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Rapid climate change is associated with frequent extreme heat events and the

resulting thermal stress has consequences for the health, welfare, and growth of

farm animals. The aim of this study was to characterize the transcriptional

changes and the effects on energy metabolism in proliferating porcine

myoblasts derived from piglets of different ages, representing differences in

thermoregulatory abilities, and cultivated below (35°C) and above (39°C, 41°C)

the standard cultivation temperature (37°C). Satellite cells originating from

Musculus rhomboideus of piglets isolated on days 5 (P5, thermolabile) and

20 (P20, thermostable) of age were used. Our expression analyses highlighted

differentially expressed genes in porcine myoblasts cultures under heat or cold

induced stress. These gene sets showed enrichment for biological processes

and pathways related to organelle fission, cell cycle, chromosome organization,

and DNA replication. Culture at 35°C resulted in increasedmetabolic flux as well

as a greater abundance of transcripts of the cold shock protein-encoding gene

RBM3 and those of genes related to biological processes and signaling

pathways, especially those involving the immune system (cytokine–cytokine

receptor interaction, TNF and IL-17 signaling pathways). For cultivation at 39°C,

differences in the expression of genes related to DNA replication and cell

growth were identified. The highest glutathione index ratio was also found

under 39°C. Meanwhile, cultivation at 41°C induced a heat stress response,

including the upregulation of HSP70 expression and the downregulation of

many biological processes and signaling pathways related to proliferative ability.

Our analysis also identified differentially expressed genes between cells of

donors with a not yet (P5) and already fully developed (P20) capacity for

thermoregulation at different cultivation temperatures. When comparing

P5 and P20, most of the changes in gene expression were detected at 37°C.

At this optimal temperature, muscle cells can develop to their full capacity.

Therefore, the most diverse molecular signaling pathways, including PI3K-Akt

signaling, Wnt signaling, and EGFR tyrosine kinase inhibitor, were found and are

more pronounced in muscle cells from 20-day-old piglets. These results

contribute to a better understanding of the mechanisms underlying the

adaptation of skeletal muscle cells to temperature stress in terms of their

thermoregulatory ability.
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Introduction

Climate change exerts multidimensional effects on food and

agricultural systems, thereby strongly influencing crop and

livestock productivity (Schmidhuber and Tubiello, 2007).

Thermal stress may occur under warm and cold

environments. This type of stress has led to corresponding

hazards due to the increasing number of extreme heat events

worldwide, which in turn pose an increased risk to the growth,

health, and welfare of animals in farming systems (St-Pierre et al.,

2003; Baumgard and Rhoads 2013; Horton et al., 2016). Newborn

piglets cannot maintain their body temperature in the first week

of life (Curtis and Rogler 1970) due to lack of brown adipose

tissue (Trayhurn et al., 1989; Herpin et al., 2002). Changes of the

climatic and nutritional environment play an important role

during this period (Schmidt and Herpin 1998). Several in vivo

studies have investigated the effects of heat stress on the

physiology (Le Bellego et al., 2002; Patience et al., 2005; Hao

et al., 2014), proteomic profile (Cruzen et al., 2015) and

epigenomic profile (Hao et al., 2016) in pigs.

The microenvironment of the myofibres (stem cell niche)

largely directs satellite cell functions. The natural environment of

the muscle fiber type and its origin play an important role in

controlling satellite cell properties (Zhu et al., 2013).

Additionally, donor age and species differences can affect the

myogenic capacity of satellite cells in vitro (Gonzalez et al., 2020),

while the environment can modulate satellite cell sensitivity to

thermal stress. Heat stress can affect the differentiation,

proliferation, muscle fiber type, protein turnover, and

abundance of heat shock proteins in muscle satellite cells of

pigs and chickens as well as in C2C12 myoblasts, an

immortalized mouse myoblast cell line (Yamaguchi et al.,

2010; Kamanga-Sollo et al., 2011). Muscle metabolism and

contractile function are also sensitive to changes in

temperature (James 2013). Low temperatures can lead to an

energy deficit in skeletal muscle cells, resulting in an increase in

mitochondrial biogenesis and ATP production (Jäger et al., 2007;

Lira et al., 2010). Relatively few studies have utilized primary

muscle cell cultures derived from satellite cells from farm animals

to investigate the effects of temperature. Kamanga-Sollo et al.

(2011) and Gao et al. (2015) investigated the effects of heat stress

by a single high temperature stimulus in porcine satellite cell

cultures. Meanwhile, Reed and colleagues investigated the effect

of thermal stress (33°C or 43°C vs. 38°C) on the transcriptome of

turkey muscle satellite cells at the proliferation (Reed et al.,

2017a) and differentiating (Reed et al., 2017b) stages.

