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Abstract

Formal assessment of structural similarity is − next to protein structure prediction −
arguably the most important unsolved problem in proteomics. In this paper we

propose a similarity criterion based on commonalities between the proteins’
hydrophobic cores. The hydrophobic core emerges as a result of conformational

changes through which each residue reaches its intended position in the protein body.

A quantitative criterion based on this phenomenon has been proposed in the

framework of the CASP challenge. The structure of the hydrophobic core − including

the placement and scope of any deviations from the idealized model − may indirectly

point to areas of importance from the point of view of the protein’s biological

function. Our analysis focuses on an arbitrarily selected target from the CASP11

challenge. The proposed measure, while compliant with CASP criteria (70–80%

correlation), involves certain adjustments which acknowledge the presence of factors

other than simple spatial arrangement of solids.
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1. Introduction

The CASP (Critical Assessment of protein Structure Prediction) project was

launched in 1994, originally as a global forum dedicated to prediction of protein

structures on the basis of amino acid residue sequences. The goal of the project is

to coordinate global efforts leading to improvements in protein structure

prediction. The project maintains a set of known (although confidential and

accessible only to members of the organizing committee) protein sequences, which

are periodically made available to participants via e-mail. Results comprising

evaluation statistics along with evaluation of individual targets are published on the

project portal at [1].

Each participant is tasked with predicting the conformation of the input

polypeptide chain (i.e. determine the spatial coordinates of each of its constituent

atoms). The project operates in a biannual cycle, giving participants time to invent

and develop structure prediction algorithms.

The CASP jury assesses the similarity of the models (structures proposed by

project participants) and the target structures (determined using experimental

means). All similarity metrics are based on geometric classification of the proposed

system. Differences in the placement of each atom enable determination of

prediction accuracy [2]. Progressive evolution of similarity metrics can be tracked

by reviewing introductory publications which accompany each edition of CASP [3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Following superimposition of model and target folds, the distances between the

positions of individual atoms serve as input for model accuracy assessment. This

step involves various metrics which measure local as well as global similarity.

Consequently, an important part of the CASP challenge is to validate the similarity

assessment methods themselves.

While the predicted conformation of selected fragments may be perfectly accurate,

these fragments may nevertheless be misaligned with the remainder of the

molecule [27]. In such cases − as mentioned above − special algorithms are

applied to assess local and global similarity. No universal similarity assessment

algorithm exists − instead, many competing algorithms are proposed, each suited

to a range of potential applications.

As already indicated, CASP is also interested in new algorithms and methods of

comparing models with targets. This work proposes a method based on the

similarity of hydrophobic cores in input structures. Our approach appears

promising for the following reasons:
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1. It supports a holistic assessment of the protein molecule since the hydrophobic

core is an emergent property which depends on the spatial location of all

residues.

2. It hints upon the location of biologically active sites within the protein body.

3. It acknowledges the influence of the aqueous environment, which is a critical

aspect in protein folding studies. The fuzzy oil drop (FOD) model, which will be

explained in the next section, can be used to predict various properties of the

target protein, such as its solubility.

The novelty of applying the fuzzy oil drop model in the presented study hinges

upon the fact that − rather than focusing on pair-wise interactions between

individual atoms − our approach enables global assessment of the protein structure,

factoring in the contribution of all residues to the emergent hydrophobic core.

The focus of our analysis is an arbitrarily selected target from the CASP11

challenge. Results of assessment using different methods published online [28]

have been compared with the analysis of the hydrophobic core structure in the

model structures submitted by participants. Our analysis focuses on publicly

available models recognized as optimal by each team taking part in the project

(labeled “_1”). Comparative analysis indicates generally good agreement of the

FOD-based assessment results with the official metrics applied by CASP. In some

cases, however, differing results have been obtained. Our goal is therefore to

explain the reason for these differences. The structure of the hydrophobic core in

native proteins seems to acknowledge aim-oriented deviations from the idealized

hydrophobicity distribution as expressed by the fuzzy oil drop model. These local

deviations very frequently correlate with the biological activity of the target

protein.

2. Materials and methods

2.1. Structure prediction accuracy methods applied in the CASP
project

Throughout its 20-year history CASP has proposed many methods to formally

express the similarity between the “model” (predicted conformation) and the

“target” (actual conformation as revealed by X-ray crystallography or NMR

spectroscopy). The most basic method, focused on the geometric properties of

protein bodies, is the RMS-D (Root Mean Square Distance) algorithm which

superimposes both structures and then integrates the distances between the

corresponding atoms (generally Cα atoms). The superimposition is deemed correct

when the RMS-D coefficient attains its minimum value.
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Below we briefly summarize methods used to determine the similarity of models

and target.

RMS_ALL expresses RMS-D of all atoms in the sequence-dependent LGA [29]

superposition. RMS_CA is similar to the former taking RMS-D limited to

positions of Cα atoms in the sequence-dependent LGA superposition.

GDT_TS (Global Distance Test − Total Score) [30] is used as a major assessment

criterion in CASP and is thought to provide a more accurate measurement than

RMS-D. In particular, GDT is not as sensitive to poor modeling of non-important

local fragments. Following superimposition of two structures, GDT is calculated

as: GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4 where GDT_Pn

denotes the percentage of residues under distance cutoff < = nÅ. GDT_TS adopts

values from the (0; 100] range. Greater values indicate better alignment. Values

below 20 are assumed to represent dissimilar structures.

GDT_HA (Global Distance Test − High Accuracy) uses lower distance cutoffs

than in GDT_TS:

GDT_HA = (GDT_P0.5 + GDT_P1 + GDT_P2 + GDT_P4)/4 where GDT_Pn

denotes the percentage of residues under distance cutoff < = nÅ.

Next modified versions of GDT measure is GDC_SC (Global Distance Calculation

− Side Chains) which uses a characteristic atom near the end of each side chain

type (instead of Cα) for the evaluation of residue-residue distance deviations.

GDTSC ¼ 100 � 2
∑

n≤ 10

n¼1
ðk þ 1 � nÞGDCPn

kðk þ 1Þ

where k = 10 and GDC_Pn denotes the percentage of residues under distance

cutoff < = 0.5nÅ.

GDC_ALL (Global Distance Calculation − All) is similar to GDC_SC but applied

to all atoms of a structure.

TM-score − This metric is designed to solve two major problems with traditional

metrics: TM-score measures global fold similarity (and is less sensitive to local

structural variations), and is length-independent.

TM ¼ 1
L
∑
N

i¼1

1

1 þ d2
i

d2

N − number of corresponding residue pairs, L − total number of amino acid

residues.

di − distance between two corresponding residues,
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d � 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 153

p �1:8.

TM-score adopts values from the (0; 1] range. Greater values indicate better

alignment. Values below 0.20 are assumed to represent dissimilar structures while

values greater than 0.50 indicate good structural correlation.

SphGr (Sphere Grid) − For every residue, the RMSD value is calculated for a set

of atoms belonging to a sphere with a certain radius (6Å) centered on the Cα. The

final score is the percentage of residues with RMSD under the cutoff (2Å).

QCS (Quality Control Score) [31] QCS is designed to mimic human assessment

methods. In order to compute this score several factors are calculated:

• correct prediction of Secondary Structure Elements (SSE) measured by the

length of SSEs;

• relative position of pairs of SSEs measured by the distances between

representative points on the SSEs;

• relative angle between SSE pairs;

• distances between the Cα atoms in the key contacts between SSEs;

• handedness of SSE triplets;

• aggregate Cα Contact Score (used in CASP5 and CASP9).

