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ABSTRACT

Although single-cell sequencing has provided a pow-
erful tool to deconvolute cellular heterogeneity of
diseases like cancer, extrapolating clinical signifi-
cance or identifying clinically-relevant cells remains
challenging. Here, we propose a novel computa-
tional method scAB, which integrates single-cell ge-
nomics data with clinically annotated bulk sequenc-
ing data via a knowledge- and graph-guided matrix
factorization model. Once combined, scAB provides
a coarse- and fine-grain multiresolution perspective
of phenotype-associated cell states and prognostic
signatures previously not visible by single-cell ge-
nomics. We use scAB to enhance live cancer single-
cell RNA-seq data, identifying clinically-relevant pre-
viously unrecognized cancer and stromal cell sub-
sets whose signatures show a stronger poor-survival
association. The identified fine-grain cell subsets are
associated with distinct cancer hallmarks and prog-
nosis power. Furthermore, scAB demonstrates its
utility as a biomarker identification tool, with the
ability to predict immunotherapy, drug responses
and survival when applied to melanoma single-
cell RNA-seq datasets and glioma single-cell ATAC-
seq datasets. Across multiple single-cell and bulk
datasets from different cancer types, we also demon-
strate the superior performance of scAB in gener-
ating prognosis signatures and survival predictions
over existing models. Overall, scAB provides an effi-
cient tool for prioritizing clinically-relevant cell sub-
sets and predictive signatures, utilizing large pub-
licly available databases to improve prognosis and
treatments.

INTRODUCTION

Single-cell RNA sequencing, in particular single-cell RNA
sequencing (scRNA-seq) and single-cell ATAC sequencing
(scATAC-seq), has been widely adopted to dissect tissue
heterogeneity of human diseases like cancer at the reso-
lution of individual cells. While single-cell sequencing al-
lows detailed cataloging of cancer subpopulations and sur-
rounding niche cell subpopulations, its application to the
clinic is hampered due to the high cost and labor associ-
ated with single-cell sequencing of large cohorts (1). The
few cohorts with clinical information also make it difficult
to ascertain the statistical associations between these sub-
populations and clinical features such as survival and drug
responses. Such limitation analysis hampers efforts for early
prognosis and improved treatments of diseases. Therefore,
it is highly important to extract more useful information for
instructing precision diagnosis and treatment based on the
available multidimensional data.

Fortunately, the rich bulk sequencing data provides clin-
ical information of a large number of cohorts in pub-
licly available databases such as The Cancer Genome At-
las (TCGA), International Cancer Genome Consortium
(ICGC) (2), Genomics of Drug Sensitivity in Cancer
(GDSC) (3) and Chinese Glioma Genome Atlas (CGGA)
portal (4). To link the scRNA-seq derived subpopulations
with clinical response, one main approach in existing stud-
ies was to identify marker genes of subpopulations and
then assess their clinical significance using available bulk
RNA-seq data of patients and machine learning models
in survival analysis (5,6). Two recent methods scProgno-
sis (7) and scFeatures (8) infer features from scRNA-seq
data and assess the clinical significance using the selected
features. scPrognosis infers signature genes important in
the Epithelial-to-Mesenchymal Transition (EMT) biologi-
cal process, while scFeatures selects important features by
presenting a very nice way for multi-view molecular repre-
sentations of single-cell data. However, such approach lacks
a systematical way to identify all possible cell subpopula-
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tions with prognostic significance and may depend on the
pre-determined clustering results. Recently, Scissor (9) and
DEGAS (10) were developed to identify cell subpopulations
that were highly correlated with a given phenotype from
scRNA-seq data via a sparse regression model and deep
learning method, respectively. However, these two meth-
ods did not reveal the underlying patterns of phenotype-
associated cells, which might be associated with distinct
cancer hallmarks. More than ten cancer hallmarks have
been recognized (11), implying the heterogeneity and plas-
ticity of tumors and their associated microenvironments
in clinical implications. In addition, methods designed for
scATAC-seq data are lacking, preventing the identifica-
tion of phenotype-associated chromatin accessible sites and
transcription factors. Therefore, systematical identification
of cell subsets and their patterns with clinical significance
and distinct hallmarks in single-cell genomics remains chal-
lenging.

By integrating single-cell genomics And Bulk RNA se-
quencing data with phenotype information, here we pro-
pose a novel computational method called scAB. scAB links
single-cell genomics and bulk data via pairwise correla-
tions, and infers multiresolution cell states correlated with
patients’ phenotypes via a knowledge- and graph-guided
matrix factorization model. scAB can simultaneously dis-
sect multiresolution phenotype-associated cell states and
their predictive signatures. The multiresolution cell states
include both coarse- and fine-grain cell states, which re-
spectively correspond to all phenotype-associated cells and
distinct subsets of phenotype-associated cells with distinct
clinical significance. We apply scAB to several scRNA-seq
and scATAC-seq datasets, layering key clinical information
such as patient survival information and response to im-
munotherapeutic to efficiently resolve multiresolution cell
states and molecular signatures for clinical prognosis from
different modalities of single-cell genomics. In addition,
we show that scAB provides an alternative survival model
showing better performance over the traditional models
such as CoxBoost (Cox model by likelihood-based boost-
ing) and RSF (Random Survival Forests) when applying to
bulk RNA-seq data only. Overall, scAB provides an efficient
way to enhance the clinical power of single-cell genomics
data.