We hypothesize that satellite cell-derived cell cultures are

able to mimic muscular adaptation to temperature stress as well

as exhibit distinct gene expression patterns that reflect their

developmental commitment and influence their responsiveness

to thermal stress. Therefore, we cultured proliferating myoblasts

below (35°C) and above (39°C and 41°C, respectively) the

standard cultivation temperature (37°C) and evaluated the

effects on the transcriptome, oxidative stress and energetic

metabolism, using our well-established cell pooling approach

(Metzger et al., 2020). We also investigated the molecular

changes occurring in cultures of porcine primary muscle cells

originating from donor piglets with different capacities for

thermoregulation and cultured under different temperatures.

Materials and methods

Cell culture

The isolation of satellite cells from the kursivM. rhomboideus

of 10 female five- and 20 days old piglets and the establishment

and validation of two muscle cell pools (P5, n = 10; P20, n = 10)

were performed as previously described (Metzger et al., 2020).

For proliferation experiments cells from both pools stored in

liquid nitrogen were defrosted and cultured for 72 h at 35°, 37°

(control), 39° or 41°C in growth medium with one medium

change after 48 h as described by Metzger et al. (2021). A

total of 1 × 106 cells from each pool were seeded in 100-mm

gelatin-coated culture dishes (Sarsted, Nümbrecht, Germany) for

microarray analysis. To explore mitochondrial and glycolytic

functional changes, 2,000 cells/well and 20 wells per pool per

replicate (Seahorse XFp plate, OLS, Bremen, Germany) were

used. To estimate the ratio of reduced glutathione (GSH) to

oxidized glutathione (GSSG), 3,000 cells/well and 10 wells per

pool per replicate were used (96 well-microplates, Sarstedt).

Three replicates were generated for each experiment.

RNA isolation, microarray experiment and
analyses

Total RNA was isolated from cells after 72 h of proliferative

growth using TRIzol reagent (Sigma-Aldrich) and a RNeasyMini

Kit (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. Porcine Snowball Microarrays (Affymetrix, Thermo

Fisher Scientific, Schwerte, Germany) containing 47,880 probe-

sets were used in this study. For cDNA synthesis, 500 ng of total

RNA was used and subsequent biotin labelling was performed

with the Affymetrix WT plus Expression Kit (Affymetrix) and

Genechip WT terminal labeling and hybridization Kit

(Affymetrix) according to the manufacturer’s instructions. A

total of 24 label cRNA samples (n = 12 per pool) were

hybridized on the microarrays. Afterwards washing and

scanning was performed according to manufacturer’s
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recommendations. Quality control was performed using

Affymetrix GCOC 1.1.1. software. Expression Console

software was used for robust multichip average (RMA)

normalization and the detection above background (DABG)

algorithm was used to detect the genes that were present.

Probe sets with low signal and those that were present in less

than 80% of the samples within each temperature group were

excluded. After filtering, 13,226 probe sets were finally used for

further analyses.

Differential expression analysis was performed using mixed

model analysis in JMP genomics (version 9, SAS Institute Inc.,

Cary, NC, United States). Temperature (35°, 37°, 39° or 41°C),

pool (P5 or P 20) and the interaction of pool and temperature

were used as fixed factors. Differences between least square

means (LSMs) were analyzed using Tukey-Kramer tests

Adjustments for multiple comparisons were performed using

the Benjamini and Hochberg (1995), and a corrected p-value

threshold of 0.05 was set as the false discovery rate (FDR).

Functional annotation of differentially
expressed genes

To identify relevant functional categories across

temperatures, pools, and pools under specific temperatures,

gene ontology (GO) and KEGG pathway enrichment analysis

of differentially expressed genes (DEGs) was performed using

WebGestalt 2019 [WEB-based Gene SeT AnaLysis Toolkit (Liao

et al., 2019)] and DAVID (v. 6.8). For DAVID, right-sided

hypergeometric tests were used to calculate the p-values, while

dot-plots generated using the R package ggplot2 were used to

visualize the DAVID enrichment analysis results. p ≤ 0.05 was

considered significant for biological processes and KEGG

pathways.

Validation of microarray results

Quantitative real-time PCR (qPCR) was used for the

evaluation of the microarray results. RNA isolation, reserve

transcription, and qPCR were performed as described by

Kalbe et al. (2008, 2018) with following primers: amphiregulin

(AREG, Kalbe et al., 2018), myosin heavy chain 3 (MYH3, Da

Costa et al., 2002), TATA-box binding protein (TBP, Erkens et

al., 2006), actin beta (ACTB, F - 5′ CTGGCACCACACCTTCTA
C - GGGTCATCTTCTCACGGTTG 3′), proliferating cell

