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Automata representation 
of successful strategies for social 
dilemmas
Yohsuke Murase1 & Seung Ki Baek2*

In a social dilemma, cooperation is collectively optimal, yet individually each group member prefers 
to defect. A class of successful strategies of direct reciprocity were recently found for the iterated 
prisoner’s dilemma and for the iterated three-person public-goods game: By a successful strategy, we 
mean that it constitutes a cooperative Nash equilibrium under implementation error, with assuring 
that the long-term payoff never becomes less than the co-players’ regardless of their strategies, when 
the error rate is small. Although we have a list of actions prescribed by each successful strategy, the 
rationale behind them has not been fully understood for the iterated public-goods game because the 
list has hundreds of entries to deal with every relevant history of previous interactions. In this paper, 
we propose a method to convert such history-based representation into an automaton with a minimal 
number of states. Our main finding is that a successful strategy for the iterated three-person public-
goods game can be represented as a 10-state automaton by this method. In this automaton, each 
state can be interpreted as the player’s internal judgement of the situation, such as trustworthiness 
of the co-players and the need to redeem oneself after defection. This result thus suggests a 
comprehensible way to choose an appropriate action at each step towards cooperation based on a 
situational judgement, which is mapped from the history of interactions.

George Berkeley says that a man who believes in no future state has no reason to postpone his own private inter-
est or pleasure to doing his duty1. Reciprocity is one way to establish cooperation between rational individuals 
under this shadow of future2–5. Tit-for-tat (TFT) is one of the most popular reciprocal strategies in the iterated 
prisoner’s dilemma (PD) game6. Just by replicating the co-player’s previous action, it embodies several, intuitively 
appealing properties, that is, being clear, nice, provokable, and forgiving. However, if the prescribed actions are 
misimplemented, two TFT players easily run into TFT retaliation7,8, so the long-run average payoff becomes as 
low as those between two RANDOM players, where a RANDOM strategy means choosing cooperation with 
probability 1/2. Moreover, a TFT population is invaded by unconditional cooperators because a TFT player 
cannot distinguish an unconditional cooperator from another TFT player. Generous TFT has been suggested to 
avoid the TFT retaliation9–12, but it is outperformed by Win-Stay-Lose-Shift (WSLS)13,14. WSLS also solves the 
problem of distinguishability in the sense that it earns a strictly higher average payoff against an unconditional 
cooperator. However, it is vulnerable against unconditional defectors.

A notable progress in the iterated PD game is the discovery of the zero-determinant (ZD) strategies15. Each of 
them is a memory-one strategy, generally stochastic, and it can enforce a certain linear relationship between its 
own payoff and co-players’ payoffs irrespective of the co-player’s strategy16,17. This is true even when the co-player 
has a longer memory or when the strategy is known to the others. When both the players attempt to extort each 
other using an extortionate ZD strategy, they end up with mutual defection, so an extortionate strategy is hard 
to evolve as a group18–21. TFT is a special case of the ZD strategies, equalizing the players’ payoffs in the long run. 
The ZD strategies have been studied not only in a well-mixed population but also in structured ones22,23 because 
of the importance of spatiotemporal dynamics from a statistical-physical viewpoint24.

To explore an even stronger class of strategies, researchers have proposed a strategy called TFT-anti-TFT 
(TFT-ATFT), which can be understood as a modification of TFT25. It has been devised to remedy the problems 
of TFT by satisfying the following three criteria: 
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1.	 Efficiency If all the players in the game have adopted this strategy in common, they will reach mutual coop-
eration with probability one as the implementation error rate e approaches zero.

2.	 Defensibility If the focal player uses this strategy, her expected payoff is greater than or equal to any of her 
co-players’ regardless of their strategies.

3.	 Distinguishability If all the co-players are unconditional cooperators, the expected payoff from this strategy 
is strictly higher than theirs.