MATERIALS AND METHODS

scAB model

To identify phenotype-associated cells from single-cell ge-
nomics, we first link scRNA-seq or scATAC-seq data with
bulk RNA-seq data by computing Pearson’s correlations
based on the expression levels of shared genes. When taking
scATAC-seq as input, we assume similar patterns between
chromatin accessibility and gene expression, and trans-
form the chromatin accessibility data into the gene activity
data using ‘CreateGeneActivityMatrix’ function from Seu-
rat package. Then we infer a set of phenotype-associated
patterns by proposing a knowledge- and graph-guided ma-
trix factorization model that incorporates available pheno-
type information from bulk samples. In detail, the optimiza-

tion model of scAB is formulated as

min
W,H

‖X − WH‖2
F + α1 ‖SW‖2

F + α2tr
(
HLHT

)
s.t .W ≥ 0, H ≥ 0

(1)

where X ∈ R
n×m is the calculated correlation matrix with

rows representing n bulk samples and columns represent-
ing m individual cells. X is decomposed into a sample load-
ing matrix W ∈ R

n×k and a cell loading matrix H ∈ R
k×m.

The ‘tr’ denotes the trace of a matrix, which is defined as
the sum of its diagonal elements. k is the number of pat-
terns, i.e. the number of rows of H. Each pattern, which typ-
ically corresponds to a known biological process/signal as-
sociated with a particular phenotype of interest, is obtained
from each row of the resulted cell loading matrix H. α1 and
α2 are regularization parameters to balance each term re-
garding the phenotype information and the graph regular-
ization, respectively.

In the optimiation problem (Equation (1)), the second
term is the constraint of the phenotype information of
bulk samples (α1‖SW‖)).S = (si j )n×n is a diagonal matrix in
which small values represent the likelihood of bulk sam-
ples exhibiting the phenotype of interest (e.g, poor prog-
nosis or strong response). Thus, minimizing this constraint
allows the prioritization of phenotype-relevant bulk sam-
ples, which is reflected by large loading values of the bulk
samples in the matrix W. The phenotype un-relevant bulk
samples will be assigned with very small loading values (ap-
proximating to zeros) in W. In other words, matrix factor-
ization in the first term will focus on the phenotype-relevant
bulk samples. Then the high values in X lead to high load-
ing values in both W and H, resulting in the identification
of phenotype-relevant cells. In the scenario where the phe-
notype is binary group (e.g. response vs. non-response), sii
is assigned as 0 when the i-th sample is the phenotype of in-
terest; otherwise, sii is taken as 1. In the scenario where the
phenotype is survival information, we require the user to in-
put a two-column table including the survival time and sur-
vival state of each bulk sample. To develop a unified compu-
tational framework, we transform the survival information
to a single phenotype score of each patient, which is defined
as follow,

si j =
⎧⎨
⎩

1 − score(samplei )
max(score(samplei ))

, i = j

0, otherwise
.

where score(samplei) is the relative survival score of sam-
ple i that is computed using a generalized survival model
(12). Compared to the Cox model, the relative survival
score includes two additional survival cases, including early-
censored–late-uncensored pairs and early-censored–late-
censored pairs (Supplementary Table S1). In sum, such
transformation allows us to develop a coherent mathemati-
cal model regardless of the type of phenotype information.

In the optimiation problem (Equation (1)), the third term
is the graph regularization (α2tr (HLHT))). This term con-
strains the cell loading matrix H through the Laplacian
matrix L of the cell-cell similarity matrix, which is helpful
for identifying clinically relevant cells with high similarity.
Specifically, L is a symmetric normalized Laplacian matrix,
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which is defined as

L = D− 1
2 (D − A) D− 1

2 = I − D− 1
2 AD− 1

2 ,

where A = (ai j )m×mis the cell–cell similarity matrix given
by a shared nearest neighbor graph that is inferred by Seu-
rat package (13) (see ‘Preprocessing of single-cell RNA-seq
data’). D = (di j )m×mis the degree matrix of the cell–cell sim-
ilarity matrix, where dii = ∑m

j=1 ai j and di j = 0 for i �= j .

Optimization algorithm for scAB

The optimization problem (Equation (1)) is solved by a mul-
tiplicative update rule (14), which updates variables W and
H iteratively (Supplementary Text). The convergence of this
algorithm can be theoretically proven based on the auxiliary
function method (Supplementary Text).

Identification of coarse- and fine-grain phenotype-associated
cell states

After solving the optimization problem (Equation (1)), we
identify phenotype-associated cells based on the cell load-
ing matrix H. The loading values, which are the entries of
the matrix H, represent the contributions of each cell in each
pattern (corresponding to each row of H), and cells with
high loading values are defined as phenotype-associated
cells. We examine the distribution of loading values in each
pattern using Hartigan’s Dip Test (the ‘dip.test’ function
from the R package ‘diptest’). If the loading values exhibit a
unimodal distribution, the cells with a z-score greater than
2 are defined as phenotype-associated cells. Specifically, we
calculate the z-score for each element in each row of H by

zkm = hkm − μk

σk
,

where μk is the average value of the kth row of H and σk is
the standard deviation of the kth row of H. If the loading
values exhibit a bimodal distribution, the ‘locmodes’ func-
tion from the ‘multimode’ package is used to select an ap-
propriate threshold to identify phenotype-associated cells.

