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The COVID-19 pandemic has entailed simultaneous revolutions

in virology diagnostics, clinical trials management, and antiviral

therapy and vaccinology. Over the past year, SARS-CoV-2

diagnostic testing has movedfromhighly centralized laboratories

to at-home and even over the-counter. This transition has been

lionized for its potential public health impact via isolation, but has

been less examined for its effect on individual health and

therapeutics. Since early initiation of antiviral therapy routinely

has been associated with greater treatment efficacy for viral

infections, these diagnostic testing innovations offer new

opportunities for both clinical testing as well as clinical trials for

antiviral therapy. Given a rapidly growing antiviral therapeutic

pipeline and the profound impact of individual beneficiary

outcomes on sculpting reimbursement policy, the therapeutic

benefits associated with rapid viral testing may lead to significant

adoption beyond potential public health impacts.
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Introduction
The COVID-19 pandemic has been a hurricane of world-

wide disruption. If any silver lining can be found to the

pandemic, it is in the rapid and successful implementa-

tion of incipient technologies, such as mRNA vaccines,

prefusion glycoprotein immunogens, monoclonal anti-

body generation pipelines, and a variety of new diagnostic

testing platforms along with a dramatically expanded

capacity for viral diagnosis. As of writing, more than

450 million diagnostic tests for SARS-CoV-2 have been

performed in the United States and more than 350 in vitro
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diagnostics have been authorized by the FDA. Viral

testing turnaround times have explicitly been written

into Medicare reimbursement policy. These gains do

not necessarily have to involute due to laboratory utiliza-

tion management if they can work in tandem with new

therapeutic antiviral agents by offering earlier, more

rapid, and decentralized diagnosis for viral infection.

Early diagnosis and treatment are paramount
for antiviral therapeutics
As has long been appreciated for influenza virus treatment

[1,2��], early diagnosis and initiation of treatment signifi-

cantly increases the chances of clinical benefit and

reaching primary and secondary outcomes in COVID-

19 therapeutic trials. In the double-blind, placebo-con-

trolled ACTT-1 trial, patients who received remdesivir

earlier had significantly greater clinical benefit which was

greatest in patients who received the drug before six days

after symptom onset [3,4]. The mortality benefit of anti-

SARS-CoV-2 convalescent plasma has also been shown to

be dependent on early initiation, albeit in a non-random-

ized fashion [5]. In support of the early treatment hypoth-

esis, the two monoclonal antibody therapies that have

been authorized for COVID-19 treatment were only

successful as outpatient therapy [6��,7]. In contrast, mul-

tiple anti-SARS-CoV-2 therapeutic monoclonal antibody

trials in hospitalized patients have now been suspended

due to futility, indicating that waiting until hospital

admission may be too late [8]. The clinical benefit of

early antiviral initiation for respiratory diseases may in

part be due to reducing widescale immune activation, in

part evidenced by the clinical benefit of steroid treatment

in individuals hospitalized with severe illness [9]. Fur-

thermore, initiating treatment early gives a potential

greater benefit for surrogate outcomes such as viral load

reduction, given that SARS-CoV-2 viral loads are often

highest at symptom onset (Figure 1) [10].

Faster viral diagnostics for clinical trials are
critical and achievable
The timescales by which diagnostic testing can help

antiviral therapy are indeed quite brief. Initial COVID-

19 symptoms are non-specific (save anosmia) and early in

the pandemic patients often did not present to the

hospital for testing for 4–8 days after symptom onset

[11]. Time from symptom onset to testing in outpatient

drive-through clinics locally was routinely 5–6 days. After

a specimen is collected, median turnaround times in a

central laboratory are often 6�24 hours, but may take up

to 72 hours to return a test result, depending on a myriad
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Figure 1
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Obstacles of early, rapid testing
 - non-standardized results
 - lack of residual specimen for standardized secondary outcomes
   - inability to accurately quantitate viral loads
   - inability to recover viral sequence
 - reduction in analytical sensitivity for outcome measures 

Benefits of early, rapid testing
 - identifying individuals with greatest potential clinical benefit
 - increased power and reduced trial costs
 - reduction in turnaround time
 - immediate enrollment and reduced enrollment costs
 - incentivizes early presentation
 - pre-empt immune activation
 - lower overall costs
 - increasingly equivalent analytical performance to central lab testing 
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Summary of benefits and obstacles to early, rapid testing for clinical

trial design for therapeutic antivirals, as it relates to COVID-19. Most

important, the early detection of viral infection increases power by

identifying those with greatest potential clinical benefit from therapy

thus reducing overall trial costs. Early detection of cases also

maximizes potential cumulative reductions in surrogate outcomes such

as changes in viral load or O2 demand (highlighted in blue).
of factors such as platform used, location of the testing

laboratory, staffing levels, day of the week, and overall

demand nationwide for testing and availability of

reagents. Once a positive result is identified by an outside

laboratory, it can take an additional 1–5 days to contact,

enroll, and randomize a patient.