Here, an implementation error (also called execution error or mistake) refers to an event that a player errone-
ously takes the opposite action to the prescription of the strategy. Unlike the perception error, it is assumed 
that all the players, including the one who committed an error, correctly perceive which actions are actually 
taken. The class of strategies satisfying these three criteria are called successful hereafter. The first two criteria 
are especially important because a cooperative Nash equilibrium is formed when efficiency and defensibility 
criteria are simultaneously satisfied25. Moreover, it is guaranteed that the focal player’s long-term payoff will 
never be less than those of the others against any kind of strategies. Just as is the case for the ZD strategies, this 
relation is assured even when the co-players have a longer memory length or when they know the focal player’s 
deterministic strategy. TFT-ATFT is a memory-two strategy, namely, it prescribes its next action depending on 
the history profile for previous two rounds. The definition of TFT-ATFT is given in Table 1. As indicated by the 
name, it is a combination of TFT and ATFT: If it correctly played TFT for the two previous steps, it keeps play-
ing TFT. Otherwise, it behaves as ATFT. If mutual cooperation is reached, or if the co-player unilaterally defects 
twice in a row, it is time to go back to TFT. Thus, when the player erroneously deviates from TFT, the ATFT part 
is activated for a while to correct the error, whereby mutual cooperation can be made robust in a noisy environ-
ment without violating defensibility. Regarding efficiency, we mention that perception error can also be corrected 
if it occurs with a much longer time scale than implementation errors25.

Successful strategies exist not only for the iterated PD game but also for an iterated public-goods (PG) game26. 
The payoff matrix of the three-person PG game is given as follows:

where the number of defectors among the two co-players is written at the top of each column, and ρ is a mul-
tiplication factor satisfying 1 < ρ < 3 . This is a generalization of the iterated PD game to a three-person case. 
As in the PD game, the only Nash equilibrium of the one-shot PG game is full defection with payoff MD,2 = 1 , 
which is the worst for the society as a whole. For the iterated three-person PG game, it has been found that at 
least 256 successful strategies exist in the memory-three strategy space27 and that no such strategy exists if the 
memory length is less than three. This fact immediately poses a problem on its understandability: Recall that a 
memory-three strategy is defined by an action table having 512 entries because the number of possible history 
profiles is 23×3 = 512.

The purpose of this paper is to interpret the successful strategies by representing them as automata. In the 
previous works, we have represented successful strategies in a ‘history-based’ manner so that the next action 
is given as a function of the history profile for the last m rounds. However, a strategy may also be defined as an 
automaton28, i.e., in a way that a player has a finite number of internal states. A player’s internal state determines 
her next action, and it changes according to the actions taken by the players of the game. We will show that 
the decision mechanism behind the actions prescribed by the strategy can be understood more clearly in this 
‘state-based’ representation.

The paper is organized as follows: In the next section, we present an algorithm to convert a history-based 
representation to a state-based one. Then, its applications to some successful strategies will be demonstrated. 
We discuss possible interpretations for the resulting internal states and summarize this work in the last section.
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Table 1.   List of actions in TFT-ATFT25. Two players Alice and Bob are involved in the iterated PD game, and 
we assume that Alice is playing TFT-ATFT. Let At and Bt denote Alice’s and Bob’s actions at time t, respectively. 
In this table, each state means (At−2At−1,Bt−2Bt−1) , and the corresponding action means At.

State Action State Action

(cc, cc) c (dc, cc) c

(cc, cd) d (dc, cd) d

(cc, dc) c (dc, dc) c

(cc, dd) d (dc, dd) c

(cd, cc) d (dd, cc) d

(cd, cd) c (dd, cd) c

(cd, dc) c (dd, dc) c

(cd, dd) d (dd, dd) d
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Method
Algorithm.  In this section, we show how a history-based strategy can be converted to a state-based repre-
sentation. In general, history-based strategies may be regarded as a subset of state-based ones because one may 
also regard the history profile over the previous m rounds as an internal state. In this naive reinterpretation, the 
number of states (i.e., history profiles) would amount to 2nm , where n is the number of players. Let us consider 
a directed graph with 2nm nodes, in which each node denotes a distinct history profile and each link means a 
transition between a pair of states. Each node has 2n−1 outgoing links, corresponding to the possible number 
of actions taken by the n− 1 co-players, because the focal player’s action has already been fixed by the strategy 
under consideration. Note that this graph does not include transitions caused by implementation error.