The fine-grain cell states represent the classification of
all phenotype-relevant cells into certain subsets, which are
identified based on each row of the matrix H (i.e. each
inferred pattern). Specifically, for each row of the matrix
H, we divide cells into two subsets by thresholding the z-
score-scaled cell loadings (i.e. weights) and define the sub-
set with high cell loadings as one fine-grain cell state. The
coarse-grain cell state represents the classification of all sin-
gle cells into phenotype-relevant cells and other cells, which
are achieved by thresholding the z-score-scaled cell load-
ings in the whole matrix H. In other words, the phenotype-
relevant cells in the coarse-grain cell state are the union of
the phenotype-relevant cells across all fine-grain cell states.
Therefore, the fine-grain and coarse-grain cell states can be
simultaneously obtained based on the inferred cell loading
matrix H in the scAB framework.

Identification of signature genes and loci for phenotype-
associated cell states

For scRNA-seq data, after identifying cell subsets, we adopt
a Wilcoxon ranksum test to identify differentially expressed

genes between phenotype-associated cells and other cells.
Genes are considered as the signature genes if (i) the ad-
justed P values are <0.05 and (ii) the absolute value of log
fold-changes are >1. We use log-fold changes of 1 as the
cutoff to identify the most differentially expressed signature
genes, which is helpful for selecting potential biomarkers.
The cutoff value may be dependent on the specific datasets
and users can adjust this parameter value. Lower cutoff val-
ues lead to more candidate signature genes.

To account for the sparse nature of the nearly binary
scATAC-seq data, aggregation is often used as an efficient
strategy (15,16). Here we apply a previous method to ag-
gregates the binary epigenomic profiles across similar cells
(16). We then use the aggregated scATAC-seq data to per-
form differential accessibility analysis between phenotype-
associated cells and other cells. Loci are considered as dif-
ferentially expressed if (i) the adjusted P values are <0.05
and (ii) the absolute value of log fold-changes are >0.25.
Moreover, we also performed motif enrichment analysis us-
ing chromVAR based on the aggregated scATAC-seq data.
chromVAR (17) calculates the bias corrected deviations in
accessibility. For each motif, there is a value for each cell,
which measures how different the accessibility for loci with
that motif is from the expected accessibility based on the
average of all the cells.

Functional enrichment analysis

The function enrichment analysis for GO (gene oncol-
ogy) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) are performed using ‘enrichGO’ function and
‘enrichKEGG’ function in R package ‘clusterProfiler’ (18),
respectively. The function ‘gseGO’ in R package ‘cluster-
Profiler’ is used for gene set enrichment analysis (GSEA).
In addition, gene set variation analysis (GSVA) is done us-
ing the ‘gsva’ function with default settings in R package
‘GSVA’.

Survival analysis

Survival analysis is performed using R packages ‘survival’
and ‘glmnet’. In detail, patients were classified into a high-
risk group and a low-risk group based on the median of
computed prognostic scores. The survival curve of patients
is then calculated using the Kaplan–Meier method in ‘sur-
vival’ package. Subsequently, the survival curve difference
of patients between different groups is evaluated by log-
rank test. In addition, survival models based on selected
gene sets are established using the Cox-LASSO model via R
package ‘glmnet’. The 5-fold cross-validation is performed
on all methods that require cross-validation to determine
parameters.

Implementation of the scAB model in the bulk RNA-seq data

The scAB model in (Equation (1)) can be naturally degen-
erated to the scenario when only bulk expression matrix
and survival information are available. Then we can identify
phenotype-associated gene signatures from bulk RNA-seq
data with phenotype information (Supplementary Text).
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Parameter selection

In scAB model, three parameters need to be determined,
including the number of patterns k (i.e. the number of
rows of the cell loading matrix H) and two regulariza-
tion parametersα1α1 and α2. First, the selection of k
can be guided based on the errors between the origi-
nal matrix X and the reconstructed matrix WH. Specif-
ically, we define the rule for determining the k value as
follows:

max
k

(
lossk=i − lossk=i+1

lossk=2 − lossk=i
> 0.05

)

where lossk=i is the average value of the objective function
in ten repeated runs for k = i, α1 = α2 = 0. Therefore, the
value of k is determined when the increase of k does not
significantly reduce the reconstruction error. We then apply
five-fold cross-validation to select the optimal α1 and α2with
the maximum concordance index.

Datasets

Liver cancer datasets. scRNA-seq dataset of liver can-
cer patients was downloaded from GEO (accession code:
GSE125449), including seven cell types: B cell, cancer-
associated fibroblasts (CAFs), cells with an unknown en-
tity but express hepatic progenitor cell markers (HPC-like),
malignant cells, T cells, tumor-associated macrophages
(TAMs), and tumor-associated endothelial cells (TECs).
Bulk RNA-seq datasets of liver cancer patients with sur-
vival information were downloaded from the Xena plat-
form (19) (TCGA-LIHC cohort) and the ICGC Data Porta
(LIRI cohort).