Dali − Several measurements of similarity (RMS-D, Z-Score, Aligned Residues,

raw Dali) based on a publicly available software tool Dali [32]. RMS-D is

computed for the subset of Cα atoms from the model that correspond to the

residues from target structure or a subdomain in the sequence-independent LGA

superposition. LDDT is computed by comparing inter-atomic interactions in

models and targets [33]. RPF − Distances between all N/C atoms within Dmax =

9Å are computed for both the target and model structures. Atom pairs within Dmax

in both structures are counted as TP (true positive). Atom pairs for which values

are lower than Dmax in the target structure but greater than Dmax in the model

structure are counted as FN (false negative). Atom pairs for which values are

greater than Dmax in the target structure but lower than Dmax in the model structure

are counted as FP (false positive).

Recall (TP / (TP + FN)), Precision (TP / (TP + FP)) and F2-measure are calculated

accordingly.

F2 ¼ 1 þ 22� �
·

Precision·Recall
22·Precision
� �þ Recall

An F2-measure score for a random structure is also calculated. The RPF score

corresponds to the normalized F2-measure score assuming RPF(random) = 0 and

RPF(target) = 1.
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CAD-score (CAD_AA and CAD_SS) [34] evaluates protein models against the

target structure by quantifying differences between contact areas. Contact areas are

derived by applying Voronoi tessellation to protein structure. CAD_AA takes into

account all atoms whereas CAD_SS calculates only side chain atoms.

Molprobity Score (MolPrb_Score) [35] − MolProbity score is based only on

properties of the predicted model such as steric clashes.

MolPrb-Score = 0.426 *ln(1 + Clash-Score) + 0.33 *ln(1 + max(0. Rot-out − 1))

+ 0.25 *ln(1 + max(0. (100 − Ram-fv) − 2)) + 0.5

Where:

Rot-out (Rotamer Outliers Score) is the percentage of side chain conformations

classified as rotamer outliers, from those side chains that can be evaluated.

Ram-fv (Ramachandran Favored Score) is the percentage of backbone Ramachan-

dran conformations in the favored region.

Clash-Score (Clash Score) is the number of all-atom steric overlaps > 0.4 Å per

1000 atoms.

Lower Molprobity Scores correspond to better models. Models with a cumulative

Molprobity Score below 4.0 can be considered stereochemically acceptable.

AL0_P expresses percentage of residues correctly aligned in the model based on

the LGA sequence independent superposition generated with a 4Å distance cutoff.

A model residue is considered correctly aligned if the Cα atom falls within 3.8Å of

the corresponding experimental atom, and there is no other experimental structure

Cα atom nearer.

AL4_P expresses percentage of residues that can be correctly aligned with

allowance for 1–4 residue shift based on the LGA sequence independent

superposition generated with a 4Å distance cutoff. A model residue is considered

correctly aligned if the Cα atom falls within 3.8Å of the corresponding

experimental atom.

LGA_S [29] can be defined as a combination of RMSD-based and distance-based

methods, thus it not only calculates a “best” superposition between two proteins

(meaning “under certain RMSD and distance cutoffs”), but also identifies regions

of local similarity between input structures. For a given value of w (0.0 ≤ w ≤ 1.0),

representing the weighting factor:

LGA_S = w * S(GDT) + (1−w) * S(LCS), where S(F) is defined as follows,

assuming that in the structure alignment search procedure we have k generated lists

of equivalent residues:
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S Fð Þ ¼ ∑k
i¼1

k�iþ1
k ·Fvi

1
2k 1 þ kð Þ

LCS_vi is percentage of residues (continuous set) that can fit under an RMSD

cutoff of vi Å (for vi = 1.0, 2.0, . . . ) and GDT_vi is an estimation of the

percentage of residues (largest set) that can fit under the distance cutoff of vi Å (for

vi = 0.5, 1.0, . . . ).

FlexE distinguishes biologically relevant conformational changes from random

changes via incorporation of the thermal energy concept which expresses the

degree of dissimilarity between dynamic forms. The assessment results published

in [28] contain also methods derived from the above metrics used to judge the

relative quality of prediction models for a particular CASP target:

RANK expresses the rank of the prediction among all predictions submitted for a

given target according to the GDT_TS score.

Z-MA score group Z-MAs-GDT shows the relative quality of the model among all

models submitted for a given target by server groups (based on the GDT_TS

score). This metric is applicable to server groups only. Z-M1-GDT is the form of

Z-score showing the relative quality of the model among the first models submitted

for a given target by both human and server groups (based on the GDT_TS score).

This metric is applicable to No. 1 models only. Z-M1s-GDT shows the relative

quality of the model among the first models submitted for a given target by server

groups (based on the GDT_TS score). This metric is applicable to No.1 models and

server groups only. Z-M1s-AL0_p is the form of Z-score showing the relative

quality of the model among the first models submitted for a given target by server

groups (based on the AL0_P score). This metric is applicable to No. 1 models only.

Z-MA-AL0_p is the next modification of Z-score showing the relative quality of

the model among the all models submitted for a given target by both human and

server groups (based on the AL0_P score).

The object of our analysis is the arbitrarily selected 2MQC target [36] which is

referred to as T0857 in CASP11 nomenclature. The analysis concerns models

labeled “_1” found in [28]. Comparison of model assessment methods is also

derived from this source.

2.2. The fuzzy oil drop model as a means of describing the
structure of the hydrophobic core

The fuzzy oil drop model, used here to evaluate structural comparison algorithms,

is a modification of Kauzmann’s original oil drop model [37] which introduced a

discretized description of hydrophobicity states in a folded protein − a highly

hydrophobic core encapsulated by a hydrophilic shell. The model asserts that

hydrophobic residues migrate towards the center of the protein body while
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hydrophilic residues are exposed on its surface (Fig. 1), ensuring entropically

optimal interaction with the surrounding aqueous environment. The fuzzy oil drop

model replaces this discrete distribution with a continuous one (Fig. 1).

Hydrophobicity density is assumed to peak at the center of the protein body and

then decrease along with distance from the center, reaching near-zero values on the

surface.

The continuous distribution can be mathematically expressed by a 3D Gaussian,

which is a symmetrical function peaking at the center of the coordinate system

(regarded as an input parameter). Values of the Gaussian decrease along with

distance from the center, reaching near 0 at a distance equal to 3σ, where σ is

referred to as standard deviation. The greater the value of σ, the “flatter” the

corresponding bell curve. Its properties are adjusted separately for each of the three

principal directions (x, y, z) so that the resulting form fully encapsulates the 3D

protein body. Similar values of σx, σy and σz produce a near-spherical capsule while

large differences between these coefficients result in elongated shapes.

The globular protein molecule is placed inside the capsule so that its geometric center

coincides with the origin of the coordinate system (with X = Y = Z = 0) while lines

connecting the center with the most distal atoms in each principal direction are

aligned with coordinate system axes (X, Y and Z). Consequently, the molecule can be

[(Fig._1)TD$FIG]

Fig. 1. Schematic presentation of differences between discrete and continuous model. Left − “oil drop”
with a discrete distribution of hydrophobicity density. Hydrophobicity is assumed to be high in the

central part of the molecule (dark grey) and low in the outer shell (white). Right − “fuzzy oil drop” with

a continuous distribution of hydrophobicity density (as indicated by shades of grey). Below: discrete

and continuous representation of the residues status. The figure intentionally mirrors Fig. 2. from [38] to

underscore the evolution of theoretical models describing the structure of the hydrophobic core.
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described by a Gaussian whose dimensions are taken as 3σ, 3σy and 3σz, with each σ
coefficient computed as 1/3 of the distance between the center and the most distal

atom along each axis. The Gaussian yields hydrophobicity density values at arbitrary

points within the protein body. According to the three-sigma rule 99.99% of the

function’s integral is confined to a range of ±3σ − we can therefore assume that our

capsule fully contains the folded protein (Fig. 2A and B ).