Shortening each of these time frames is critical for

clinical trial design in order to have a chance at pre-

venting hospitalization and disease progression.

Reducing time from symptom onset to testing is prob-

ably the area where the most gains can be made and is

most dependent on availability and cost of testing.
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Reducing turnaround times to hours can significantly

reduce the hassle of enrollment by combining diagno-

sis and enrollment into one visit. In addition to iden-

tifying patients with the most potential clinical bene-

fit, rapid, decentralized testing can also reduce trial

costs at multiple touchpoints, eliminating central lab

transit and accessioning costs, enrollment costs, even

if decentralized testing is accompanied by occasional

higher reagent costs. Most critical is the ability to run

smaller, more highly powered studies by maximizing

the potential effect size of a given therapy, as

described above.

Of course, the initiation of therapy in individuals with

mild symptoms or even no symptoms in the case of

prophylactic therapy presents a prevention paradox,

wherein specific populations with the potential greatest

clinical benefit will have to be defined ex ante in the

absence of pathogenesis, save the presence of virus. Here,

age, comorbidity, and exposure status indications are

most commonly used to determine clinical benefit, as

illustrated by a number of prophylactic nursing home-

based or household transmission trials during SARS-CoV-

2 [12,13].

New availability of rapid viral diagnostics
With a $100/test reimbursement and seemingly infinite

testing demand, the COVID-19 pandemic presented

nearly all clinical laboratories the opportunity to adopt

highly automated sample-to-answer platforms, save for

the supply chain of the platforms themselves. Testing

platforms such as the Roche cobas 6800/8800, Hologic

Panther(Fusion)/Aptima, Abbott Alinity-m, and Cepheid

Infinity each provide the ability to perform high hundreds

to low thousands of tests a day with analytical sensitivities

in the low hundreds of copies/mL, minimal hands-on

time, and in-lab turn-around time under 4 hours

[14�,15–19]. Compared to a typical laboratory-developed

testing workflow — which requires discrete steps for

nucleic acid extraction, PCR amplification, and reporting

— these platforms can themselves be considered rapid

testing platforms, especially if they can be performed in a

random-access fashion [16,20]. These high-throughput

platforms performed the lion’s share of the two million

tests a day across the United States and are now firmly

entrenched in clinical and hospital laboratories across the

country. The main limitation of the platforms other than

the high reagent costs is the need to locate them in a

central laboratory, which requires additional timing and

logistics to physically move hundreds of samples to the

instrument’s location. Nonetheless, when discussing

rapid viral testing and its future influence on clinical

testing and trials, the widespread availability of high-

throughput, sample-to-answer qRT-PCR platforms in

2020�21 is a major story, offering the possibility of

same-day testing within every metropolitan area across

the United States.
www.sciencedirect.com
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Beyond the canonical central laboratory testing, a number

of new technologies and approaches emerged that offer

more point-of-care testing opportunities. Significant

growth was seen in the past year in point-of-care qRT-

PCR testing platforms such as the Cepheid GeneXpert,

Roche Liat, BioFire Respiratory Panel 2.1-EZ, or Mesa

BioTech Accula systems, among others [18,21–23]. Iso-

thermal technologies such as RPA and LAMP have

allowed extraordinarily rapid (subhalf hour) turnaround

times that are now FDA authorized for at-home testing

with direct-to-consumer and over the-counter availability

[24–27]. Thousands of clinics now own small Abbott

IDNow toaster ovens that can perform limited multiplex

testing with turnaround times of less than 15 min and

low thousands of copies/mL analytical sensitivities

[28��,29,30]. Though the test menu for many of these

point-of-care instruments is currently somewhat limited

compared to many of the centralized testing platforms, we

will no doubt see new waived assays on these instruments

since so many clinics now own them and prefer to garner

the testing reimbursement rather than paying an outside

laboratory. The main limitation with these rapid molecu-

lar assays, save the Cepheid GeneXpert, is the moderate

compromise in analytical sensitivity [28��,31]. Provided

an adequate specimen is obtained, these platforms may

specifically select for individuals with the greatest poten-

tial benefit of antiviral therapy. However, currently most

trials still require central laboratory confirmation of results

from these more distributed testing platforms.