An example of such a graph is shown in Fig. 1a. Because TFT is a memory-one strategy for a two-players 
game, it has four nodes, labelled by cc, cd, dc, and dd, respectively. Suppose that the current history profile is cc. 
For example, if the two players’ last actions are c and d, respectively, the next history profile becomes cd. In case 
of TFT, the action tuples such as cd, denoted as link attributes, happen to look similar to node labels, but this is 
not the case for general memory-m strategies if m > 1 . Although this representation fully defines the strategy, it 
has redundancy. For instance, it is obvious that TFT can also be represented by a graph with two states as shown 
in Fig. 1b4,5. In case of TFT, it is straightforward to construct the graph in Fig. 1b based on Fig. 1a. However, 
it suddenly becomes complicated when the memory length gets longer because the number of nodes grows 
exponentially.

Thus, the question is how to simplify a naive representation systematically by minimizing the number of 
states. This is known as deterministic-finite-automaton (DFA) minimization in automata theory29. Specifically, 
we use the following algorithm: 

1.	 Define a partition P0 by splitting given states into two sets according to their prescription between c and d.
2.	 Initialize k = 0.
3.	 Increase k by one. For each set in Pk−1 , if a pair of nodes i and j in it are not equivalent, divide the set into 

finer subsets to define a new partition Pk . Here, nodes i and j are equivalent if the outgoing links from these 
nodes go together in Pk−1 for any input. In our context, an input means an action tuple of the co-players. 
(see Fig. 2.)

4.	 Repeat step 3 until Pk becomes identical to Pk−1.

In short, we regard two states as identical when they lead to the same future. The algorithm always terminates 
after a finite number of steps, and the final result is uniquely determined irrespective of the order of choosing 
node pairs. If we apply this algorithm to Fig. 1a for instance, it ends up with two super-nodes {cc, dc} and {cd, dd} , 
yielding the graph shown in Fig. 1b as expected. The opposite conversion is not always possible. For example, 
one needs an infinitely long memory to describe the behaviour of Contrite TFT (CTFT)30 in the history-based 
representation31, whereas its state-based version needs only four states (Fig. 1c). Figure 3 shows some other 
examples of the DFA minimization. It greatly simplifies the graphs, especially when the memory length is long.

Here, we note that the transitions in Fig. 3 do not take into account the transitions caused by errors. In other 
words, the minimized automaton generally loses some of information about erroneous actions while it repro-
duces the deterministic actions prescribed by the strategy. In order to fully keep the information of the original 
history-based representation, one needs to start from the transition graph that has outgoing links corresponding 
to erroneous actions as well. An example of such automaton representation will be shown in Fig. 4c. In general, 
we should choose one of the representations depending on our purpose. While information loss is caused by 
ignoring error, the converted automaton representation usually has a smaller number of states, which is helpful 

Figure 1.   (a) Transition among history profiles of TFT. Each node is labelled by a history profile, which is a 
2-tuple composed of the last actions of the two players in this memory-one strategy. A history profile may also 
be regarded as an internal state of the focal player in this naive representation. Each node has two outgoing links 
because it has two possible destinations depending on the co-player’s choice between c and d. (b) State-based 
representation of TFT with two internal states. If the co-player cooperates (defects), the internal state becomes 
0(1), and the focal player chooses an action based on this state. The colour of each node indicates the action 
prescribed at each state: Blue and red mean cooperation and defection, respectively. (c) Graph representation of 
CTFT, one of the most well-known strategies based on internal states called standing. Each player’s standing is 
either good (0) or bad (1) from the focal player’s viewpoint. For example, ‘01’ means that the focal player assigns 
good standing to herself and bad standing to her co-player.
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in interpreting the strategy. On the other hand, the full automaton representation keeps all the information of 
the strategy, making it possible to reconstruct the history-based representation. In this paper, we mainly take 
the former approach because our main objective is to better interpret the strategies.

Ethics statement.  No human experiments were conducted in this study.

Result
Iterated PD game.  Let us consider the iterated PD game between two players, say, Alice and Bob. We 
assume that Alice has adopted TFT-ATFT, and its history-based representation is shown in Fig. 4a. The label of 
each node is the history profile by Alice and Bob over the two previous rounds, denoted as At−2At−1Bt−2Bt−1 , 
where At and Bt mean Alice’s and Bob’s actions at time t, respectively. This graph shows every possible transition 
among the history profiles in the absence of the implementation error when Alice is a TFT-ATFT player.