Describing the volume of the protein molecule in terms of a 3D Gaussian carries a

number of consequences. In particular, we are now able to calculate the

hydrophobicity density at any point within the protein body. These values reflect

the “idealized” (or “theoretical”) hydrophobicity density distribution which peaks

at the exact center of the ellipsoid. The specific form of the Gaussian used in our

study is as follows:

Htj ¼ 1
Htsum

exp
� xj � x
� �2

2σ2
x

 !
exp

� yj � y
� �2

2σ2
y

0
B@

1
CAexp

� zj � z
� �2

2σ2
z

 !

Htj is the theoretical hydrophobicity density (hence the t designation) at the jth

point in the protein body. x; y; z correspond to the peak of the Gaussian in each of

the three principal directions, while σx; σy; σz denote the range of arguments for

each coordinate system axis. These coefficients are selected in such a way that

more than 99% of the Gaussian’s integral is confined to a range of x± 3σx.

Accordingly, values of the distribution can be assumed to equal 0 beyond this

range.

If the molecule is placed inside a capsule whose dimensions are given by

x± 3σx; y± 3σy; z± 3σz, the values of the 3D Gaussian determine the idealized

[(Fig._2)TD$FIG]

Fig. 2. Visualization of the 3D Gaussian restricted to two dimensions for the sake of clarity. A −
meaning of σ parameters: σX >σY produces a horizontally elongated capsule, B − simplified 3D

visualization − the protein molecule immersed in a hydrophobic force field. Dark blue areas gradually

changed to red in the center of the ellipsoid visualizes the increase of hydrophobicity density toward the

central part.
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hydrophobicity density distribution for the target protein. Assuming the protein’s
geometric center is located at (0,0,0), the corresponding values of x; y; z are 0.0.

When σx ¼ σy ¼ σz the capsule is perfectly spherical; otherwise it is an ellipsoid.

The Gaussian gives hydrophobicity density values at arbitrary points in the protein

body − for example at points which correspond to the placement of effective atoms

(one per side chain). The position of each effective atom reflects the geometric

mean of the positions of all actual atoms which comprise a given residue. Htj is the

hydrophobicity density determined for the j-th amino acid while x, y and z indicate

the placement of its effective atom.

The denominator of 1
Htsum

expresses the aggregate sum of all values given by the

Gaussian for each amino acid making up the protein. This enables normalization of

the distribution since Htj will always be equal to 1.0.

Htj values reflect the expected hydrophobicity density which should correspond to

each amino acid j-th in order for the hydrophobic core to match theoretical

predictions with perfect accuracy (with all hydrophobic residues internalized and

all hydrophilic residues exposed on the protein’s surface). The closer to the surface

the lower the expected hydrophobicity density.

While values of the 3D Gaussian can be computed for any point within the

“capsule”. in practice the only points of interest are those which correspond to

effective atoms representing each amino acid side chain. Having calculated values

of Ht for each effective atom we can add them all up and perform normalization by

dividing each individual value by the aggregate sum. The result is the expected

[(Fig._3)TD$FIG]

Fig. 3. Discrete and continuous model in respect to improperly localized residues: Left top − white dots

on the dark bottom and dark dots in the white area visualize the irregularity of the residues localization

in protein body. Right top − improperly localize residues in continuous sphere. The profiles below

represent appropriate distribution of hydrophobicity along the hypothetical polypeptide chain. T -

theoretical distribution. O - observed distribution.
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hydrophobicity density which should correspond to each side chain under the

assumption that the protein as a whole is a perfect match for theoretical predictions

(i.e. its hydrophobicity density is a perfect bell curve described by the Gaussian

and peaking at the center of the molecule).

Actual distribution depends on the placement of residues within the protein body,

on their intrinsic hydrophobicity (which can be expressed using a variety of scales

− in our research we apply the scale proposed in [39]), as well as on interactions

with neighboring residues. The resulting distribution may therefore deviate from

the idealized 3D Gaussian form.

In order to calculate the actual distribution of hydrophobicity density under the

fuzzy oil drop model we apply Levitt's function described in [40]. Each residue

interacts with its neighbors and thereby “reflects” the hydrophobicity density

which characterizes its immediate neighborhood. Levitt's function is given as:

Hoj ¼ 1
Hosum

∑
N

i¼1
ðHr

i

þ Hr
j Þ 1 � 1

2
7

rij
c

� �2
� 9

rij
c

� �4
þ 5

rij
c

� �6
� rij

c

� �8
� �	 


for rij ≤ c

0 for rij > c

8<
:

N is the number of amino acids in the protein. Hr
i ;H

r
j expresses the hydrophobicity

parameter of the i-th and j-th residues while rij expresses the distance between two

interacting residues (j-th effective atom and i-th effective atom). The c expresses

the cutoff distance for hydrophobic interactions, which is taken as 9.0 Å (following

[40]). Observed hydrophobicity density values Hoj are calculated for the positions

of effective atoms, i.e. geometric centers of each side chain.

The Hosum coefficient, representing the aggregate sum of all components, is needed

to normalize the distribution which, in turn, enables meaningful comparisons

between the observed and theoretical hydrophobicity density distributions.

Fig. 3 represents the status of improperly localized residues in discrete model

(Fig. 3 – top left) and continuous model (Fig. 3 – top right). Corresponding graphs

below (Fig. 3 - bottom) illustrate differences between theoretical (T) and observed

(O) hydrophobicity distribution.

The fuzzy oil drop introduces an additional quantitative measure of the agreement

between theoretical and observed distributions. This measure bases on Kullback-

Leibler’s divergence entropy formula [41]:

DKLðpjp0Þ ¼ ∑
N

i¼1
pi log2ðpi=p0

i Þ

The value of DKL expresses the distance between two distributions: the target

distribution (p°) and the analyzed distribution (p). In the fuzzy oil drop model the
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target distribution (T) is the idealized Gaussian while the analyzed distribution (O)

consists of the observed hydrophobicity density values. For the sake of simplicity

we introduce the following notation:

OjT ¼ ∑
N

i¼1
Oi log2ðOi=TiÞ

DKL expresses the “distance” between both distributions (O versus T). The more

divergent the distributions the higher the value of DKL. This value however, cannot

be interpreted on its own since it depends on the number of data points (chain

length). Additionally, DKL is a measure of entropy and requires a suitable

reference. In order to facilitate meaningful comparisons, we have introduced

another boundary distribution, opposite to the idealized one − the so-called unified

distribution (labeled R) which corresponds to a situation where each effective atom

possesses the same hydrophobicity density (Ri = 1/N for each i, where N is the

number of residues in the chain). This distribution represents the status of molecule

with no hydrophobicity concentration in any point of the protein body (in

opposition to the 3D Gauss-based distribution). The relative distance between the

observed and unified distribution is therefore given as:

OjR ¼ ∑
N

i¼1
Oi log2ðOi=RiÞ

Comparing O|T and O|R tells us whether the given protein more closely

approximates the theoretical (O|T) or unified (O|R) distribution. Proteins for

which (O|T) > (O|R) are regarded as lacking a clear hydrophobic core. In order to

further simplify matters we introduce the following relative distance criterion:

RD ¼ OjT
OjT þ OjR

Here, RD < 0.5 indicates the presence of a hydrophobic core. To enable

interpretation of RD values let us analyze the chart shown in Fig. 3 (bottom right).

