tiller angle of
NPB and COMNPB-1/2/3 at the heading stage and maturing stage under NLD and NSD conditions.
Different letters indicate statistical difference at p < 0.05 using Duncan’s test. Data are shown as
mean ± SD (n = 10). (e,f) Plants of NPB and COMNPB-1/2/3 at the maturing stage under NLD (e) and
NSD (f) conditions. Bar = 10 cm.
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2.6. The Expression of Tiller-Angle-Related Genes Did Not Change between NPB and the
TAC1-OENPB-1 Line

Considering that TAC1 controls dynamic plant architecture in RIL-D, including the
dynamic changes in tiller angle, we assessed whether TAC1 affects the expression of genes
related to tiller angle. To test this possibility, we performed qRT-PCR analysis to detect the
expression of the TAC1 gene and tiller-angle-related genes in NPB and the TAC1-OENPB-1
line at the tillering stage (DAS50) under NLD conditions. Regarding the tiller-angle-
related genes, we selected 15 genes for qRT-PCR analysis, including TAC3 [35], TAC4 [24],
α1,3-fucosyltransferase (FucT) [36], LPA1 [29,30], CO2-Responsive CONSTANS, CONSTANS-
Like, and Time of Chlorophyll a/b Binding Protein Expression 1 (CRCT) [37], large subunit of ADP-
glucose pyrophosphorylase (OsAGPL1) [17], TILLER ANGLE INCREASED CONTROLLER 1
(OsLIC1) [38,39], and LA2 [22], as well as Oryza sativa Auxin Response Factor 12/17/25
(OsARF12/17/25), HOX1/28, HSFA2D, and LA1, which are involved in the core regulatory
pathway mediated by LA1-dependent asymmetric auxin distribution [17,18,40]. As a result,
the expression of TAC1 significantly increased in the TAC1-OENPB-1 line (Figure 6a), while
the expression of all the tested tiller-angle-related genes showed no differences between
NPB and the TAC1-OENPB-1 line (Figure 6a,b).
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Figure 6. Expression analysis of TAC1 and tiller-angle-related genes between NPB and the TAC1-
OENPB-1 line at DAS50 (tillering stage) under natural long-day conditions. (a) Expression analysis of
TAC1 and tiller-angle-related genes. (b) Expression analysis of tiller-angle-related genes involved in
the core regulatory pathway mediated by LA1-dependent asymmetric distribution of auxin. All data
are shown as mean ± SD (n = 3). Two-tail Student’s t-test was used for statistical analysis (** p < 0.01).

3. Discussion
3.1. TAC1 Is Responsible for the Dynamic Changes in Plant Architecture in Rice

Plants must constantly adjust their architecture to adapt to a changing natural envi-
ronment. Therefore, a better understanding of the molecular mechanisms underlying these
dynamic adjustments can improve crop adaptability to both internal and external condi-
tions. To date, the related factors or genes regulating these dynamic changes in plant archi-
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tecture have not yet been reported. In this study, RIL-D had a dynamic plant architecture
characterized by ‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem

(maturing stage)’ under NLD conditions, and ‘loosetiller angle (tillering and heading stages)–
loosetiller angle and curved stem (maturing stage)’ under NSD conditions, whereas RIL-C was
always characterized by a relatively compact plant architecture under both NLD and
NSD conditions (Figure 1). Further experiments, including a rice 8K chip test, association
analysis, map-based cloning, and gene sequencing, revealed that TAC1 is the candidate
gene for the dynamic plant architecture in RIL-D (Figure 2). This is supported by the
fact that TAC1 is a major QTL controlling rice tiller angle [5], and that RIL-D displays
dynamic changes in tiller angle (Figure 1d,h). Sequencing analysis of TAC1 and a pro-
moter activity assay showed that 11 SNPs in the promoter of TAC1 in RIL-D and RIL-C
did not affect the transcriptional activities of TAC1 and tac1 (Figure 2e,f), and the other
mutations occurred in introns, or produced a synonymous mutation (Figure 2e). These
results suggest that the SNP20, the same mutant site as the TAC1 FNP identified in tac1 of
IL55 (showing a compact plant architecture with erect tillers similar to that of RIL-C) [5],
probably causes the compact plant architecture in RIL-C plants. Subsequently, comple-
mentary tests on the RIL-C background and the NPB background demonstrated that TAC1
is the target gene responsible for the dynamic changes in plant architecture observed in
RIL-D (Figures 3–5, S1 and S7). Furthermore, TAC1 frameshift mutants (Figure S6b) in the
RIL-D background showed a compact plant architecture, and extremely decreased TAC1 ex-
pression level (Figures 3, 4 and S1), suggesting that TAC1 does indeed control the dynamic
plant architecture. Notably, TAC1 regulates tiller angle in the indica variety IR24 [5], while
in RIL-D, TAC1 controls tiller angle and also modulates dynamic changes in tiller angle
and the stem throughout growth. Therefore, TAC1 is a gene modulating dynamic changes
in plant architecture in rice.