nuclear antigen (PCNA, Metzger et al., 2021), hypoxanthine

phosphoribosyltransferase 1 (HPRT1, Erkens et al., 2006), heat

shock protein 70 (HSP70, Kamanga-Sollo et al., 2011), insulin

like growth factor binding protein 5 (IGFBP5, Rehfeldt et al.,

2012) desmin (DES, Wilschut et al., 2008), follistatin (FST,

Rehfeldt et al., 2012) 18S ribosomal RNA (RN18S, Lin et al.,

2001) and histidine decarboxylase (HDC, D’Astous-Pagé et al.,

2017). Normalization of qPCR data was performed with the

endogenous reference gene RN18S, which was unaffected by the

temperature (p = 0.121), by pool (p = 0.281) or by the interaction

between temperature and pool (p = 0.656). The LSM ± standard

errors (SE) of four genes AREG, PCNA, MYH3, and HSP70 have

FIGURE 1
Volcano plots of differentially expressed genes (DEGs) of
porcinemyoblasts after 72 h of permanent cultivation at (A) 35°, (B)
39° and (C) 41°C compared to 37°C. The double filtering criteria are
indicated by horizontal (FDR <0.05) and vertical [FC: > log2
(0.5) or < log2 (−0.5)] black lines. Blue dots represent transcripts
with lower abundance (downregulated), and red dots with higher
abundance (upregulated) at 35°, 39°, and 41°C compared to 37°C.
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been published before (Metzger et al., 2021) and was used for

correlation analysis in the present study. Statistical analysis of

qPCR data and Pearson’s correlation coefficient (r) analysis was

performed in SAS v. 9.4 (SAS Institute Inc.).

Bioenergetics assay and ratio of reduced/
oxidized glutathione

Mitochondrial and glycolytic functions were analyzed using

the Seahorse XFp Extracellular Metabolic Flux Analyzer, as

described in Sajjanar et al. (2019). Mitochondrial function was

assessed by the determination of the oxygen consumption rate

(OCR, pmol/min/µg of protein), which included non-

mitochondrial respiration, basal respiration, maximal

respiration, proton leak, ATP production, and spare

respiratory capacity. Whereas, the glycolytic functions of the

cells were given as extracellular acidification rate (ECAR, mpH/

min/µg of protein) including non-glycolytic acidification,

glycolytic capacity, glycolysis and glycolytic reserve. The ratio

of the reduced glutathione (GSH) and oxidized (GSSG)

glutathione was determined by using the GSH/GSSG-GloTM

Assay Kit (Promega, Walldorf, Germany) following the

manufacturer’s instructions for adherent cells. For statistical

analysis, data were subjected to analysis of variance using the

MIXED procedure in SAS (version 9.4, SAS Institute Inc.). Pool

(P5 or P20), temperature (35°, 37°, 39° or 41°C) and interaction of

temperature and pool were used as fixed factors. Differences

between the LSMs were analyzed using Tukey-Kramer tests. p <
0.05 were considered significant.

Results

The effect of cultivation temperature on
the transcriptome

The microarray-based expression profiles of myoblasts after

72 h of proliferation at 35, 39, and 41°C were compared with

those cultured at the standard cultivation temperature of 37°C

(Supplementary Table S1) and the distribution of DEGs was

visualized in volcano plots (Figure 1). At 35°C (Figure 1A), a total

of 1,683 DEGs were found, 946 of which were upregulated and

737 downregulated. At 39 °C (Figure 1B), meanwhile,

1,712 DEGs were identified, 1,023 of which were upregulated

and 689 downregulated. Most DEGs (3,178) were found when

comparing myoblasts grown under 41°C with those cultured at

37°C (Figure 1C); of these, 1,565 were upregulated and 1,613 were

downregulated. In addition, 512 overlapping DEGs were found

among the different experimental temperature regimes

(Figure 2A). For the heatmap (Figure 2B), 11 DEGs were

selected that were associated with muscle structure (DES,

ACTB, LMNA), proliferation [topoisomerase 2 alpha

(TOP2A), PCNA], immune responses [tumour necrosis factor

alpha (TNFA), NFKB1], and prostaglandin biosynthesis

(prostaglandin-endoperoxide synthase 2) PTGS2, IGF1, and

AREG are growth factors and RNA-binding motif protein 3

(RBM3) is a cold-shock marker.

We used DEGs from each comparison of cultured

proliferating myoblasts (35, 39, or 41°C vs. 37°C) for GO and

KEGG pathway enrichment analysis (Figure 3 and

Supplementary Table S2). For biological process (BP), the

DEGs were found to be enriched in organelle fission, cell

cycle, and chromosome organization for all three

comparisons. Meanwhile, at the two temperatures above the

37°C reference, the DEGs were mostly associated with the

molecular function (MF) of growth factor receptor binding

and the DNA packaging complex and chromosome cellular

components (CC).