The RD value for the entire profile is equal to 0.730. It is interpreted as lack of an

ordered hydrophobic core in the molecule.

The concept of DKL may also be applied to determine the status of selected

fragments of the polypeptide chain. In such cases the values of Ti and Oi (for all i

belonging to the selected fragment) must be normalized so that their aggregate sum

is equal to 1. Following this modification values of Ti and Oi (as well as of Ri = 1/

NF where NF is the number of residues in the selected fragment) can be used to

directly determine the fragment’s status vis a vis the FOD model. The polypeptide

chain as shown in Fig. 3 (right bottom) when divided into two parts shows that the

fragment (1–6) may be characterized by RD = 0.774 and the second one (7–10) by

RD = 0.438. This suggests that general departure from the idealized distribution is
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due to fragment 1–6 while fragment 7–10 may be responsible for local stabilization

in the sense of fuzzy oil drop model (ordered hydrophobic core in this area).

RD values may be calculated for arbitrary fragments of the polypeptide chain,

including individual secondary folds, fragments involved in protein-protein

complexation or intrinsically disordered fragments [42]. As such, the fuzzy oil

drop model can be used to identify active sites, including ligand binding pockets

and complexation sites (represented by local hydrophobicity deficiencies and local

hydrophobicity excesses respectively) [43, 44].

In summary − the fuzzy oil drop model provides the following:

1. Mathematical formulation of the idealized hydrophobicity density distribution

with a 3D Gaussian.

a. A way to insert the protein molecule into a suitable capsule which is

described by the Gaussian parameters (T).

b. An algorithm for computing the corresponding theoretical (idealized)

hydrophobicity density distribution.

2. Formal expression of the observed hydrophobicity density distribution using

Levitt’s function (O).

3. Comparison of the expected and observed hydrophobicity density for each

residue in the protein chain.

4. Definition of a reference distribution, called the unified distribution (R), which

assigns the same value of hydrophobicity density to each residue in the chain.

5. Quantitative measurement of the degree of similarity between the observed and

theoretical distributions, as well as between the observed and unified

distribution, computed using Kullback-Leibler’s distance entropy formula.

Introduction of the RD coefficient facilitates:

1. Quantitative assessment of deformations in the protein’s hydrophobic core.

2. Identification of local departures from the theoretical model.

3. Analysis of residues identified in step 2 in the context of the protein’s biological

function:

a. Local hydrophobicity excesses correspond to potential complexation sites or

hydrophobic ligand binding sites;

b. Local hydrophobicity deficiencies correspond to potential enzymatic active

sites or ligand binding pockets.

A clear advantage of the fuzzy oil drop model over its predecessor is the ability to

perform quantitative assessment of both theoretical and observed hydrophobicity

density distributions. Additionally, the FOD model can be used to identify
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fragments of the polypeptide chain where disagreement between both profiles is

particularly acute.

In order to illustrate how the RD parameter is interpreted. Fig. 4 depicts the

relationship between T (left), R (right) and O (center). For the sake of clarity, the

diagrams have been reduced to a single dimension. The computed value of RD for

the observed distribution indicates good agreement with the theoretical distribu-

tion.

For the purposes of the analysis presented in this paper we have performed the

following calculations:

• RD parameters expressing the agreement/disagreement between the observed

and idealized distributions. The value of RD represents the similarity between

the structure of the hydrophobic core in a given protein and the corresponding

“idealized” core. RD values have also been computed for the published

structures of each target protein.

• DKL − the Kullback-Leibler entropy value enables comparative analysis, as all

structures under consideration consist of an identical number of amino acids. A

characteristic property of computations presented in this paper is that the

“reference” distribution is not the ideal 3D Gaussian but rather the structure of an

actual protein (2MQC (residues 6–101 as it is limited for CASP target) which is

the target for prediction algorithms. DKL has also been computed separately for T

and O distributions, according to the following formulae:

TjT∗ ¼ ∑
N

i¼1
Tilog2ðTi=T∗iÞ

[(Fig._4)TD$FIG]

Fig. 4. One-dimensional representation of fuzzy oil drop model parameters. The leftmost chart presents

the idealized Gaussian distribution (T) while the chart on the right corresponds to the uniform

distribution (R). The actual hydrophobicity density distribution (expressed by the RD parameter) for the

target protein is shown in the center and marked on the axis with a pink dot. According to the fuzzy oil

drop model this protein contains a well-defined hydrophobic core. Vertical axes represent

hydrophobicity (in arbitrary units), while horizontal axes represent distance (in σx units). According

to the three-sigma rule, the range between 0+3σ and 0-3σ covers more than 99% of the entire

probability expressed by the Gaussian − hence a range of −4 to +4 is plotted. The bottom axis shows

the full range of the RD coefficient − from 0 (perfect Gaussian) to 1 (uniform distribution, with no

concentration of hydrophobicity at any point in the protein body).

Article No~e00235

14 http://dx.doi.org/10.1016/j.heliyon.2017.e00235

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00235


OjO∗ ¼ ∑
N

i¼1
Oilog2ðOi=O∗iÞ

Here, distributions tagged with an asterisk represent hydrophobicity density (both

theoretical and observed) in the target molecule (2MQC), which is used as a

reference for all model structures. In other words, T|T* expresses the distance

between the theoretical distribution in the model versus the one present in the

target, while O|O* expresses the corresponding distance between the observed

distributions. The greater the value of T|T* and/or O|O* the lower the similarity

between the predicted structure and the target structure (2MQC). Values of T|T*

and O|O*, calculated for different models, can be compared directly since the

length of the polypeptide chain in all model structures is equal.

The comparable analysis in the system T|T* and O|O* can be performed only for

polypeptide chains of equal length. The interpretation of the T|T* and O|O* values

is possible only in relative system. This is why the only final analysis is in form of

ranking list. In this case no threshold value is necessary. The window size must be

the same in both compared proteins however the number of residues is the choice

of the user.

The sensitivity test for fuzzy oil drop model as the tool to recognize the similarity

of proteins was presented exhaustively [45] where the different methods were

compared using ROC curves comparative analysis.

The intention of this paper is not to present the method better than the ones used by

CASP. The aim is to present the alternative form of comparison. According to

fuzzy oil drop model the local discordance versus the idealized distribution may be

related to proteins biological function. Thus if specific local discordance is not

present it may produce important consequences in the biological activity of the

protein. The criterion for structural similarity in CASP does not take the prediction

of biological activity. However if special form of cavity is necessary for (for

example) ligand binding, the structural similarity with the absence of cavity in one

protein reflects its structural failure.

3. Results

3.1. Parameterizing the accuracy of hydrophobic core status
prediction in input models

The RD parameter expresses the distance between the observed distribution and the

expected distribution, thus reflecting the accuracy of prediction. Values close to

RD computed for the target protein suggest a similar degree of deformations in the

hydrophobic core (Table 1)
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Table 1. List of input models, with RD values expressing the similarity between the

hydrophobic core in each model and in the target protein. T|T* stands for the distance

between the theoretical distribution in the target (T*) and the model (T), while O|O*

indicates the distance between the observed distribution in the target (O*) and the

model (O). CASP rankings can be found at http://www.predictioncenter.org/casprol/

results.cgi. FOD rankings are presented separately for O|O* and T|T*.