3.2. TAC1 Positively Regulates Loose Plant Architecture in Rice

In rice, transgenic plants overexpressing TAC1 have a larger tiller angle, while trans-
genic plants suppressing TAC1 expression via RNA interference (RNAi) have a more
compact plant architecture in comparison with their corresponding control plants [5]. In
maize, a nucleotide mutation in 5′-UTR of ZmTAC1 decreased its expression level, resulting
in a compact plant architecture with a smaller leaf angle [7]. In a peach cultivar, ‘New
Jersey Pillar’, SNPs in introns and 3′-UTR in PpeTAC1 lead to an undetectable transcript
and upright growth habit. Similarly, in Arabidopsis, a T-DNA inserted within intron 4 of
AtTAC1 causes its transcript to be undetectable, and the lateral axillary branch angles were
found to be significantly narrower in this T-DNA mutant line than in the wild-type [8].
In this study, the complementary lines TAC1-OERIL-C-1 and TAC1-OERIL-C-2 with high
TAC1 expression levels showed looser plant architecture (including a larger tiller angle
and more curved stem) than those of the RIL-D and COMRIL-C-3 lines (Figures 3, 4 and S7).
Similar results were also obtained in the TAC1-OENPB-1 and TAC1-OENPB-2 lines in the
NPB background (Figure 5). Moreover, TAC1 has a greater effect on plant architecture
in NPB than in RIL-C, which was logically based on the phenotypes (Figures 3–5). One
possible explanation for this is the difference in genetic background between these two
lines, where NPB is a japonica rice, while RIL-C has both indica and japonica genetic back-
grounds; however, the connections between TAC1 and rice genetic background warrant
further investigation. Along with previous results, our findings suggest that TAC1 and its
homologs have conserved functions that positively regulate branch angle and/or loose
plant architecture in plants. The tac1 allele containing the FNP (a single mutation in the
splicing site of intron 4 in 3′-UTR) shows a reduced expression level due to abnormal
splicing in 3′-UTR, which results in a compact plant architecture with a tiller angle close to
zero in IL55 [5]. Unlike the case of the tac1 allele in IL55, the expression levels of the tac1
allele in RIL-C were not always lower than those of the TAC1 allele in RIL-D, as shown by
the greatest difference in tac1 expression at DAS50, and no difference at DAS90 (Figure S8),
which is consistent with the plant architecture in RIL-D and RIL-C under NLD conditions.
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To date, the biochemical functions of TAC1 regulating plant architecture remain largely
unclear, and the preliminary results of our study show that TAC1 overexpression does not
affect the expression of all the tested tiller-angle-related genes (Figure 6). Therefore, TAC1
may not be involved in the mechanisms known to regulate plant architecture. Based on
our findings, however, we conclude that TAC1 positively regulates loose plant architecture
in rice.

3.3. TAC1 Modulates Different Plant Architecture under NLD and NSD Conditions, Which May
Be Related to Light Signals

Light is an essential environmental cue for plant growth and development since it
is both an energy source and a developmental signal [41]. Higher plants have evolved
complete and sophisticated mechanisms to utilize light energy and light signals. These
plants have at least five classes of photoreceptors [42], through which they can perceive light
signals and transmit them to downstream mechanisms, such as the central oscillator of the
circadian clock [43]. Output signals are then generated to regulate downstream of multiple
physiological processes, and these signals impact plant growth and development [44–46].
Many genes involved in this process have been identified as key regulators controlling
plant architecture. For example, in rice, Grain Number, Plant Height, and Heading Date7/8
(Ghd7/8) encode CO, CO-LIKE, and TIMING OF CAB1 (CCT) domain proteins and the
HAP3 subunit of the heme activator protein (HAP) complex, respectively. Their functions
and expression are regulated by photoperiod, and can therefore delay heading and increase
plant height and panicle size under long-day conditions [47–49]. In this study, RIL-D
showed a dynamic plant architecture, with dynamic changes in the tiller angle before the
heading stage, and a tiller angle close to zero after the heading stage, under NLD conditions
(Figure 1a–d). However, it retained a loose plant architecture with a relatively larger
tiller angle throughout its growth under NSD conditions (Figure 1e–h). TAC1 encodes an
expressed protein, which belongs to the IGT gene family, that also includes LAZY and
DEEPER ROOTING (DRO) genes [8,50]. In Arabidopsis, LAZY1, LAZY6, DRO1, DRO2, and
AtTAC1 are involved in the circadian clock, and are collectively required for light-mediated
branch angle orientation [50,51]. For example, light promotes AtTAC1 expression, while
dark inhibits its expression, which leads to narrower lateral branch angles in response
to growth in continuous dark versus light [51]. These results show that many members
from the IGT gene family can respond to light signals. Our results also show that RIL-D
displayed different plant architecture under NLD and NSD conditions, meaning that TAC1
in rice is most likely regulated by light signals and/or day length. Further experiments are
needed to test whether TAC1 responds to light signals in rice. Based on previous research
and our current results, TAC1 likely regulates plant architecture differently under NSD and
NLD conditions through its responses to light signals.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