Alice normally behaves as a TFT player, and this behaviour is described by the strongly connected compo-
nent indicated by the green dashed rectangle in Fig. 4a. However, when she erroneously defects from mutual 
cooperation, she switches her behaviour to ATFT. The history profile jumps from cccc to cdcc by this error, and 
then Alice should defect once again as an ATFT player. If both use TFT-ATFT, they quickly recover mutual 
cooperation without being exposed to the risk of exploitation via the following sequence of history profiles: 
cdcc → ddcd → dcdd → ccdc → cccc.

The DFA minimization algorithm simplifies the graph to a great extent as shown in Fig. 4b. It has only four 
internal states which we have labelled ‘4’, ‘5’, ‘0’, and ‘1’, respectively. It is the latter two, ‘0’ and ‘1’ that describe 
the TFT behaviour, as we have already seen in Fig. 1. When Alice erroneously defects from mutual cooperation, 
on the other hand, the state jumps to ‘4’, which belongs to the ATFT part, as indicated by the dashed arrow. If 

Figure 2.   DFA minimization. Nodes i, j, and k should be split into two sets, {i, j} and {k} , because i and j lead to 
the same future via either cc or cd, whereas k responds differently.

Figure 3.   Conversion of history-based representation to state-based one. An example is Tit-for-Two-Tats 
(TF2T) before and after the DFA minimization (left)5. The second example on the right hand is AON2 , the 
‘all-or-none’ strategy for the PD game among memory-two players32. Each of these strategies, which generally 
has 16 nodes as a memory-two strategy, is reduced to an automaton with three internal states by the DFA 
minimization. As in Fig. 1, blue (red) means that the player should cooperate (defect) at the state. We have 
suppressed the action tuples assigned to the links in the history-based representation for better visibility.
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both Alice and Bob are TFT-ATFT players, they can safely recover the mutual cooperation at state ‘0’ via ‘5’. The 
transition from ‘5’ to ‘0’ is crucial because Alice thereby accepts Bob’s punishment.

Although this automaton representation is meant to ignore error as we have mentioned, we depict a dashed 
arrow in Fig. 4b to indicate transition from cccc → cdcc . This transition is the most important to understand 
how efficiency is satisfied because it is the only erroneous transition occurring with probability of O(e) when 
two players adopt TFT-ATFT. For the sake of completeness, Fig. 4c shows another automaton representation 
which fully takes into account erroneous actions. State ‘0’ and ‘1’ in Fig. 4b are split into states ‘(11,0)’ and ‘(1,7)’ 
in Fig. 4c, respectively. We can fully reconstruct the original history-based representation of Fig. 4a from Fig. 4c 
by checking every pair of successive arrows, noting that TFT-ATFT is a memory-two strategy.

Iterated three‑person PG game.  Partially successful strategies.  Now, let us proceed to the iterated 
three-person PG game among Alice, Bob, and Charlie. It has been proved for this game that successful strategies 
are possible only when the memory length is greater than two. However, it is instructive to begin with partially 
successful strategies (PS2)27, which are memory-two strategies with defensibility, distinguishability, and partial 
efficiency. By partial efficiency, we mean that the players achieve mutual cooperation with nonzero probability 
< 100% in the limit of e → 0+ . For example, TFT is partially efficient.

By enumerating all the possible memory-two strategies, whose number is greater than one trillion, we have 
discovered 256 PS2’s. Figure 5 shows one of them before and after the minimization. The history-based represen-
tation needs 64 nodes, which makes it difficult to interpret how the strategy works by visual inspection (Fig. 5a). 
On the other hand, its state-based representation needs only 6 nodes as demonstrated in Fig. 5b. Of course, some 
variations exist among PS2’s, and the numbers of their internal states are between 6 and 8 (or between 11 and 15 
when erroneous actions are taken into account), but their overall structures are similar.