FIGURE 2
Visualization of differentially expressed genes (DEGs) of
porcine myoblasts after 72 h of permanent cultivation at 35°, 39°,
and 41°C compared to 37°C. Venn diagram (A) shows the number
of DEGs for each temperature and the overlapping DEGs
between different temperatures (purple 41°C vs. 37°C, green 39°C
vs. 37°C and blue 35°C vs. 37°C). Heatmap (B) of 11 DEGs
(FDR <0.05) for different permanent cultivation temperatures. The
heatmap was generated using hierarchical clustering method of
heatmap.2 function of ggplot2 (version 3.3.5, Wickham 2016) in
the R Programming environment (version 4.0.3).
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At 35°C, myoblasts showed an enrichment of DEGs

associated with the immune response, RNA processing,

regulation of immune system process, and regulation of multi-

organism process. Specifically, the DEGs in myoblasts cultured at

35°C (low-temperature stress) were enriched in the KEGG

pathways of cytokine–cytokine receptor interaction,

interleukin 17 (IL-17) signaling pathway, cell cycle, DNA

replication, signaling pathway, and TNF signaling pathway.

GO enrichment analysis showed that, at 39°C, DEGs were

enriched in the biological process of protein-DNA complex

subunit organization and the cellular components

ribonucleoprotein complex, vesicle, and Golgi apparatus. At

39°C, one KEGG pathway was identified, namely, DNA

replication. The most enriched GO terms for the DEGs in

myoblasts cultured at 41°C compared with those cultured at

37°C were heterogeneous and included regulation of signaling

receptor activity, cell division, regulation of organelle

organization, chromosome segregation, response to organic

cyclic compound, reproduction, response to lipid,

cytoskeleton, signaling receptor regulator activity, and kinase

binding. For the highest temperature tested (41°C), three KEGG

pathways were prominently represented—DNA replication, cell

cycle, and pyrimidine metabolism.

The effect of donor piglet age on the
transcriptome and the interaction of
donor piglet age with temperature

A total of 503 DEGs were detected between P5 and P20 after

72 h of proliferation at 35, 37, 39, or 41°C, 340 of which were

upregulated and 163 downregulated (Supplementary Table S3). For

the interaction (Supplementary Table S4) between P5 and P20 at

35°C, a total of 78 DEGs were found, with 40 being upregulated and

FIGURE 3
Enriched gene ontology (GO) terms of biological process (BP), molecular function (MF) and cellular component (CC) and Enriched Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathways assigned to myoblasts after 72 h of proliferation permanently cultured at 35°, 39°, or 41°C
compared to 37°C. The dot size embodies the number of transcripts involved in each GO term of biological process (BP), molecular function (MF),
cellular component (CC) and KEGG pathway, whereas the dot’s color indicates the p-value.
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38 downregulated. A total of 198 DEGs were detected for the

interaction between the pools at 37°C, 145 of which were

upregulated and 53 downregulated. For the interaction between

the two pools at 39°C, 51 upregulated and 87 downregulated DEGs

(a total of 138) were identified. At 41°C, 119 DEGs were found, with

73 being upregulated and 46 downregulated.

When comparing the transcriptomes of the donor cell pools

(P5 and P20), the identified DEGs were found to be enriched in

key biological processes that included regulation of signal

transduction, regulation of protein metabolism, regulation of

gene expression, regulation of biological processes, positive

regulation of metabolic processes, nervous system

development, developmental processes, cell differentiation, and

biological regulation (Figure 4A, Supplementary Table S5). Our

analysis further revealed several key DEGs enriched in several

KEGG pathways, including the Ras signaling pathway, the

Rap1 signaling pathway, the PPAR signaling pathway, the

PI3K-Akt signaling pathway, glycosaminoglycan biosynthesis,

focal adhesion, EGFR tyrosine kinase inhibitor resistance, and

ECM-receptor interaction (Figure 4B, Supplementary Table S5).

We also undertook a functional annotation analysis of the

interaction of culture temperature with the two donor cell pools.

Detailed information regarding the biological processes associated

with the DEGs for each interaction between pool and temperature is

shown in Figure 4A and Supplementary Table S5. Most DEGs

between P5 and P20 were found with cultivation under the control

temperature (37°C) and were enriched in biological processes such

as cellular development, cell differentiation, system development,

biological regulation, anatomical structuremorphogenesis, organelle

organization, positive regulation of biological process, and

developmental process. Interestingly, under cultivation at 39°C,

the DEGs between P5 and P20 were also associated with positive

regulation of biological process, positive regulation of cellular

process, and developmental process. For the interaction of pools

at cultivation temperatures above 37°C, the identified DEGs were

enriched in the biological processes of signaling and cellular

response to stimulus. For the interaction of pools at the low

cultivation temperature (35°C), the genes found to be

differentially expressed were enriched in biological processes

related to RNA metabolic process, tissue development, and

regulation of biological quality, homeostatic process, response to

external stimuli, nitrogen compound metabolic process, organelle

organization, and gene expression.

Important KEGG pathways affected by the donor piglet age

(P5 and P20) under different cultivation temperatures were

identified (Figure 4B). For the interaction between P5 and

P20 under the cultivation temperature of 35°C, the DEGs were

enriched in the ferroptosis and pentose phosphate pathways.