RIL (recombinant inbred line)-D (the RIL with dynamic plant architecture) and RIL-C
(the RIL with compact plant architecture) were selected from a population of F6:7 RILs
derived from single-seed descents from a cross between indica variety ZH8015 and japonica
variety 02428. The NPB contains the tac1 allele [5]. All plants were cultivated in the paddy
field at China National Rice Research Institute (CNRRI) under natural long-day (NLD)
conditions in Fuyang (Zhejiang province, 119◦95′ E, 30◦05′ N) during the summer season,
and under natural short-day (NSD) conditions in Lingshui (Hainan province, 110◦02′ E,
18◦48′ N) during the winter season. Additionally, rice plants were cultivated in the Fuyang
greenhouse (NSD conditions) during the winter season for phenotypic characterization.
All plants were transplanted with an interplant spacing of 22 cm × 22 cm.
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4.2. Measurements of Rice Tiller Angle

Tiller angle is defined as the angle between the main culm and the outermost tillers
according to previously described methods [35]. A protractor (HANS.W, Taiwan, China)
with a long arm was used to measure rice tiller angle (Figure S9). The tiller angle (α) is
equal to half of the measured value (β). Each set of data was obtained with measurements
from at least 10 individuals.

4.3. Rice 8K Chip Assay

Thirty plants with loose plant architecture and 64 plants with compact plant architec-
ture from different lines (or the segregation lines) of F6:7 at DAS110 under NSD conditions
were used for the rice 8K chip assay to identify the candidate region. Information on the
rice 8K chip is displayed in Figure S3 and Table S2. The rice 8K chip assay was performed
by China Golden Marker (Beijing) Biotechnology Co., Ltd. (Beijing, China) according to
the methods previously described [52]. After genotyping using the 8K chip, association
analysis was performed using a general linear model (GLM) and mixed linear model
(MLM) with Tassel 5.0 software (Ithaca, New York, NY, United States).

4.4. Map-Based Cloning of TAC1

Three segregated lines (HNPF-270/273/274, one of which is displayed in Figure S2)
from the recombinant inbred lines (RILs) of F6:7 and a population derived from RHL-2
(Figure 2c) were used as the fine mapping populations. For the fine mapping of TAC1,
1400 individuals with compact plant architecture and 592 individuals with loose plant
architecture from F6:7 at DAS110 under NSD conditions were genotyped using polymor-
phic InDel markers. Additionally, 740 loose plants from RHL-2 of F7:8 were genotyped
to further narrow down the candidate interval. The new InDel markers were devel-
oped based on the sequence polymorphism between the japonica cultivar Nipponbare
(https://rapdb.dna.affrc.go.jp/ (accessed on 12 December 2018)) and the indica cultivar
MH63 (http://rice.hzau.edu.cn/rice/ (accessed on 12 December 2018)). The primers for
fine mapping are listed in Table S4, and primers for sequencing analysis of TAC1 are listed
in Table S5.

4.5. Generation of Constructs and Rice Transformation

To generate the complementary (COM) lines COMRIL-C (in the RIL-C background) and
COMNPB (in the NPB background), a 6765 bp genomic DNA sequence of TAC1 was ampli-
fied from RIL-D with the specific primers, and inserted into the HindIII site of the binary
vector pCAMBIA1300 to generate the complementary construct TAC1pro::TAC1 (Figure S6a).
This was introduced into the Agrobacterium tumefaciens strain EHA105, and then trans-
formed into the RIL-D and NPB, respectively, through Agrobacterium-mediated trans-
formation. To generate the gene knockout constructs for the CR-tac1-1/2/3 (Figure S6b),
the TAC1 target sequence was designed using the online CRISPR-P tool
(http://cbi.hzau.edu.cn/cgi-bin/CRISPR) and was then inserted into the AarI site of
pcas9-sgRNA-AarI backbone under the control of the OsU3 promoter. The constructed
gene knockout plasmid was introduced into the Agrobacterium tumefaciens stain EHA105
and transformed into RIL-D via Agrobacterium-mediated transformation. The primers for
the generation of constructs are listed in Table S6.