We can interpret the nodes in Fig. 5b, representing the internal states of this PS2, in the following way: Sup-
pose that Alice is using this PS2. The node labelled ‘0’ means ‘full trust’, and Alice can expect full cooperation if 
this is her internal state. If one of her co-players, say Bob, defects from full cooperation, Alice’s state moves to 
‘4’, and her strategy prescribes defection at this state. The meaning is obvious: She distrusts Bob. Cooperation 
can nevertheless be recovered if Bob chooses c whereas the other two players punish him by d, whereby Alice’s 
internal state becomes ‘full trust’ again. Another state labelled ‘1’ can be interpreted in the same way, and the only 
difference is that this time it is Charlie who defects from full cooperation. Thus, states ‘1’ and ‘4’ are symmetric 
under the exchange of the co-players. If both Bob and Charlie defect from full cooperation, Alice’s internal state 

Figure 4.   (a) History-based representation of TFT-ATFT. Each node represents a history profile of the two 
previous rounds, thus the graph has 16 nodes in total. Each node has two outgoing links because the history 
profile changes depending on Bob’s choice between c and d. The green dashed rectangle shows the strongly 
connected component responsible for the TFT behaviour. (b) State-based representation of TFT-ATFT in which 
the number of states has been reduced to four by the DFA minimization algorithm. As in Fig. 1, when the 
current state is represented by a blue (red) node, the next action should be cooperation (defection). The state 
changes according to the 2-tuple of actions attached to each link. For instance, the state changes from ‘0’ to ‘1’ 
via cd, meaning that Alice and Bob chose c and d, respectively, at the previous round. The four dashed rectangles 
in red and blue in (a) correspond to the four nodes in (b). For instance, state ‘4’ in (b) is a super-node formed 
by merging cdcc and ddcc in (a). They are 4 and 12 in binary, and we have chosen the former one to denote the 
super-node. Likewise, the label of each super-node in (b) originates from the minimum index of its constituent 
nodes in (a). This representation is a simplification of (a), thus error-induced transitions are not taken into 
account. To show how it handles error occurring with probability of O(e), we denote one of the erroneous 
transitions (cccc) → (cdcc) as the orange dashed arrow. (c) Automaton representation of TFT-ATFT fully 
incorporating erroneous actions. This representation is equivalent to the original history-based representation in 
(a).
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changes to ‘5’, which lies at the the bottom of Fig. 5b. It means that she is in despair because they are trapped in 
mutual defection.

So far, we have explained how we can interpret ‘0’, ‘1’, ‘4’, and ‘5’ in Fig. 5b. The interesting part is the other 
two states labelled ‘16’ and ‘18’. The former one, ‘16’, corresponds to At−2At−1Bt−2Bt−1Ct−2Ct−1 = cdcccc , 
which is visited when Alice defects erroneously from full cooperation, as indicated by the dashed arrow. She has 
to choose c at this state, and she can go back to ‘0’ by accepting defection from Bob or Charlie. In plain words, 
therefore, we could say that Alice wants to make an apology at this state. Similarly to TFT-ATFT, this apology 
plays an important role in maintaining mutual cooperation in a noisy environment.

Alice can also visit ‘16’ from ‘18’ with a link of dcc. It is this state ‘18’ that makes it possible for Alice to 
provoke her co-players and test their naivety: The loop between ‘16’ and ‘18’ implies that Alice can exploit Bob 
and Charlie by alternating provocation (d) and apology (c) if they are unconditional cooperators. This loop thus 
provides distinguishability for her PS2.

Fully successful strategies.  By modifying the 256 PS2’s, we have reported the same number of fully successful 
strategies in the memory-three strategy space27. Their key difference from PS2’s is that they achieve full coop-
eration with probability 100% in the limit of e → 0+ . To stress the difference, we will call them fully successful 
strategies (FUSS’s). The DFA minimization process converts the FUSS’s to automata with 10–14 internal states 
(or 20 ∼ 31 states when errors are taken into account). One of the simplest is depicted in Fig. 6a. Its similarity to 
Fig. 5b is striking, and we can immediately recognize the states for full trust (‘0’), despair (‘9’), apology (‘64’), and 
provocation (‘66’). For reference, we also show the automaton representation for one of the most complex FUSS’s 
in Fig. 6b. As shown in these automata representation, they show overall similar structures with sharing key 
mechanisms. The same is true for the other FUSS’s, and therefore, we focus on the simplest one in the following.