Analysis of the interaction of P5 and P20 with culture at the

control temperature (37°C) identified pathways associated with

EGFR tyrosine kinase inhibitor resistance, viral myocarditis,

PI3K-Akt signaling, focal adhesion, PPAR signaling, signaling

pathways regulating the pluripotency of stem cells, mTOR

signaling, leukocyte transendothelial migration, Wnt signaling,

FIGURE 4
Gene Ontology (A) and KEGG pathway (B) enrichment analysis of DEGs between P5 vs. P20 at different temperatures. DEGs between P5 vs.
P20 at different temperatures were subjected to DAVID (version.6.8) for functional annotation enrichment analysis. The dot size embodies the
number of transcripts involved in each biological process and KEGG pathway, whereas the dot’s color indicates the p-value.
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and tight junction. Most transcripts in these pathways were

upregulated in P20. For the interaction between P5 and

P20 under the cultivation temperature of 39°C, the DEGs were

found to be associated with the hypertrophic cardiomyopathy and

dilated cardiomyopathy pathways. At 41°C, meanwhile, the DEGs

were enriched in the MAPK signaling pathway, the apelin signaling

pathway, the PPAR signaling pathway, cardiac muscle contraction,

hypertrophic cardiomyopathy, and dilated cardiomyopathy.

Eleven genes were selected for the validation of the microarray

data by qPCR (Supplementary Table S6). The mRNA expression

data are shown in Supplementary Table S6. The 11 genes perform a

variety of functions in different molecular pathways in skeletal

muscle. MYH3, DES, and ACTB are involved in muscle

structure; AREG, IGFBP5, and FST are growth factors or their

binding proteins; and HSP70 is a heat shock protein. The TBP,

HPRT1, and PCNA genes are associated with mitogenesis and

proliferation and the HDC gene is associated with amino acid

transport. The microarray and qPCR data showed a high

correlation based on Pearson’s correlation coefficient (r), as

follows: MYH3 (r = 0.998, p < 0.001), DES (r = 0.961, p < 0.05),

ACTB (r = 0.967, p < 0.05), AREG (r = 0.963, p < 0.05), IGFBP5 (r =

0.948, p < 0.05), FST (r = 0.972, p < 0.05), HSP70 (r = 0.967, p <
0.05), TBP (r = 0.948, p < 0.05),HPRT1 (r = 0.991, p < 0.01), PCNA

(r = 0.977, p < 0.05), and HDC (r = 0.977, p < 0.05).

The effect of cultivation temperature on
mitochondrial function

For the evaluation of metabolic flux, we next measured the

OCR of the myoblasts (Figure 5 and Supplementary Table S7).

The levels of non-mitochondrial respiration were affected by

temperature (p < 0.001) and pool (p < 0.01). The highest levels

were detected at 35°C (p < 0.001 for all comparisons).

Additionally, non-mitochondrial respiration levels were higher

in P5 (1.053 ± 0.065 pmol/min/µg of protein) than in P20

(0.754 ± 0.064 pmol/min/µg of protein). Basal respiration

levels were affected by temperature (p < 0.05) but not pool.

Basal respiration at 35°C was higher than that at 41°C (p < 0.05)

but not at 37°C or 39°C. Similarly, maximal respiration levels

were affected by temperature (p < 0.01) but not pool (p < 0.10).

The highest respiration levels were recorded at 35°C (p < 0.05 vs.

all the other groups). Proton leak levels were affected by

temperature (p < 0.01) but not pool, and were higher at 35°C

than at 37 and 41°C (p < 0.05 for both), but not at 39°C. ATP

production levels displayed the same trend as the proton leak

levels (p < 0.01). The spare respiratory capacity was unaffected by

temperature or pool. However, spare respiratory capacity at 35°C

was higher than that at 41°C (p < 0.05). None of the above

parameters were affected by temperature/pool interaction.

FIGURE 5
Metabolic flux in porcine myoblasts after 72 h proliferation at 35°, 37°, 39°, and 41°C. The non-mitochondrial respiration, basal respiration,
maximal respiration, proton leak, ATP production and spare respiratory capacity were calculated using the Cell Mito Stress Test Kit. Data (LSM ± SE)
were obtained from 10 wells per pool in each of three independent experiments. (***p < 0.001, **p < 0.01, *p < 0.05).
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The effect of cultivation temperature on
glycolysis and glutathione levels

For the characterization of glycolytic stress, ECAR levels were

measured at different points (Figure 6 and Supplementary Table

S7). The levels of non-glycolytic acidification were affected by

temperature (p < 0.05) but not pool or their interaction. The

levels of non-glycolytic acidification were significantly higher at

35°C than at 37°C or 41°C (p < 0.05) but not 39°C. For glycolytic

capacity, glycolysis and glycolytic reserve were unaffected by

temperature, pool or their interaction.