Melanoma datasets. scRNA-seq dataset of melanoma
patients was downloaded from GEO (accession
code: GSE115978), including nine cell types: B
cell, cancer-associated fibroblasts (CAFs), endothe-
lial cells, macrophages, malignant cells, Natural
Killer (NK) cells, CD4+ T cells, CD8+ T cells, and
T cells. The melanoma immunotherapy datasets
PRJEB23709 and MGSP were downloaded from
https://github.com/donghaixiong/Immune cells analysis,
provided by Xiong et al. in a previous study (20). In addi-
tion, bulk RNA-seq datasets of immunotherapy of another
melanoma cohort, thymic carcinoma cohort and non-
small cell lung carcinoma cohort, were downloaded from
GEO under accession codes GSE91061, GSE181815 and
GSE135222, respectively. Besides, a bulk RNA-seq dataset
of melanoma patients with survival information was down-
loaded from the Xena platform (TCGA-SKCM cohort).
The Genomics of Drug Sensitivity in Cancer publicly avail-
able drug sensitivity data used in this study are available on
the GDSC portal (https://www.cancerrxgene.org).

Glioma datasets. scATAC-seq dataset of glioma pa-
tients was downloaded from GEO (accession code:
GSM4131779). Bulk RNA-seq datasets of glioma pa-
tients with survival information were downloaded from
the Chinese Glioma Genome Atlas (CGGA) platform

(training cohort: mRNAseq 693; the validation sets 2: mR-
NAseq 325; the validation set 3: mRNAseq 325) and the
Xena platform (the validation set 1: TCGA-GBMLGG).

Bulk RNA-seq datasets for comparisons against existing sur-
vival models. We downloaded six cancer datasets from
the Xena platform (https://xenabrowser.net/) collected by
TCGA, including Breast Cancer (BRCA), Lung Adenocar-
cinoma (LUAD), Head and Neck Cancer (HNSC), Kid-
ney Clear Cell Carcinoma (KIRC) and Bladder Cancer
(BLCA), Lung Squamous Cell Carcinoma (LUSC).

Preprocessing of scRNA-seq and scATAC-seq data

The R package Seurat (v4.0.2) (13) was utilized to prepro-
cess single-cell expression data in this study. First, genes
were retained with detected expression in more than three
cells. Cells were retained that with detected genes >200 fea-
tures and the percentage of mitochondrial genes <5%. Sub-
sequently, ‘NormalizeData’ function was utilized to nor-
malize single-cell expression data with the default parame-
ters. The highly variable genes were determined using ‘Find-
VariableFeatires’ function with the ‘vst’ method. Then we
performed transformation on these data using ‘ScaleData’
function and principal component analysis on the scaled
data using ‘RunPCA’ function. Next, we calculated cell-cell
similarity using a shared nearest neighbor graph, which was
given by ‘FindNeighbors’ function based on the first ten
principal components. The cell-cell similarity matrix was
then binarized and its diagonal elements were set to be zero.
Finally, we used ‘RunUMAP’ function for dimensionality
reduction to visualize cells in a two-dimensional space.

For scATAC-seq data, we performed the same prepro-
cessing procedure by taking the gene activity data as an in-
put.

Comparison of scAB against existing methods

We evaluate scAB against nine methods, including three
methods designed for scRNA-seq data (Scissor (9), scProg-
nosis (7) and DEGAS (10)), one baseline method, and five
traditional methods (tumor stage, patient sex, patient age,
ImmuneCells.Sig (ImSig) (20) and PD- L1) on the studied
datasets. Specifically, for the dataset with survival informa-
tion, we compare scAB against Scissor, scPrognosis, DE-
GAS, the baseline method as well as clinical features such
as tumor stage, patient sex and age. For the dataset with im-
munotherapy information, we compare scAB against Scis-
sor, scPrognosis, DEGAS, the baseline method, the previ-
ously defined immunotherapy gene set ImSig and the ex-
pression levels of PD-L1. The detailed descriptions of how
different methods are implemented are available in Supple-
mentary Text.

The baseline method (or called ‘Markers top100’
method) is an extension of standard single-cell data anal-
ysis. Specifically, we take the union of the top 100 marker
genes of each cell cluster as candidate biomarkers, and
run feature selection on this candidate single-cell derived
biomarkers at the bulk RNA-seq training dataset with
known clinical variables. We then evaluate the prediction
accuracy of the selected biomarkers on the bulk RNA-seq
testing dataset.

https://github.com/donghaixiong/Immune_cells_analysis
https://www.cancerrxgene.org
https://xenabrowser.net/
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RESULTS

Overview of scAB

To identify phenotype-relevant cell subsets and predict
genes, chromatin loci and transcription factors for clinical
prognosis, we developed scAB by integrating scRNA-seq or
scATAC-seq data with clinically annotated bulk RNA-seq
data. scAB required three types of data as input, including
single-cell expression data or chromatin accessibility data,
bulk RNA-seq data, and the phenotype of patients in bulk
samples (Figure 1A). To develop a unified mathematical
model, we transformed the chromatin accessibility data into
gene activity data (Materials and Methods). The phenotype
annotations of bulk samples can be either survival data or
binary groups such as response vs. non-response, wild type
vs. mutation, and normal vs. disease (Materials and Meth-
ods).