4.6. RNA Extraction, cDNA Preparation, and Real-Time Quantitative PCR (qRT-PCR)

Total RNA was extracted using a TIANGEN RNAprep Pure Plant Kit (Tiangen Biotech,
Beijing, China) according to the manufacturer’s instructions. First-strand cDNA synthesis
and qRT-PCR analysis were performed as previously described [53]. The relative expression
levels were normalized to the expression level of the rice UBQ gene. The comparative
critical threshold (∆∆Ct) method was used to calculate gene expression levels according
to the previous description [54]. Three technical replicates for each of the three biological

https://rapdb.dna.affrc.go.jp/
http://rice.hzau.edu.cn/rice/
http://cbi.hzau.edu.cn/cgi-bin/CRISPR
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replicates were performed. The gene-specific primers used for qRT-PCR analysis are listed
in Table S7.

4.7. Rice Protoplast Preparation and Transient Transformation

Rice protoplasts were isolated from 10-day-old seedlings under dark conditions. The
seedling stems were transversely cut with a razor, as thin as possible, and then transferred to
the 0.6 M mannitol for 10 min to adjust the osmotic pressure. They were then incubated with
digestion solution (0.6 M mannitol, 0.195% w/v 2-(N-morpholino) ethanesulfonic acid (MES,
pH 5.7), 1% w/v Cellulase R10 (Yakult Honsha, Tokyo, Japan), 0.5% w/v Macerozume R10
(Yakult Honsha, Tokyo, Japan), 0.1% w/v bovine serum albumin (BSA), 1 mM CaCl2,
and 5 mM β-mercaptoethanol) for approximately 7–12 h with gentle shaking (28 rpm)
at 28 ◦C. The protoplasts were then washed four times with W5 solution (154 mM NaCl,
125 mM CaCl2, 5 mM KCl, 5 mM glucose, and 2 mM MES), resuspended in W5 solu-
tion, and subsequently stored at 4 ◦C for at least 30 min. For transient transformation,
10 µg plasmids (or 15 µg for co-transformation), 100 µL protoplasts, and 110 µL polyethy-
lene glycol (PEG)-CaCl2 solution (40% w/v PEG4000, 0.6 M mannitol, and 100 mM CaCl2)
were gently mixed and placed at 28 ◦C in the dark for 15 min. Two volumes of W5 solution
were then added to stop the transformation. The transformed protoplasts were collected by
soft centrifugation, resuspended with W5 solution, and placed at 28 ◦C in the dark for at
least 24 h.

4.8. Promoter Activity Assay in the Rice Protoplasts

A 2222 bp TAC1 (tac1) promoter sequence upstream of the start codon from RIL-D
and RIL-C was amplified and inserted into the BamHI site of the dual-luciferase vector
pGreenII0800-LUC (containing the firefly and Renilla luciferase encoding sequence, with the
Renilla luciferase under the control of the CaMV 35S promoter) to generate the TAC1pro::LUC
and tac1pro::LUC. This was transiently transformed into rice protoplasts for 24 h at 28 ◦C
in the dark. The firefly luciferase activity (LUC) and Renilla luciferase activity (RLUC)
were measured using the Dual-Luciferase® Reporter Assay System (Promega, Madison, WI,
USA) according to the manufacturer’s instructions. The relative LUC activity was indicated
by the ratio of signal values of LUC to those of RLUC. Each measurement was performed
with three independent transformants. Primers for the dual-luciferase vector constructions
are listed in Table S6.

4.9. Statistical Analysis

A two-tail Student’s t-test was used for two-group comparisons. The asterisks repre-
sent statistical significances at * p < 0.05 and ** p < 0.01. ANOVA, followed by Duncan’s test,
was performed for multiple comparisons. Different letters indicate statistical differences at
p < 0.05. All data shown represent mean ± SD.

5. Conclusions

RIL-D showed dynamic plant architecture under NLD conditions and loose plant
architecture under NSD conditions, while RIL-C displayed a compact plant architecture
both under NLD and NSD conditions throughout the growth period. TAC1 is the target gene
that modulates dynamic plant architecture in RIL-D. TAC1 positively regulates loose plant
architecture in rice, and high TAC1 expression cannot affect the expression of tested tiller-
angle-related genes. Altogether, this study demonstrates that the TAC1 gene is necessary
for dynamic changes in rice plant architecture.
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