GSH is an important scavenger of reactive oxygen species

(ROS). The GSH/GSSG ratio is a valuable biomarker of oxidative

stress and was found to be affected by temperature (p < 0.05) but

not pool or temperature/pool interaction. The only difference

was found between the two highest culture temperatures, with a

higher ratio being detected at 39°C than at 41°C (p < 0.05). The

results are shown in Supplementary Table S7.

Discussion

Porcine myoblasts were cultured for 72 h at 35°, 37°, 39°, or

41°C, with 37°C being the standard cultivation temperature, and

used as a reference in comparisons. In our previous study, we

showed that 37°C–39°C represents the physiological range for

porcine primary muscle cell culture. We have previously used cell

pooling methods that allow the undertaking of long-term

projects involving a wide range of experiments and numerous

replications (Metzger et al., 2020), and this cell pooling method

was found to reflect the average proliferative growth behavior of

non-pooled cells (Metzger et al., 2020). Accordingly, for this

experiment, we used cell pools derived from different animals,

although this is a limitation to recognize the biological variability

between the different cell donors.

A cultivation temperature of 41°C induces heat stress,

whereas cultivation at 35°C results in immature myoblasts

(Metzger et al., 2021). In the turkey, a cultivation of

proliferating myoblasts and differentiating myotubes below

and above the standard cultivation temperature leads to

differences in the transcriptomic profiles of the cells (Reed

et al., 2017a; Reed et al., 2017b). To the best of our

knowledge, this is the first study to examine the effect of

temperature stress and the interaction of thermal stress with

donor age on the transcriptomic profile and mitochondrial and

glycolytic cell functions of myogenic porcine cells.

The effects of cultivation at temperatures
below 37°C

Studies involving the culture of primary muscle cells below

the standard cultivation temperature are rare. Most have been

undertaken using primary muscle cells from birds such as the

chicken or turkey (Harding et al., 2015; Clark et al., 2016;

Harding et al., 2016; Clark et al., 2017). We have previously

shown that porcine myoblasts can proliferate at 35°C but exhibit

a different myogenic profile, characterized by higher mRNA

expression levels of PAX7, PCNA, MYF5, and MYOD and

higher rates of DNA synthesis, relative to myoblasts cultured

FIGURE 6
Glycolytic flux in porcine myoblasts after 72 h proliferation at 35°, 37°, 39°, and 41°C. The non-glycolytic acidification, glycolytic capacity,
glycolysis, and glycolytic reserve were calculated using the Glyco Stress Test Kit. Data (LSM ± SE) were obtained from 10 wells per pool in each of
three independent experiments. (*p < 0.05).
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at 37°C (Metzger et al., 2021). This stands in line with the

enriched GO terms (cell cycle, RNA processing and RNA

binding) in the present study. KEGG enrichment analysis

further revealed that DNA replication- and cell cycle-related

pathways were affected by cultivation at the low temperature.

Additionally, we detected an increase in the levels of RBM3,

which encodes a member of the family of cold shock proteins

(Sonna et al., 2002). Ferry et al. (2011) induced a cold response in

C2C12 myoblasts and also observed an increase in RBM3 protein

expression. In the present study, we found that desmin (DES)

levels were also reduced, and it is known that DES filament

formation can be reduced by lower temperature (Chou et al.,

1990). Culture of primary pig muscles at 35°C appears to induce

an inflammatory response. KEGG enrichment analysis showed

that the DEGs between myoblasts cultured at 35°C and those

cultured at the control temperature were enriched in the TNF

pathway, IL-17 pathway, and cytokine–cytokine receptor

interaction, while regulation of the immune system was

enriched as a GO term. TNFA, a pro-inflammatory (Nakano

et al., 2006) cytokine, was also highly expressed in myoblasts

cultured at 35°C. Other molecular pathways, especially signalling

pathways, were also regulated at 35°C. These findings further

support those of a previous study, that signaling pathways

involved in cell signaling/signal transduction and cell

communication/signal transduction are altered in cold-

exposed satellite cells (Reed et al., 2017a).

In addition, we found an upregulation of prostaglandin-

endoperoxide synthase 2 (PTGS2), which codes for a pro/anti-

inflammatory enzyme (Funk 2001; Kadotani et al., 2009).

PTGS2 is also an oxidation-associated genes and is used as a

biomarker for ferrotosis (Yang et al., 2014). The upregulation of

acyl-CoA synthetase long chain family member 4 (ACSL4)

expression is also associated with sensitivity to ferroptosis (Yuan

et al., 2016) and also occurs under cold temperatures, as shown in

the present study. Guttridge et al. (2000) demonstrated that

overexpression of TNFA activates nuclear factor-kappa B (NF-

κB) in differentiating C2C12 myotubes. Similarly, in this study,

we found that TNFA and NFKB1 expression was upregulated in

myoblasts cultured at 35°C. Further evidence that cold exposure

stimulates the expression of TNFA in skeletal muscle was provided

by Bal et al. (2017). Furthermore, TNFA/NFKB1 signalling in

mitochondria was shown to be mediated via autoxidation at

complex I or II of the respiratory chain in C2C12 myotubes (Li

et al., 1999). Little and Seebacher (2016) showed that murine

C2C12 myoblasts cultured at 32°C exhibit higher metabolic flux

than those cultured at 37°C. This is comparable to the higher OCR

values detected in our myoblasts cultured at 35°C. In addition, we

previously (Metzger et al., 2021) showed that the mRNA expression

of peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PPARGC1A), a known transcriptional co-activator involved

in mitochondriogenesis and mitochondrial energy metabolism

(Quesnel et al., 2019), was higher in myoblasts continuously

cultured at 35°C than in those cultured at 37°C.