Upon receiving the input data, scAB first calculated pair-
wise Pearson’s correlations between individual cells and
bulk samples using the single-cell and bulk expression data.
Other similarity calculation strategies were also explored in
this study (see Discussion). Second, scAB unveiled a set of
patterns via a phenotype- and graph-guided non-negative
matrix decomposition of the calculated correlation matrix
(Figure 1B, Materials and Methods). Each pattern, which
often corresponded to a known biological process/signal re-
lating to a particular phenotype, was obtained from each
row of the resulted cell loading matrix outputted by the
model. The loading values (i.e. weights) represented the
contribution of each cell in each pattern and cells with
high loading values were defined as phenotype-associated
cells. Third, we introduced the concept of multiresolution
phenotype-associated cell states to represent both coarse-
and fine-grain patterns of phenotype-associated cell land-
scape (Figure 1C). Each fine-grain cell state consisted of
phenotype-associated cells in each learned pattern and the
coarse-grain phenotype-associated cell state was defined by
the union of phenotype-associated cells across all fine-grain
cell states (see Materials and Methods). The fine-grain cell
subsets may exhibit shared and specific cancer hallmarks,
allowing to uncover latent patterns in phenotype-associated
cells. Finally, we assessed the clinical significance of the
identified phenotype-associated cell states and signatures
using available bulk RNA-seq datasets. We demonstrated
scAB’s utility as a biomarker identification tool, with the
ability to predict survival risk, immunotherapy and drug re-
sponses (Figure 1D).

scAB identifies previously unrecognized cell subsets with high
metabolism associated with metastasis and poor prognosis in
liver cancer

To demonstrate the ability of our method, we first applied
scAB to a scRNA-seq dataset for liver cancer to identify
clinically-relevant cell states leading to poor survival. Cells
in this scRNA-seq data were previously classified into seven
cell types (21), including malignant cells, tumor-associated
macrophages (TAMs), tumor-associated endothelial cells
(TECs), HPC-like cells, and cancer-associated fibroblasts
(CAFs), B cells, and T cells (Figure 2A). To identify
survival-related cell states in the scRNA-seq data, we incor-

porated bulk RNA-seq data from 370 liver cancer patients
from TCGA.

By integrating the scRNA-seq and bulk RNA-seq data,
scAB recognized around 11.2% cells (992 cells among the
total 8853 cells) associated with poor survival of liver can-
cer and these cells were marked as scAB positive (scAB+)
cells (Figure 2B). The scAB+ cells were the phenotype-
associated cells defined in Materials and Methods. By
assessing the cell type compositions of these identified
scAB+ cells (n = 992 cells), we found that the majority of
scAB+ cells (60.7%, n = 602 cells) were malignant cells (Fig-
ure 2C). Interestingly, scAB+ cells also included other type
of cells, such as TECs (10.2%, n = 101 cells) and CAFs
(7.3%, n = 72 cells), which was consistent with the increas-
ing evidence of important roles of tumor microenvironment
in affecting the survival of liver cancer (22–24). On the
other hand, among each cell type, we found that 40.03%
(602/1504) malignant cells, 9.95% (72/724) TAMs, 9.60%
(101/1052) TECs, 8.09% (68/841) HPC-like cells, 7.60%
(72/947) CAFs, 2.11% (21/993) B cells and 2.01% (56/2792)
T cells were identified as scAB+ cells (Supplementary Fig-
ure S1), suggesting of the ability of scAB in prioritizing
clinically-relevant cell subsets. Moreover, in addition to
these coarse-grain survival-associated cell states, scAB also
allowed the dissection of four fine-grain cell subsets. These
four subsets could be categorized into two groups, defined
by specific cancer hallmarks. The first group (cell subsets 1,
2 and 4) were associated with hallmarks such as autophagy,
apoptosis, and proliferation while the second group (cell
subset 3) was associated with metabolism, DNA repair,
and response to stress (Figure 2D). These results indicated
that different fine-grain cell subsets could represent dis-
tinct functional capabilities of cancer undergoing malignant
transformation. Further examination showed that subset 3
(i.e. scAB+ cells in Pattern 3) dominantly represented ma-
lignant cells while subset 4 (i.e. scAB+ cells in Pattern 4) was
enriched by various cell types in the tumor microenviron-
ment, including a small subset of macrophage, T cells and
fibroblasts (Figure 2E). Interestingly, fatty acid metabolism
was highly enriched in subset 3 instead of subset 4 (Fig-
ure 2D and Supplementary Figure S2). Although previous
studied showed that upregulated fatty acid metabolism con-
tributed to cancer progression (25), our results suggested
that cell subset 3 was likely the dominant driver.

To systemically gain insights into the biological sig-
nificance of these predicted scAB+ cells, we performed
differential gene expression analysis between the pooled
scAB+ cells with other cells, leading to 26 downregulated
and 108 upregulated genes in scAB+ cells (Figure 2F). No-
tably, these downregulated and upregulated genes can be
also identified by performing differential gene expression
analysis for scAB+ malignant cells versus all scAB– cells.
Among these 108 up-regulated genes, a number of genes
such as FGG and NUPR1 were reported to be associated
with poor survival and metastatic potential in hepatocel-
lular carcinoma (HCC, the most common type of primary
liver cancer) in previous studies (26,27). Moreover, we per-
formed functional enrichment analysis using positive genes
from scAB+ cells and other cells and found that these up-
regulated genes in scAB+ cells were dominantly enriched
in several metabolism-related biological processes, such as
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Figure 1. Overview of scAB. (A) scAB requires single-cell genomics data, bulk RNA-seq data, and the phenotype of patients in bulk samples as inputs. (B)
scAB unveils a set of patterns for cell stratification via a knowledge- and graph- guided matrix decomposition of a similarity matrix between single cells
and individual patients. (C) scAB enables simultaneous detection of coarse- and fine-grain phenotype-associated cell states from the inferred cell loading
matrix H. Different fine-grain cell subsets may be associated with certain shared and specific cancer hallmarks. (D) scAB uncovers clinical-relevant gene
signatures that are able to perform a variety of prognostic analyses, such as survival analysis, immunotherapy efficacy prediction, and synergistic treatment
prediction.