ID RD T|T* O|O* CASP ranking FOD ranking T|T* FOD ranking O|O*

2MQC_A
(6–101)

0.466

008_1 0.490 0.118 0.069 7 10 8

011_1 0.505 0.208 0.105 115 36 36

022_1 0.455 0.237 0.110 170 37 39

038_1 0.395 0.117 0.055 18 2 7

041_1 0.321 0.177 0.086 59 25 27

050_1 0.443 0.193 0.074 23 16 30

073_1 0.463 0.191 0.082 86 22 29

117_1 0.353 0.136 0.097 77 31 17

133_1 0.476 0.098 0.073 3 15 3

145_1 0.590 0.263 0.100 169 34 40

156_1 0.615 0.199 0.060 172 5 34

160_1 0.514 0.194 0.089 152 27 32

171_1 0.409 0.162 0.116 113 38 21

184_1 0.393 0.147 0.080 108 21 18

210_1 0.397 0.093 0.058 20 4 2

212_1 0.499 0.215 0.087 124 26 38

216_1 0.500 0.129 0.078 134 18 13

228_1 0.462 0.167 0.091 144 29 24

237_1 0.465 0.163 0101 165 35 22

251_1 0.310 0.120 0.149 68 41 11

263_1 0.361 0.155 0.099 104 33 20

268_1 0.431 0.187 0.121 127 39 28

277_1 0.361 0.119 0.065 35 6 10

279_1 0.494 0.130 0.068 22 9 14

300_1 0.399 0.122 0.086 80 24 15

335_1 0.468 0.169 0.068 32 8 25

345_1 0.446 0.133 0.090 138 28 16

346_1 0.445 0.148 0.085 82 23 19

349_1 0.490 0.197 0.129 71 40 33

381_1 0.477 0.164 0.065 24 7 23

(Continued)
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In the following models the computed degree of hydrophobic core deformations

closely corresponds to actual values observed for following models of 2MQC:

073_1, 228_1, 237_1, 335_1, 410_1 and 414_1.

The RD parameter alone is not, however, a sufficient measure of structural

similarity since it does not acknowledge the specific nature of local deformations.

For the reasons stated above we have computed the distance between the

theoretical distributions in each model protein versus the target protein (T0857).

The resulting values are denoted T|T*. Low values indicate good correspondence

Table 1. (Continued)

ID RD T|T* O|O* CASP ranking FOD ranking T|T* FOD ranking O|O*

2MQC_A
(6–101)

0.466

410_1 0.469 0.115 0.070 17 12 5

414_1 0.467 0.177 0.091 31 30 26

420_1 0.490 0.118 0.069 6 11 9

436_1 0.634 0.385 0.079 90 19 41

448_1 0.517 0.214 0.080 118 20 37

452_1 0.534 0.204 0.078 40 17 35

454_1 0.523 0.090 0.051 1 1 1

466_1 0.475 0.104 0.099 91 32 4

479_1 0.449 0.117 0.072 100 14 6

492_1 0.501 0.194 0.070 69 13 31

499_1 0.325 0.132 0.056 25 3 15

[(Fig._5)TD$FIG]

Fig. 5. Relation between CASP results and the corresponding FOD rankings for each model. Outliers

are distinguished by blue and red circles.
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between theoretical distributions. O|O* represents the distance between the

observed distribution in the model and in the target. The relation between FOD

ranking and CASP ranking is shown in Fig. 5, with outlying points subjected to

more detailed analysis.

The correlation coefficients calculated for CASP and FOD rankings (O|O* and T|

T*) are 0.642 and 0.537 respectively. Disregarding outliers (highlighted in Fig. 5

and discussed later on in this paper) improves these values to 0.828 and 0.658,

respectively.

Both scales recognize model 454_1 as the most accurate. This means that − in

addition to geometric similarity − the structure predicted by 454_1 is also a good

match for the target in terms of hydrophobic core properties, including local

deformations.

Fig. 6A illustrates structural similarity between both theoretical profiles, with only

the N-terminal fragment (up to residue 30) seen as slightly discordant. The greatest

discordance is observed for residues 14 and 15 – in the target structure they are

exposed on the surface, while the model expects them to belong to the highly

hydrophobic internal core. No other residues deviate from the target profile to a

fundamental degree.

The observed distribution profiles (Fig. 6B) are also in close correspondence with

each other, with only slight quantitative differences. This indicates very good

agreement between the model and the target.

[(Fig._6)TD$FIG]

Fig. 6. Hydrophobicity distributions in 454_1 model which ranks #1 in both classifications (CASP and

FOD): A − theoretical − model (454_1) (blue line), target molecule (T0857) (green line). B − observed

− model (454_1) (red line), target molecule (T0857) (green line).
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Results obtained for the 156_1 model differ substantially from those reported by

CASP. Due to similarities in the structure of its hydrophobic core, this protein

ranks far higher in the FOD classification than on the CASP list.

3.2. Comparative analysis of similarity scales

The CASP similarity scales summarized in the introductory session exhibit a

variable degree of consistency with the FOD model. Table 2 lists scales for which

the correlation coefficient is either greater than 0.5 or lower than -0.5.

Table 2. Correlation coefficients for results obtained with various CASP

similarity scales and DKL (O|O* and T|T*).

PROFILE T|T* PROFILE O|O*

Correlation coefficient METHOD Correlation coefficient METHOD

-0.591 CODM -0.719 LDDT

-0.577 CAD_AA -0.649 SphG

-0.566 RPF -0.631 CONTS

-0.540 CONS -0.618 CAD_AA

-0.521 QCS -0.584 Z-Score

-0.576 GDT_HA

-0.576 Z-M1s-GDT-HA

-0.568 Dali(raw)

-0.551 LGA_S

-0.550 TMscore

-0.548 RPF

-0.539 Z-MA-GDT

-0.539 Z-MAs-GDT

-0.539 GDT_TS

-0.540 Z-M1-GDT

-0.539 Z-M1s-GDT

-0.539 GDC_ALL

-0.523 QCS

-0.516 GDC_SC

-0.511 SOV

-0.508 ALI_P

0.513 FlexE 0.501 RANK

0.514 DFM

0.513 FlexE
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Following elimination of outliers highlighted in Fig. 7 the correlation coefficients

calculated for LDDT vs. O|O* and for GDT_TS vs. O|O* are −0.733 and −0.711,

respectively. Analysis of O|O* in model 251_1 suggests correct identification of

residues which form part of the hydrophobic core, although involvement of the

N-terminal fragment appears excessive. The C-terminal fragment diverges from the

theoretical distribution but on the other hand the fragment at 35–85 is a very good

match for predicted values. The observed similarities place 156_1 much higher on

the FOD ranking list than the corresponding CASP metrics.

[(Fig._7)TD$FIG]

Fig. 7. LDDT and O|O* rankings are highly correlated − the only outliers are 156_1 and 251_1; two

models which also emerge as outliers when comparing GDT_TS with O|O*.

[(Fig._8)TD$FIG]

Fig. 8. Observed hydrophobicity distributions in: A. target protein (2MQC − green line) and for the

156_1 model (red line) which predicts its hydrophobic core structure with good accuracy. B. target

protein (2MQC − green line) and for the 251_1 model (red line). This model is an outlier in the

GDT_TS-vs- O|O* relationship, which is otherwise highly correlated.
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Significant deviations from the target are seen in the observed distribution of the

251_1 model (Fig. 8B). Much like in the previous case, the N-terminal fragment is

quite discordant. The remainder of the molecule also diverges from the target to a

greater degree than in the case of 454_1 and 156_1 (Fig. 8A).