The effects of cultivation at temperatures
above 37°C

The DEGs between porcine primary muscle cells cultured at

39°C and those cultured under the standard cultivation

temperature (37°C) were primarily assigned to the GO terms

of cell cycle, chromosome, DNA packaging complex,

ribonucleoprotein complex, chromosome organization,

protein-DNA complex subunit organization, Golgi apparatus,

and vesicle.

The Golgi apparatus contributes to several cellular processes,

including mitosis, DNA repair, receptor signaling and cytoskeletal

regulation while Golgi-derived vesicles are key components of the

intracellular communication machinery (Kalkarni-Gosavi et al.,

2019). This was in line with the identified KEGG pathway of

DNA replication and was also in agreement with the higher

DNA content found in myoblasts cultured for 72 h at 39°C

relative to those cultured at 37°C in the present study, as well as

the lower PCNA mRNA expression levels observed in our previous

study (Metzger et al., 2021). Another GO term that was enriched in

porcine primary myoblasts cultivated at 39°C compared with those

cultured at 37°C was growth factor receptor binding. Higher growth

factor receptor expression (epidermal growth factor receptor

(EGFR) and insulin-like growth factor 1 receptor (IGF1R)) with

cultivation at 39°C was also found in our former study (Metzger

et al., 2021). The products of both genes are known stimulators of

DNA replication (Clemmons 1984; Zetterberg et al., 1984; Inoue

et al., 2005; Xie et al., 2014), which is in line with the identified

KEGG pathway.

After culture at 41°C for 72 h, we found that the expression of

HSPswas increased, likely as part of a heat shock response, similar to

that reported for other studies on porcine muscle cells (Kamanga-

Sollo et al., 2011; Gao et al., 2015; Metzger et al., 2021). In addition,

beside the higher expression of HSPs, the expression of RBM3 was

downregulated (Zeng et al., 2009), which was found in the present

study. Furthermore, 41°C seemed to increase the production of

reactive oxygen species (ROS) but only compared to the ratio of

GSSG/GHS to 39°C. Heat stress can induce mitochondrial

superoxide and intracellular ROS overproduction in cultured

muscle cells (Rosado Montilla et al., 2014; Kikusato et al., 2015).

In addition, after continuous culture at 41°C, biological processes

and down-regulated KEGG pathways including pyrimidine

metabolism were enriched, which includes all enzymes involved

in the synthesis, degradation, salvage, transformation, and transport

of DNA, RNA, lipids, and carbohydrates (Garavito et al., 2015).

Combined, these findings imply the gradual termination ofmyoblast

proliferation. Cell cycle arrest after heat stress in porcine primary

muscle cells was also found by Gao et al. (2015). In addition, we

detected a marked downregulation of TOP2A expression in

myoblasts cultured at 41°C. TOP2A is a DNA topoisomerase

that is associated with RNA polymerase II holoenzyme and is a

necessary component of chromatin-dependent coactivation

(Mondal and Parvin 2001). Hyperthermia treatment in HeLa
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S3 cells (15 min at 44°C) resulted in a reduced availability of TOP2A

and decreased cytotoxicity (Kampinga (1995), whereas at a later

stage in DNA damage processing protection by HSPs

overexpression were observed (Li 1987). These observations are

in line with our previous study (Metzger et al., 2021) where we found

that the expression of HSPs was increased without a concomitant

change in the levels of lactate dehydrogenase (LDH), amarker of cell

death, after 72 h of proliferation at 41°C. In addition, the lower

expression of MYOD at 41°C observed in our previous study

(Metzger et al., 2021) was indicative of prominent myoblast

maturity. Previous studies also reported that when exposed to

heat, myoblasts exhibit changes in the expression of genes related

to muscle system development and differentiation (Reed et al.,

2017a). Similarly, we identified a GO term of the cytoskeleton

with the down-regulation of LMNA, a type V intermediate

filament protein. Frock et al. (2005) showed that a reduction in

LMNA levels resulted in decreased DES and MYOD expression in

primary muscle cell cultures. As mentioned above, we also found

that MYOD mRNA expression was reduced in our previous study

(Metzger et al., 2021), while DES mRNA levels were found to be

reduced in the present study. These results support the more

differentiated phenotype of myoblasts at the cultivation

temperature of 41°C, as evidenced by the presence of finger-like

protrusions and an increase in cell size (Metzger et al., 2021).