ATP-, catabolic-, fatty acid- metabolic processes (Figure
2G). These findings were greatly consistent with the crit-
ical roles of metabolic process in contributing to the cel-
lular processes linked to tumor progression (28). Cancer
metabolism has been also identified as a key characteristic
of tumor cell migration and invasion (29). In contrast, the
down-regulated genes were related to T cell and leukocyte
activation and ribosome biogenesis. Gene set enrichment
analysis (GSEA) of the down-regulated and up-regulated
genes further confirmed the significantly activation of lipid
metabolic process (Padj = 7.2 × 10−11, Figure 2H) and in-

hibition of immune system (Padj = 8.3 × 10−07, Figure
2I), suggesting that scAB+ cells exhibited immune resis-
tance and may escape immune surveillance (30). In sum-
mary, scAB identified a survival-related cell subset with high
metabolism that was not recognized by the original study
(21). Gene signature analysis suggested that the identified
cell subset was linked to metastasis and poor prognosis of
liver cancer. These results also demonstrate the superior
performance of scAB in identifying survival-relevant cell
subsets and their molecular signatures and biological pro-
cesses. Our analysis shows that leveraging the available large
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amount of bulk data could increase the statistical power of
single-cell transcriptomics.

Both coarse- and fine-grain survival-relevant gene signatures
identified by scAB predict the prognosis of liver cancer

To further assess the clinical significance of these identi-
fied scAB+ cell states and their gene signatures in liver can-
cer, we utilized bulk RNA-seq data from liver cancer and
performed survival prediction using a widely used LASSO-
Cox model (31). We first used two bulk datasets from two
large-scale clinical study cohorts, including the TCGA-
LIHC (370 patients) and the ICGC-LIRI (231 patients)
(32). These two datasets describe the survival information
of patients with liver cancer.

Using the identified differential expressed genes (DEGs)
of scAB+ cells versus other cells, we calculated the prog-
nostic score of each patient in both bulk datasets using the
LASSO-Cox model (Figure 3A). Patients were then clas-
sified into a high-risk group and a low-risk group based
on the computed prognostic scores (Materials and Meth-
ods). We found that the high-risk group exhibited signifi-
cantly worse survival time than the low-risk group in both
datasets (TCGA-LIHC: hazard ratio (HR) = 2.38, P = 5.49
× 10−7; ICGC-LIRI: HR = 4.75, P = 3.79 × 10−6). Specif-
ically, the median survival time of the high-risk group was
33.5 months in TCGA-LIHC and 48 months in ICGC-
LIRI, while that of the low-risk group was 81.9 months
in TCGA-LIHC. The median survival time of the low-risk
group in ICGC-LIRI was not observed because more than
half of patients were still alive. Furthermore, we assessed the
clinical significance of the identified subsets of scAB+ cells
(Figure 3B). Interestingly, patients in the high-risk group
from both subset 3 and subset 4 (i.e. subset 3 high + sub-
set 4 high) had the worst survival, while patients with low-
risk from both subsets (i.e. subset 3 low + subset 4 low)
had the highest survival rate in the early stage (about 0–40
months) compared to the case with a single high-risk group
(i.e. subset 3 high + subset 4 low or subset 3 low + sub-
set 4 high) (Figure 3B). These results indicated that both
the scAB-identified coarse-grain and fine-grain survival-
relevant cell states had clinical significance. Moreover, the
fine-grain survival-relevant cell subsets indeed had distinct
clinical significance and their signatures exhibited distinct
ability in predicting patient prognosis of liver cancer.

Due to the high metabolism of scAB+ cells that was
linked to metastases and invasion (29) (Figure 2G), we fur-
ther predicted patients’ recurrence risk using the DEGs
identified based on the scAB+ cells in two datasets in-
cluding TCGA-LIHC and GEO14520. Interestingly, a sig-
nificant difference between the low- and high-risk groups
was observed (Figure 3C; TCGA-LIHC: HR = 2.08,
P = 9.02 × 10−6; GEO14520: HR = 1.84, P = 3.29 × 10−4).
The median recurrence time of the high-risk group was 15.2
and 23.5 months, while that of the low-risk group was 41.0
and 57.7 months in TCGA-LIHC and GEO14520, respec-
tively. This result indicated that the identified signatures us-
ing scAB could predict the recurrence for liver cancer.