3.3. Putative biological function of the target protein (2MQC)

The biological function of the target protein, labeled 2MQC, is unknown, PDB

classifies it as “structural genomics − unknown function”. 2MQC is a β-structural

protein consisting of 10 β-folds. Three of these form a separate β-sheet (called Beta

I in the presented study). The protein also contains a sandwich-type structure

consisting of two additional β-sheets (Beta II − 4 folds and Beta III − 3 folds).

The computed RD value for this protein is 0.466 which suggests the presence of a

fairly prominent hydrophobic core, although individual β-folds exhibit variable

status with respect to the FOD model. Beta II and Beta III generally agree with

FOD predictions, as does the entire sandwich structure. Based on to-date

observations, only the discordant Beta I fragment can be suspected of mediating

Table 3. RD values representing the status of the hydrophobic core in the target

protein (2MQC). The fragment labeled Beta I diverges from the idealized

distribution.

FRAGMENT RD − 2MQC RD − 454

Protein 6-101 0.466 0.523

Beta I 8-12 0.774 0.399

Beta II 18-22 0.578 0.441

Beta III 30-32 0.311 0.478

Beta I 37-42 0.622 0.402

Beta I 45-49 0.367 0.540

Beta II 50-56 0.565 0.446

Beta III 58-62 0.116 0.144

Beta III 65-69 0.331 0.153

Beta II 77-86 0.200 0.210

Beta II 93-98 0.552 0.364

Beta I 0.592 0.620

Beta II 0.353 0.309

Beta III 0.379 0.288

Beta II + III 0.387 0.370
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interactions with external molecules, including − potentially − complexation

partners.

The varied status of individual fragments of the 2MQC chain makes this protein a

good study subject when assessing the quality of structure prediction algorithms

(Table 3).

While Beta II as a whole is consistent with the idealized hydrophobic core model,

some of its fragments show local discordance (see for example the fragments at

18–22, 50–56 and 93–98). Since we assume that local deformations in the

hydrophobic core structure are associated with the protein’s biological function,

accurate recreation of the hydrophobic core structure is desirable in any folding

simulation algorithm, and it also provides a convenient criterion of model

accuracy.

The profiles shown in Fig. 9 reveal the expected and observed hydrophobicity

density. Locally discordant fragments of β-structural units have been highlighted.

Model 454_1, which is recognized as the best match for the target structure, does

not accurately reflect deviations in the structure of the hydrophobic core. Its

supersecondary structural units (called Beta II and Beta III) are quite closely

aligned with theoretical profiles; however the status of individual β-folds differs

from expectations. Additionally, the RD value calculated for the protein as a whole

indicates a more significant departure from the expected distribution than is

actually the case.

The putative biological function of 2MQC, which can be deduced from the

presence of local discordances, may involve interaction with a hydrophobic ligand

in the area of fragments 8–12 and 45–49, where low hydrophobicity density would

be expected. Since these fragments are exposed on the surface − despite their

rather high hydrophobicity − they may play a role in attracting hydrophobic

ligands or other proteins. On the other hand, the fragments at 18–22, 37–42, 45–49

[(Fig._9)TD$FIG]

Fig. 9. Hydrophobicity density profiles: theoretical (T − blue) and observed (O − red) in 2MQC. Areas

marked in green and pink correspond to fragments which diverge from the theoretical model in Beta I

and Beta II respectively.
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and 93–98 exhibit lower-than-expected hydrophobicity, which would suggest that

they form part of a binding pocket, potentially capable of housing a ligand.

The above interpretation of hydrophobicity density distribution in 2MQC is based

on similarities with the previously analyzed domain A of 1CTN (24–130), where a

protruding “arm” (which greatly disrupts the hydrophobic core − RD = 0.723)

fulfills an important role, docking with another protein molecule to create a

functional complex (specifically, bacterial chitinase). Elimination of the anchoring

fragment (24–44) alters the molecule’s status, revealing the presence of an

otherwise well-ordered core (RD = 0.482). The substantial structural similarity

between 2MQC and 1CTN (24–130) gives rise to speculations concerning sites of

biological activity in 2MQC, whose actual purpose remains unknown.

It seems evident that re-creation of the hydrophobic core structure is important

from the point of view of evaluating similarity of selected models versus the final

product of the folding process (the 3D structure of the protein as it occurs in the

natural environment). If the above interpretation is correct, models should be

assessed in terms of their predictive accuracy vis a vis the expected hydrophobic

core structure. Fig. 11 illustrates deviations from this principle (compare with

Fig. 10 )

4. Conclusions and discussion

Each protein molecule is assumed to be synthesized by the cell in order to fulfill a

specific biological function. The hydrophobic core − a crucial factor in tertiary

structural stabilization − can be found in most proteins. This phenomenon is

directly linked to the presence of the water environment in which most proteins are

naturally immersed (although membrane proteins are an important exception to this

rule). An “ideal” hydrophobic core, represented by a hydrophobicity density

distribution profile which matches theoretical values with near-perfect accuracy,

would result in excellent solubility, with the entire surface layer of the protein

[(Fig._10)TD$FIG]

Fig. 10. 3D presentation of the 2MQC domain. Red fragments represent deviations from the idealized

distribution of hydrophobicity.
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composed of hydrophilic residues. Such conditions can be observed e.g. in

antifreeze proteins which must remain soluble but do not directly interact with

other molecules [46]. In enzymes, however, local deviations from the idealized

profile are expected, and indeed evidenced by our to-date work [42 – page 114, 44

– page 85]. In most cases, elimination of residues engaged in enzymatic activity

significantly reduces the value of RD (often to less than 0.5). This suggests that

local deformations in the neighbourhood of catalytic residues seem to be

intentional and aim-oriented [46]. Regardless of the specific nature of local

deformations, their presence appears fundamentally important to the proteins’
biological function. Expanding the existing accuracy criteria with aspects of the

fuzzy oil drop model may help acknowledge the impact of the water environment

upon the folding process. The structure of the hydrophobic core, emerging as a

result of an external force field acting upon the polypeptide chain, is a global

phenomenon which cannot be accurately modeled on the level of pairwise atom-

atom interactions.

The fuzzy oil drop model can be applied to identify deviations from the idealized

structure represented by a 3D Gaussian. We assume that the act of binding a ligand

− especially one which docks deep in the protein − requires certain distortions in

the core. These distortions render the protein capable of fulfilling its biological role

(binding ligands or forming complexes with other proteins) in a specific and

targeted fashion.

For the reasons stated above, similarity criteria based on the positions of individual

atoms or pairwise interactions between atoms should be expanded with

comparative analysis of the protein’s hydrophobic core, requiring correct

positioning of all residues which comprise the input chain. The structure of the

core, expressed by its observed hydrophobicity density distribution profile, can

then be studied to identify local deviations (deficiencies/excesses) from the

idealized 3D Gaussian form. This type of analysis has been performed for an

arbitrarily selected protein from the CASP11 challenge (T0857). We compared the

[(Fig._11)TD$FIG]

Fig. 11. Model structures with the fragments recognized as discordant marked in red. A − model 156,

B − model 251, C − model 454.
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existing similarity criteria with our proposed FOD method using a set of several

distinct models. Following elimination of outliers, the correlation coefficient

between CASP and FOD algorithms was 0.828, which indicates that − rather than

completely contradicting the official ranking − the FOD method can be treated as

an iterative improvement over existing approaches. Note that the presented

analysis was restricted to _1 models.