The effect of donor piglet age and its
interaction with temperature

Thermoregulation is the ability to balance heat production and

heat loss to maintain body temperature within a certain normal

range, which in pigs is between 38 and 40°C, with an average of

38.8°C.Maintaining a neutral thermal environment is among of the

most important physiological challenges, especially for newborn

piglets. Maintaining body temperature is most difficult from 0 to

7 days of age because the piglet has no brown fat to quickly generate

heat. Accordingly, we used piglets at 5 and 20 days of age,

representing donors with a not yet (P5) or already fully

developed (P20) capacity for thermoregulation. Understanding

the biological effect of temperature stress on muscle cells in

aging is important, especially in new-born piglets, which are still

sensitive to environmental temperatures. Satellite cell activity was

reported to be affected by the origin of donor cells, such as those

obtained following maternal nutrient restriction or intrauterine

growth restriction (Yates et al., 2014; Raja et al., 2016). Previous

study reviewed that skeletal muscle satellite cells derived from

different muscle types and different animal selected lines exert

differential effects on adipogenesis when thermally challenged

(Harding et al., 2015; Clark et al., 2017). Satellite cells isolated

from different turkey lines display heterogeneous proliferation and

differentiation abilities (Velleman et al., 2000) as well as different

sensitivities to temperature changes during proliferation and

differentiation (Harding et al., 2015; Reed et al., 2017a).

Notably, studies investigating donor age-dependent

thermoregulatory capacity remain limited.

Our study also focused on identifying differences in the

transcriptomic profiles of porcine muscle cells derived from

donor piglets of different ages and continuously cultured at

35, 37 (control), 39, or 41°C. Most of molecular pathways

changes when comparing cells of P5 vs. P20 were found at

37°C. At this optimal temperature, the muscle cells can

develop to their full capacity and show the most different

molecular pathways including PPAR signaling, PI3K-Akt

signaling, Wnt signaling pathways and EGFR tyrosine kinase

inhibitor. Most of the transcripts enriched in these pathways

were more highly expressed in P20 than in P5. However, only

small changes between P5 and P20 were detected at temperatures

above or below 37°C. We found that the positive regulation of the

biological process, the positive regulation of the cellular process,

and the developmental process were also found at 39°C, the

physiological body temperature of the piglets, when comparing

P5 and P20. Interesting, at 35°C, the identified DEGs were

enriched in pentose phosphate pathway (PPP) as well as iron-

dependent lipid peroxidation (ferroptosis), which mediates

programmed cell death. The glutathione (GSH) system is the

main ferroptosis-limiting pathway (Chen et al., 2021). We found

significantly lower GSH level in P5 compare with P20 at 35°C (p <
0.001). The GSH:GSSG index, an indicator of oxidative stress,

tended to be higher in P20 (p < 0.08). These results suggested that

the muscle cells of a 5-day-old donor piglet are more susceptible

to ferroptosis when exposed to cold temperatures than those of

20-day-old piglets.

Conclusion

In this study, we focused on the transcriptional profile and

energy metabolism of primary porcine muscles derived from

piglets of different ages (P5 vs. P20) after continuous cultivation

for 72 h at 35, 39, or 41°C compared with that at 37°C, the

standard cultivation temperature.

Similar patterns of affected GO terms related to organelle

fission, cell cycle or chromosome organisation and the KEGG

pathway DNA replication were found at the three experimental

temperatures compared with cultivation at the control

temperature. Cultivation at 35°C stimulated transcriptional

responses in immune-related pathways, such as

cytokine–cytokine receptor interactions and the IL-17 and

TNF signaling pathways. Furthermore, cultivation at 35°C

leads to an increase in the expression of RBM3, which

encodes a cold-inducible mRNA binding protein, but not a

HSP-related response. At 39°C, in addition to cell growth,

other GO terms related to protein-DNA complex subunit

organization, ribonucleoprotein binding, vesicle, and Golgi

apparatus were found to be enriched, suggesting that

myoblasts were more developed and more highly structured at
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this temperature. Only cultivation at 41°C resulted in increased

expression of HSPs, indicative of induced heat shock and DNA

damage processing responses. The GO terms and pathways

associated with pyrimidine metabolism, cell cycle, DNA

replication, and cytoskeleton represent the termination of the

proliferative ability and cytoskeletal reorganization in porcine

myoblast after 72 h of continuous cultivation at 41 °C. When

comparing cells from animals of different ages (P5 vs. P20), most

molecular changes were found at the control temperature (37°C),

which is the optimal physiological temperature. Although only

subtle changes in transcript levels were recorded between P5 and

P20 at temperatures both above and below 37°C, we nevertheless

identified changes in gene expression patterns that reflect the

developmental fate of the myoblasts and influence their

responsiveness to thermal stress.
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