Next we asked whether prognostic scores derived from
scAB can better predict the patient survival over other
methods designed for single-cell data, including Scissor,

scPrognosis, DEGAS and Markers top100 (a baseline
method; see details in Materials and Methods), and the
traditional clinical characteristics-based methods, includ-
ing tumor pathological stage, patient sex and age. We
thus examined the association of patient survival with de-
rived prognostic scores from different methods and tradi-
tional clinical characteristics using the univariate Cox pro-
portional hazard model and the concordance index (C-
index). We found that scAB exhibited the highest C-index
value compared to other methods survival in the testing
bulk dataset (Figure 3D), suggesting the superior perfor-
mance of scAB over other methods. Interestingly, com-
pared to the traditional clinical characteristics-based meth-
ods, methods (except for DEGAS) designed for single-cell
data consistently exhibited better performance, as reflected
by higher C-index values. Moreover, the combination of
scAB-derived prognostic score and pathological stage pre-
sented a higher survival prognosis efficiency than only the
pathological stage in the testing bulk (Figure 3E), implying
that the scAB derived prognostic score could improve the
precision of prognosis in liver cancer patients.

scAB reveals macrophage-mediated immunotherapy response
in melanoma microenvironment

In addition to the scenario where survival information is
available, scAB can also identify cell states related to other
phenotypes with binary information such as response vs.
non-response and normal versus disease. Here, we took its
application in immunotherapy response as an example. Im-
mune checkpoint blockade (ICB) has been a hot spot in the
field of cancer treatment in recent years, but only a few pa-
tients can benefit from it (33). To explore the mechanisms of
ICB response and identify biomarkers that can predict re-
sponse in melanoma, we utilized scAB to integrate gene ex-
pression in single-cell data and ICB response phenotype in
bulk data. The single-cell melanoma data from GSE115978
were previously classified into nine cell types (34), including
malignant cells, endothelial cells, NK cells, T cells, B cells,
CAFs, CD8+ and CD4+ T cells, and macrophage (Figure
4A). The bulk data was from PRJEB23709 (35), including
73 melanoma samples treated with anti-PD-1 monotherapy
or the combination of anti-PD-1 and anti-CTLA-413.

scAB recognized around 80% (5465/6879) of cells as-
sociated with immunotherapy response. These responsive
cells were indicated as scAB Immune Response (scAB IR)
cells (Figure 4B). By assessing the cell type compositions
of these identified scAB IR cells, we found that the vast
majority of scAB IR cells were T cells (CD8+ T cells:
31.34%, 1713/5465; CD4+ T cells: 15.32%, 837/5465; T
cells: 12.04%, 658/5465) (Figure 4C). Interestingly, 6.48%
(354/5465) scAB IR cells were macrophages, which may of-
fer a novel therapeutic strategy for cancer immunotherapy
(36). In addition, scAB simultaneously identified the fine-
grain cell subsets related to ICB. By examining the associ-
ation of cancer hallmarks with these inferred five cell sub-
sets, we found that these five cell subsets can be categorized
into three groups: one group consisting of cell subsets 1,
2 and 5 was associated with senescence and angiogenesis,
one group only consisting of cell subset 4 was associated
with MYC target v2 (37) and G2M checkpoint (38), and
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Figure 3. Assessment of clinical significance of the coarse- and fine-grain survival-relevant gene signatures identified by scAB in liver cancer. (A) Overall
survival curves of patients with low or high risks according to DEGs in scAB+ cells versus other cells in LIHC and LIRI cohorts. (B) Overall survival curves
of patients with the combinations of low- or high-risk groups according to gene signatures in two different subsets (subset 3 and subset 4) of scAB+ cells.
S3H and S3L represent subset 3 high risk and subset 3 low risk, respectively. Similar meaning is for S4H and S4L. (C) Relapse free survival curves of patients
with low or high risks according to DEGs in scAB+ cells in LIHC and GSE14520 cohorts. (D) Comparison of the prediction performance of scAB against
different methods and clinical features. (E) Comparison of the tumor stage-only model with the model including tumor stage and scAB-derived signatures.
The likelihood ratio test was used to compare the significance of the difference between the two models.
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Figure 4. scAB predicts cell subsets with better ICB response in melanoma microenvironment. (A, B) UMAP visualization of cells from the melanoma
microenvironment. (A) Cells are colored by the original cell annotations. (B) Cells are colored by the scAB’ prediction, where red and blue indicates
scAB IR cells and other cells respectively. (C) The cell type compositions of scAB IR cells showing the percentage of each cell type over the total scAB IR
cells. (D) The dot plot showing enriched cancer hallmarks in distinct cell subsets of scAB IR cells. The size and color of the dots indicate the calculated
gene scores of each hallmark. (E) UMAP visualization of cells highlighting the two distinct cell subsets in scAB IR cells. (F) The volcano plot showing
differential expression gene in scAB IR cells versus other cells. (G) The dot plot showing the enriched biological processes (BP) of scAB IR cells versus
other cells. (H, I) GSEA highlighting one upregulated and another downregulated biological processes in scAB IR cells compared to other cells.
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the other group only consisting of cell subset 3 was asso-
ciated with PI3K/AKT/MTOR signaling (39) and KRAS
signaling (40) (Figure 4D). Interestingly, the subset 3 was
composed of immune cells, while the subset 5 was com-
posed of a portion of malignant cells and a portion of
macrophages (Figure 4E). Notably, macrophages in subset
5 exhibited higher expressions of CD274 (i.e. PD-L1) versus
other macrophages (Supplementary Figure S3), which was
consistent with the positive correlation between the PD-
L1 expression in macrophages and the response to PD-1
blocked in previous reports (41,42).