Obviously, some of its features are different from the above PS2: First, this FUSS makes Alice more careful in 
distrusting one of her co-players. Recall that we have interpreted state ‘4’ as expressing Alice’s distrustfulness of 
Bob. It is now split into ‘8’ and ‘76’. Due to this split, it takes one more step to despair when one of the co-players 
defects. It means that the following recovery path is possible even if Bob defects twice in a row:

whereas the same sequence of actions would only lead to Alice’s distrustfulness of Charlie for the PS2 shown 
in Fig. 5b:

The second difference is the appearance of ‘72’ and ‘65’, which have no equivalents in Fig. 5b. They are transient 
nodes with no incoming links, which are reachable only by error. For example, node ‘72’ represents a history 
profile

in binary, which means that Alice and Bob erroneously defected at the previous round. The states ‘65’, ‘1’, ‘67’ are 
equivalent to ‘72’, ‘8’, ‘76’, respectively, when we swap the co-players Bob and Charlie.

In fact, these additional four states are needed to make this strategy tolerant against two-bit error, i.e., error 
of O(e2) either because it occurs one after another or because it occurs to two players simultaneously. Such 

(2)0
cdc
−→ 8

ddd
−−→ 76

dcd
−−→ 0,

(3)0
cdc
−→ 4

ddd
−−→ 5

dcd
−−→ 1.

(4)At−3At−2At−1 Bt−3Bt−2Bt−1 Ct−3Ct−2Ct−1 = ccd ccd ccc

Figure 5.   Two representations of one of the PS2’s for the iterated three-person PG game. (a) History-based 
representation. As a memory-two strategy for a three-person game, it has 26 = 64 nodes, each of which has 
four outgoing links. Note that it is practically impossible to extract useful information from this representation 
even for n = 3 and m = 2 . (b) State-based representation. The colour and the number of each node are 
depicted in the same way as in Fig. 4b. State ‘1’ and ‘4’ are symmetric under the exchange of the co-players. 
Although error-caused transitions are not represented by this automaton, we depict an erroneous action 
(ccc, ccc, ccc) → (ccd, ccc, ccc) for readers’ convenience as a dashed orange arrow.
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tolerance is a necessary condition for full efficiency in this three-person game27. When Alice, Bob, and Charlie 
have adopted this FUSS in common, we can show that the players recover cooperation from every possible type 
of one- and two-bit error by enumerating all the possible cases: 

1.	 Suppose that one of the FUSS players, say, Bob, committed an error. If si denotes player i’s internal state (see 
Fig. 6), we will have (sA, sB, sC) = (8, 64, 1) , where Alice, Bob, and Charlie are abbreviated to A, B, and C, 
respectively. It means that Bob will make an apology (‘64’) by accepting punishment from Alice and Charlie. 
This recovers cooperation as every player goes back to full trust (‘0’).

2.	 The FUSS can also correct two-bit error, which has three possibilities: 

(a)	 One player, say, Bob, commits error twice in a row.
(b)	 Bob commits an error, and so does Charlie at the next round.
(c)	 Two players, say, Bob and Charlie, commit error simultaneously.

Now, we will show that all these three types of two-bit error are corrected by the FUSS:

(a)	 We have already seen from Eq. (2) that this FUSS allows a recovery path along which sA changes as 
0 → 8 → 76 → 0 . The question is whether the co-players’ strategic interactions do not interrupt such a 
path when they are using the same FUSS. In Fig. 7, we keep track of the other players’ states as well, accord-
ing to which (sA, sB, sC) changes as

for this type of two-bit error. The error is corrected.
(b)	 In the second case, Bob first defects in error from full cooperation. Charlie is supposed to punish Bob by 

choosing d at the next round, but he mistakenly chooses c instead. Up to this point, the players’ internal 
states have evolved as (sA, sB, sC) = (0, 0, 0) → (8, 64, 1) → (66, 0, 0) . Considering that state ‘66’ has been 
interpreted as a decision to provoke the co-players, we see that Charlie, after the mistaken c, appears to 
Alice as an unconditional cooperator. After provoking Bob and Charlie by choosing d, Alice wants to make 
an apology, and Bob and Charlie want to punish her provocation. Their internal states thus correspond 
to (64, 1, 8). Understanding that Bob and Charlie are not unconditional cooperators, Alice accepts their 
punishment, whereby everyone returns to the full-trust state, i.e., (sA, sB, sC) = (0, 0, 0) . The recovery path 
is summarized as follows:

(c)	 For the third case, we have already considered such simultaneous two-bit error in Eq. (4). Alice falls into 
despair (‘9’) after Bob and Charlie’s simultaneous defection from full cooperation, and their states are given 
as (9, 72, 65). Bob and Charlie recognize their error and decide to cooperate due to the existence of ‘72’ 
and ‘65’. Alice tests them at (66, 0, 0), but we already know that this (66, 0, 0) ends up with full trust [see 
Eq. (6)]. The whole recovery path is thus given as follows:

(5)(0, 0, 0)
cdc

−−−−−−→
Bob’s error

(8, 64, 1)
ddd

−−−−−−→
Bob’s error

(76, 64, 67)
dcd
−−→ (0, 0, 0)

(6)(0, 0, 0)
cdc

−−−−−−→
Bob’s error

(8, 64, 1)
dcc

−−−−−−−−→
Charlie’s error

(66, 0, 0)
dcc
−→ (64, 1, 8)

cdd
−−→ (0, 0, 0).

Figure 6.   DFA minimization results of fully successful strategies for n = 3 public-goods game. One of the 
simplest and one of the most complex strategies are depicted in (a,b) respectively. The labels and the colours 
are given in the same way as in Fig. 4b. The dashed orange arrows indicate erroneous actions occurring while 
recovering mutual cooperation from one- and two-bit errors. The Greek letters correspond to the transitions 
shown in Fig. 7.
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Although c is prescribed by this FUSS at those newly added states, ‘72’ and ‘65’, it does not violate the defen-
sibility criterion because the states are accessible only by its player’s error, not by the co-players’ intention.

To sum up, the FUSS in Fig. 6 corrects every possible type of one- and two-bit error and therefore exhibits 
full efficiency. All the recovery paths discussed above are depicted together in Fig. 7.

Summary
In summary, we have investigated the working mechanism of successful strategies for two- and three-person 
social dilemmas by converting them from history-based representation to state-based one through the DFA 
minimization. The state-based representation suggests how a player’s internal state should interact with observed 
actions to make the strategy successful. The DFA minimization is especially effective when the number of players 
or the memory length increases because the history profile expands exponentially with them. It could also be 
useful when we evaluate the complexity of a strategy according to the number of states in its automaton represen-
tation. We thus believe that the method and the results presented in this paper serve as a solid and indispensable 
step toward future explorations of successful strategies for general n-person social dilemmas. Although successful 
strategies for n > 3 are yet to be found, they would share essential features or motifs with the automata for the 
two- and three-person cases.

Such understanding of solving an iterated n-person social dilemma sheds light on how to systematically man-
age collective action among self-interested players by using the shadow of future. We may consider a number of 
social phenomena such as voting and tax payments in the context of a social dilemma, but the most prominent 
example is found in the fight against climate change: One of the difficulties consists in the fact that it involves 
so many players who individually favour defection from collective efforts to reduce greenhouse-gas emissions. 
Even if a general consensus on cooperation exists on a global scale, it might often be hard to deal with occasional 
defectors in practice because one cannot tell if they have defected by accident or design. Our finding nevertheless 
implies a possibility to devise a successful solution by sharpening our intuition about when to retaliate against 
defection, when to accept punishment by way of apology, and when to maintain cooperation.

(7)(0, 0, 0)
cdd

−−−−−−−−−−−−→
Bob and Charlie’s error

(9, 72, 65)
dcc
−→ (66, 0, 0)

dcc
−→ (64, 1, 8)

cdd
−−→ (0, 0, 0).

Figure 7.   Paths for recovering mutual cooperation from one- and two-bit errors. At each node, we have 
specified which history profile it represents, together with the corresponding internal state in the state-based 
representation (see the node labels in Fig. 6). The label of an internal state is written in blue (red) if c (d) is 
prescribed at the state. This figure contains all the possibilities up to permutation of the players. The symbols 
‘B’ and ‘C’ in the shaded rectangles indicate who committed implementation error. The orange Greek letters 
correspond to those in Fig. 6.
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Data availability
The source code for this study is available at https​://githu​b.com/yohm/sim_autom​aton_succe​ssful​_strat​egies​.
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