An interesting aspect of the CASP challenge which touches upon the subject of this

paper is that participants are generally not informed of any ligands attracted by the

target protein − rather, the organizers provide only a rudimentary set of input data,

such as the source organism, presence of disulfide bonds etc. One exception to this

rule occurred when the structure of the target was so strongly dominated by its

ligand that the official description mentioned this fact [10]. It seems that the fuzzy

oil drop model may provide clues regarding the potential biological activity of the

submitted models, as well as of the target.

The final item on the list of 12 goals of CASP11 states: “Where can future effort be

most productively focused?” [47]. In our view, acknowledging the presence of the

aqueous environment in structure prediction algorithms helps explain the directed

nature of the folding process while also highlighting deviations from the theoretical

model which hint upon the potential biological function of target proteins. We

believe this phenomenon merits further study.

One of the important open questions in modern protein research can be

summarized as follows [48]: “We do not understand why a cellular proteome

does not precipitate, despite the high density inside a cell.” We hope that the

analysis of the hydrophobic core as defined by the fuzzy oil drop model, i.e.

factoring in the hydrophilic shell, may shed some light on this matter. Targeted

exposure of hydrophobic residues on the protein surface seems to be a natural way

to restrict and control protein complexation.

Recent advances in protein folding research point to the diffusion phenomenon

[49], treating solvent viscosity as a potential factor in the folding process; however

no definitive theoretical models have yet been published.

Analysis of CASP11 results (July 2016) has provided fresh insight [50, 51], even

though model accuracy criteria are still based on existing parameters, such as

GDT-TS [52, 53]. The proteins discussed in [54, 55] and characterized − on the

basis of crystallographic assessment − as “atypical” provide a useful study group

for the fuzzy oil drop model. One example is the monotreme lactation protein

(MLP), where the role of the beta-hairpin exposed on the surface may be explained

on the grounds of the FOD model. Similarly, the presence of two GLU residues in

the interface zone of human vanin 1 is characterized as a local deviation from the

theoretical distribution. In PilA1, the major Type IV pilin, the C-terminal fragment
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exhibits significant discordance versus the model, likely due to its low packing and

elasticity. In summary, the Authors would like to point out that symbiotic

collaboration between experimental structural biology and computational biology

may benefit both disciplines. Indeed, the CASP community has recently reached

out to CAPRI to facilitate joint studies into the function/structure relationship,

acknowledging that proper identification of protein complexation and ligand

binding sites may provide important clues regarding the protein’s biological role

[56, 57, 58, 59]. Application of the FOD model to p-p interfaces has revealed some

new aspects of complex generation, including the presence of an independent

“quasi-domain” comprised of fragments contributed by both chains participating in

the complex [60].

It should also be noted that existing model/target similarity criteria are increasingly

being called into question − some new proposals in this regard can be found in

[61].

One shall underline that the aim of this paper is just presentation of alternative

version of similarity measurements. The examples taken from CASP experiment

are chosen as the base of correctly and not fully correctly folded proteins to show

the applicability of the fuzzy oil drop model.

Fuzzy oil drop model is conditioned by water environment for protein folding.

Surprisingly however the molecular dynamics simulation of membrane protein

performed in external force field of the ellipsoid capsule appeared to be highly

similar to the results obtained as the effect of traditional molecular dynamics

simulation in water environment (box with individual water molecules defined

explicitly) [62]. This observation proves that the presence of centric concentration

of hydrophobic residues seems to universal rule.

The comparable analysis based on fuzzy oil drop model is specially useful for

identification of the consequences of mutations introduced in protein molecule

[63].

Recently the application of fuzzy oil drop model was used to identify the

specificity of amyloid forms [64]. It is shown that the substitution of central

concentration of hydrophobicity by linear distribution of hydrophobicity in

amyloid fibrils may be the potential mechanism for amyloidogenesis.
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[34] K. Olechnovič, E. Kulberkytė, C. Venclovas, CAD-score a new contact area

difference-based function for evaluation of protein structural models, Proteins

81 (1) (2013) 149–162.

Article No~e00235

29 http://dx.doi.org/10.1016/j.heliyon.2017.e00235

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0110
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0110
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0110
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0115
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0115
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0115
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0120
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0120
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0120
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0125
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0125
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0130
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0130
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0130
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0135
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0135
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0135
http://www.predictioncenter.org/casprol/results.cgi
http://www.predictioncenter.org/casprol/results.cgi
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0145
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0145
https://en.wikipedia.org/wiki/Global_distance_test
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0155
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0155
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0155
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0160
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0160
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0165
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0165
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0165
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0170
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0170
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0170
http://dx.doi.org/10.1016/j.heliyon.2017.e00235


[35] D.A. Keedy, C.J. Williams, J.J. Headd, W.B. Arendall 3rd, V.B. Chen, G.J.

Kapral, R.A. Gillespie, J.N. Block, A. Zemla, D.C. Richardson, J.S.

Richardson, The other 90% of the protein: Assessment beyond the Cαs for

CASP8 template-based and high-accuracy models, Proteins (Suppl. 9) (2009)

29–49.

[36] R.A. Laskowski, Enhancing the functional annotation of PDB structures in

PDBsum using key figures extracted from the literature, Bioinformatics 23

(2007) 1824–1827.

[37] W. Kauzmann, Some factors in the interpretation of protein denaturation,

Adv. Protein Chem. 14 (1959) 1–63.

[38] L. Chiche, L.M. Gregoret, F.E. Cohen, P.A. Kollman, Protein model structure

evaluation using the solvation free energy of folding, Proc. Natl. Acad. Sci.

USA. 87 (1990) 3240–3243.

[39] B. Kalinowska, M. Banach, L. Konieczny, I. Roterman, Application of

Divergence Entropy to Characterize the Structure of the Hydrophobic Core in

DNA Interacting Proteins, Entropy 17 (3) (2015) 1477–1507.

[40] M. Levitt, A simplified representation of protein conformations for rapid

simulation of protein folding, J. Mol. Biol. 104 (1976) 59–107.

[41] S. Kulback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat.

22 (1951) 79–86.

[42] B. Kalinowska, M. Banach, L. Konieczny, D. Marchewka, I. Roterman,

Intrinsically disordered proteins–relation to general model expressing the

active role of the water environment, Adv. Protein Chem. Struct. Biol. 94

(2014) 315–346.

[43] M. Banach, L. Konieczny, I. Roterman, Use of the fuzzy oil drop model to

identify the complexation area in protein homodimers, In: Irena Roterman-

Konieczna (Ed.), Protein folding in silico - Protein folding versus protein

structure prediction, Woodhead Publishing (Currently: Elsevier), Oxford,

Cambridge, Philadelphia, New Delhi, 2012, pp. 95–122.

[44] M. Banach, L. Konieczny, I. Roterman, Ligand-binding site recognition, In:

Irena Roterman-Konieczna (Ed.), Protein folding in silico - Protein folding

versus protein structure prediction, Woodhead Publishing (Currently: Else-

vier), Oxford, Cambridge, Philadelphia, New Delhi, 2012, pp. 79–94.

[45] Identification of ligand binding and protein-protein interaction area, In:

Roterman-Konieczna Irena (Ed.), Springer, Dordrecht, Heidelberg, New

York, London, 2013.