Finally, though fewer clinical trials have employed these

to date, COVID-19 has seen the return of viral antigen

testing with Quidel, Veritor, and BinaxNow assays in the

United States market and a plethora of new rapid antigen

tests abroad [32–35]. The limited analytical sensitivity of

antigen testing fell out of favor after the 2009 H1N1

pandemic, when these tests had below 50% sensitivity for

the novel reassortant influenza virus [36,37]. New antigen

readers and rapid lateral flow technologies combined with

specific development of reagents for SARS-CoV-2 and its

comparably low genetic diversity brought more respect-

able analytical and clinical sensitivities for these assays,

approaching Ct �30 or viral loads in the mid-tens of

thousands of copies/mL [38,39]. Depending on whether

antigen testing was performed on asymptomatic or early

symptomatic individuals and when testing was performed

relative to peak community transmission, clinical sensi-

tivities of SARS-CoV-2 antigen testing could range from

as low as 56–77% in asymptomatic to >96% in individuals

in their first week of symptoms [39–42]. The success has

led to a new FDA pathways for authorization of at-home,

over the-counter, and/or serial rapid antigen testing, with

multiple rapid antigen tests now authorized for over the-

counter purchase that can be run at home. The potential

<$5 cost of the rapid antigen tests combined with the

challenge of combating asymptomatic spread has brought

focus on the public health potential of rapid testing
www.sciencedirect.com 
[43�,44]. However, performance characteristics of these

assays should continue to be monitored as new viral

variants arise [45].

Obstacles to rapid testing for clinical trials
Despite the growth in rapid, point-of-care diagnostics

available for clinical testing, there are unique require-

ments associated with clinical trials that complicate the

use of distributed diagnostics as a complete testing solu-

tion. Additional testing is required to confirm primary

endpoints on a standardized test as well as for secondary

outcomes such as viral load quantitation or viral whole

genome sequencing. Many of the new distributed testing

platforms may make use of the entire sample to ensure

adequate analytical sensitivity, requiring additional sam-

ples to be used for these secondary outcomes since no

residual sample is available. By virtue of being located at

the point-of-care, too many testing instruments are

required to execute a clinical trial such that meeting

regulatory requirements for cross-validation of each

instrument is not possible. The potential variability in

these assays creates a problem in comparing local site

testing, often requiring a single standard assay to confirm

primary outcomes.

Viral load quantitation
Since changes in viral loads are often used as a secondary

outcome in trials, quantitative tests for SARS-CoV-2 viral

levels are often required. All SARS-CoV-2 molecular tests

for diagnostic use on the market to date have only been

authorized by the FDA for qualitative detection, these

assays are not set up to return viral loads. This compli-

cates both the additional validation work required for

quantitative testing for clinical trials as well as the testing

workflow, which can lengthen turnaround time. Further-

more, international standards have been late to arrive for

SARS-CoV-2. Distributed testing platforms described

above cannot necessarily meet the need for standardized,

quantitative testing that has been rigorously cross-vali-

dated across different testing units.

Real-time sequence-specific information
With more than a million genomes sequenced in a single

year, SARS-CoV-2 is the most sequenced virus in the

history of humankind. The surfeit of data combined with

the increased potential for adaptation to humans of a new

zoonosis and immune escape has brought heightened

attention to viral evolution. Viral sequencing for sieve

analysis for vaccine studies or resistance monitoring in

therapeutic trials has traditionally been performed well

after a clinical trial has released top-line numbers or even

subgroup analyses and secondary endpoints [46]. With

COVID-19, these analyses are being performed in near

real-time with the release of primary outcome data. For

specific therapeutic monoclonal antibodies in the context

of highly diverse viruses, extremely rapid sequence-spe-

cific information may be required to determine eligibility.
Current Opinion in Virology 2021, 49:111–116



114 Anti-viral strategies
Already specific lineages of SARS-CoV-2 demonstrate

resistance to single monoclonal antibody therapies [47].

Again, none of the available authorized distributed

COVID-19 diagnostic platforms currently provide the

high-resolution, sequence-specific information required

for these secondary analyses (Illumina COVIDSeq which

would not count as a rapid test) [48]. While the emer-

gency use authorization of CRISPR-based viral diagnos-

tics is promising for potential rapid sequence-specific

diagnosis, it does not offer sufficient resolution and

requires high-consequence mutations to be determined

before the development of the test [49,50]. For high viral

load specimens, diagnostic antigen tests could make use

of the very therapeutic monoclonals they are meant to

determine susceptibility to, finally bringing some truth to

the term ‘companion diagnostic’.

Conclusions
An old saw in laboratory medicine is that you can only

choose two when it comes to cost, speed, and accuracy in

clinical testing. The COVID-19 pandemic significantly

altered the landscape of clinical virology testing in a way

not seen since HIV. With the growing pipeline of small

molecule and monoclonal antibody therapies, there is a

chance that costs of highly accurate, rapid testing may be

covered by a growing reimbursement for the clinical

benefit associated with these new diagnostic platforms,

allowing clinicians, patients, and laboratorians to have

their cake and eat it too. The simultaneous revolutions in

widespread accessibility for diagnostics and newfound

availability of therapeutics for respiratory viral infections

creates a promising future for clinical trials and real-world

clinical care in the coming years.
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