Article No~e00235

30 http://dx.doi.org/10.1016/j.heliyon.2017.e00235

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0175
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0175
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0175
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0175
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0175
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0180
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0180
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0180
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0185
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0185
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0190
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0190
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0190
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0195
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0195
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0195
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0200
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0200
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0205
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0205
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0210
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0210
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0210
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0210
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0215
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0215
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0215
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0215
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0215
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0220
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0220
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0220
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0220
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0225
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0225
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0225
http://dx.doi.org/10.1016/j.heliyon.2017.e00235


[46] M. Banach, L. Konieczny, I. Roterman, The fuzzy oil drop model: based on

hydrophobicity density distribution generalizes the influence of water

environment on protein structure and function, J. Theor. Biol. 21 (359)

(2014) 6–17.

[47] CASP Roll, http://predictioncenter.org/casp11/index.cgi, July 17, 2016.

[48] K.A. Dill, J.L. MacCallum, The protein-folding problem 50 years on, Science

338 (2012) 1042–1046.

[49] H.S. Chung, S. Piana-Agostinetti, D.E. Shaw, W.A. Eaton, Structural origin

of slow diffusion in protein folding, Science 349 (2015) 1504–1510.

[50] V. Modi, R.L. Dunbrack Jr., Assessment of refinement of template-based

models in CASP11, Proteins (Suppl. 1) (2016) 260–281.

[51] J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, A. Tramontano, Critical

assessment of methods of protein structure prediction: Progress and new

directions in round XI, Proteins (Suppl. 1) (2016) 4–14.

[52] R. Cao, J. Cheng, Protein single-model quality assessment by feature-based

probability density functions, Sci. Rep. 6 (2016) 23990.

[53] A. Belsom, M. Schneider, O. Brock, J. Rappsilber, Blind Evaluation of

Hybrid Protein Structure Analysis Methods based on Cross-Linking, Trends

Biochem. Sci. 41 (7) (2016) 564–567.

[54] A. Kryshtafovych, J. Moult, S.G. Bartual, J.F. Bazan, H. Berman, D.E.

Casteel, E. Christodoulou, J.K. Everett, J. Hausmann, T. Heidebrecht, T.

Hills, R. Hui, J.F. Hunt, J. Seetharaman, A. Joachimiak, M.A. Kennedy, C.

Kim, A. Lingel, K. Michalska, G.T. Montelione, J.M. Otero, A. Perrakis, J.C.

Pizarro, M.J. van Raaij, T.A. Ramelot, F. Rousseau, L. Tong, A.K.

Wernimont, J. Young, T. Schwede, Target highlights in CASP9: Experimen-

tal target structures for the critical assessment of techniques for protein

structure prediction, Proteins (Suppl. 1) (2016) 34–50.

[55] A. Kryshtafovych, J. Moult, A. Baslé, A. Burgin, T.K. Craig, R.A. Edwards,

D. Fass, M.D. Hartmann, M. Korycinski, R.J. Lewis, D. Lorimer, A.N. Lupas,

J. Newman, T.S. Peat, K.H. Piepenbrink, J. Prahlad, M.J. van Raaij, F.

Rohwer, A.M. Segall, V. Seguritan, E.J. Sundberg, A.K. Singh, M.A. Wilson,

T. Schwede, Some of the most interesting CASP11 targets through the eyes of

their authors, Proteins (Suppl. 1) (2016) 34–50.

[56] A. Vangone, J.P. Rodrigues, L.C. Xue, G.C. van Zundert, C. Geng, Z.

Kurkcuoglu, M. Nellen, S. Narasimhan, E. Karaca, M. van Dijk, A.S.

Melquiond, K.M. Visscher, M. Trellet, P.L. Kastritis, A.M. Bonvin, Sense

Article No~e00235

31 http://dx.doi.org/10.1016/j.heliyon.2017.e00235

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0230
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0230
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0230
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0230
http://predictioncenter.org/casp11/index.cgi
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0240
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0240
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0245
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0245
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0250
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0250
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0255
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0255
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0255
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0260
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0260
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0265
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0265
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0265
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0270
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0275
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0280
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0280
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0280
http://dx.doi.org/10.1016/j.heliyon.2017.e00235


and Simplicity in HADDOCK Scoring: Lessons from CASP-CAPRI Round1,

Proteins (2016).

[57] A. Vangone, J.P. Rodrigues, L.C. Xue, G.C. van Zundert, C. Geng, Z.

Kurkcuoglu, M. Nellen, S. Narasimhan, E. Karaca, M. van Dijk, A.S.

Melquiond, K.M. Visscher, M. Trellet, P.L. Kastritis, A.M. Bonvin,

Prediction of homoprotein and heteroprotein complexes by protein docking

and template-based modeling: A CASP-CAPRI experiment, Proteins (2016).

[58] D.B. Roche, L.J. McGuffin, In silico Identification and Characterization of

Protein-Ligand Binding Sites, Methods Mol. Biol. 1414 (2016) 1–21.

[59] D.B. Roche, D.A. Brackenridge, L.J. McGuffin, Proteins and Their

Interacting Partners: An Introduction to Protein-Ligand Binding Site

Prediction Methods, Int. J. Mol. Sci. 16 (12) (2015) 29829–29842.

[60] J. Dygut, B. Kalinowska, M. Banach, M. Piwowar, L. Konieczny, I.

Roterman, Structural Interface Forms and Their Involvement in Stabilization

of Multidomain Proteins or Protein Complexes, Int. J. Mol. Sci. 17 (10)

(2016).

[61] W. Li, R.D. Schaeffer, Z. Otwinowski, N.V. Grishin, Estimation of

Uncertainties in the Global Distance Test (GDT_TS) for CASP Models,

PLoS One 11 (5) (2016) e0154786 eCollection 2016.

[62] V. Zobnina, I. Roterman, Application of the fuzzy-oil-drop model to

membrane protein simulation, Proteins 77 (2) (2009) 378–394.

[63] M. Banach, K. Prymula, W. Jurkowski, L. Konieczny, I. Roterman, Fuzzy oil

drop model to interpret the structure of antifreeze proteins and their mutants,

J. Mol. Model. 18 (1) (2012) 229–237.

[64] I. Roterman, M. Banach, B. Kalinowska, L. Konieczny, Influence of the

Aqueous Environment on Protein Structure - A Plausible Hypothesis

Concerning the Mechanism of Amyloidogenesis, Entropy 18 (10) (2016) 351.

Article No~e00235

32 http://dx.doi.org/10.1016/j.heliyon.2017.e00235

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0280
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0280
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0285
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0285
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0285
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0285
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0285
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0290
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0290
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0295
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0295
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0295
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0300
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0300
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0300
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0300
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0305
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0305
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0305
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0310
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0310
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0315
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0315
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0315
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0320
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0320
http://refhub.elsevier.com/S2405-8440(16)31366-4/sbref0320
http://dx.doi.org/10.1016/j.heliyon.2017.e00235

	Determining protein similarity by comparing hydrophobic core structure
	1. Introduction
	2. Materials and methods
	2.1. Structure prediction accuracy methods applied in the CASP project
	2.2. The fuzzy oil drop model as a means of describing the structure of the hydrophobic core

	3. Results
	3.1. Parameterizing the accuracy of hydrophobic core status prediction in input models
	3.2. Comparative analysis of similarity scales
	3.3. Putative biological function of the target protein (2MQC)

	4. Conclusions and discussion
	Declarations
	Author Contribution Statement
	Funding statement
	Competing interest statement
	Additional information

	Acknowledgements
	References