To further gain insights into the biological significance
of these predicted scAB IR cells, we compared the gene ex-
pression differences between the pooled scAB IR cells (i.e.
coarse-grain cell state) with other cells, leading to 225 up-
regulated and 102 down-regulated genes in scAB IR cells
compared to other cells (Figure 4F). Notably, among these
225 up-regulated genes, multiple genes, such as CCL5 (43–
45), NKG7 (46–48) and CXCR3 (49), were reported to be
associated with the efficacy of immunotherapy in previous
studies. On the other hand, multiple down-regulated genes,
such as CCND1 (50), S100B (51,52), SERPINA3 (53), were
reported to have inhibitory effects in immunotherapy. We
observed the up-regulated of ‘T cell activation’ and ‘lym-
phocyte differentiation’ in scAB IR cells by performing
the functional enrichment analysis (Figure 4G), suggest-
ing that there is likely an immune active program in the
identified scAB IR cells. In addition, biological processes
linked with ATP were down-regulated in scAB IR cells.
Further GSEA showed the over-activated adaptive immune
response (Padj = 4.6h10−15) and suppressed oxidation-
reduction process (Padj = 5.6 × 10−15) in scAB IR cells
compared to other cells (Figure 4H and I). In summary,
scAB identified two distinct subsets of malignant cells acti-
vating different cancer hallmarks, and immune cell subsets
dominant by T cells and macrophage associated with im-
mune response.

scAB-derived biomarkers have strong predictive power for im-
munotherapy and drug response in melanoma

To further evaluate the clinical significance of the identi-
fied scAB IR cell states in ICB response in melanoma, we
calculated the gene set variation analysis (GSVA) score of
each patient in bulk RNA-seq datasets, including ICB re-
sponders and non-responders. In the training dataset PR-
JEB23709, which was used to integrate with single-cell data
using scAB, ICB responders showed higher scores than
non-responders (P = 0.00035) (Figure 5A). By testing on
another two independent bulk datasets from melanoma
genome sequencing project (MGSP) and GSE91061, we ob-
served consistently higher scores in ICB responders com-
pared to non-responders (P = 0.028 and P = 0.0035) (Fig-
ure 5A). These results confirmed the association between
scAB IR and ICB response, and demonstrated that the
scAB-derived signature genes can robustly distinguish ICB
responders from non-responders.

To assess whether the scAB-derived signature genes
from ICB response in melanoma also represent prognos-
tic biomarkers in other cancer types, we first calculated the
GSVA scores of thymic carcinoma patients treated with

pembrolizumab (GSE181815), and found that all respon-
ders had higher scores than all non-responders (Figure 5A).
In another cohort of 27 advanced non-small cell lung car-
cinoma patients treated with anti-PD-1/PD-L1, there was
a significant difference in the progression-free survival be-
tween the high-score and low-score groups based on the
median of GSVA scores (HR = 2.37, P = 0.044) (Fig-
ure 5B). The observed distinguishing ability in these two
non-melanoma immunotherapy cohorts indicated that the
identified scAB IR cells likely play an essential role in im-
munotherapy across different types of cancer. For another
TCGA-SKCM dataset without immunotherapy informa-
tion, we investigated the prognostic effect of the identi-
fied signature genes on patients with melanoma. Intrigu-
ingly, patients with higher scores exhibited a better sur-
vival prognosis than patients with lower scores (HR = 1.89,
P = 1.29 × 10−5) (Figure 5C), suggesting the predictive
power of the scAB-derived signature genes from ICB re-
sponse.

To evaluate the superior performance of the transcrip-
tomic characteristics of scAB IR cells as an indicator
of ICB treatment response, we calculated and compared
GSVA scores for the gene sets identified by different meth-
ods, including the DEGs identified by scAB, the DEGs
identified by another competitive methods (i.e. Scissor,
scPrognosis, DEGAS and Markers top100) and the previ-
ously discovered immunotherapy gene set ImmuneCells.Sig
(ImSig) (20). On the three testing bulk RNA-seq datasets
(MGSP, GSE91061, GSE181815), we used the expression
values of PD-L1 as a basic measurement of ICB treatment
response and evaluated the ability of different methods in
distinguishing responders and non-responders using the P-
values of Wilcoxon tests. Compared to other methods, scAB
consistently exhibited the lowest P-values on MGSP and
GSE91061 datasets, and comparable pvalues with Scissor,
Markers top100 and PD-L1 on GSE181815 (Figure 5D).
Interestingly, Scissor, scPrognosis and Markers top100 also
showed better performance than ImSig and the sole expres-
sion of PD-L1, suggesting that integration of single-cell and
bulk data can improve the prediction of ICB treatment re-
sponse.

To further assess the prediction power of the scAB-
derived signature genes in terms of drug sensitivity, we
downloaded bulk datasets of melanoma cell lines from Ge-
nomics of Drug Sensitivity in Cancer (GDSC) (3). In these
bulk datasets, melanoma was treated with different drugs.
By calculating GSVA scores of cell lines using the scAB-
derived signature genes from ICB response, we observed
statistically positive correlations between the GSVA scores
and the drug sensitivity (quantified by a conventionally
metric IC50) of 54 drugs (Figure 5E, Supplementary Table
S2). Note that a higher GSVA score also indicated a bet-
ter ICB response, suggesting that the combination of these
drugs with ICB may serve as a synergistic therapeutic effect
in melanoma. In previous studies, Mitomycin C was con-
firmed to enhance the efficacy of PD-L1 blockade in non-
small cell lung cancer (54), and Doxorubicin (55,56), Pyri-
dostatin (57,58), and GSK650394 (59) were also reported to
enhance ICB efficiency significantly. These results suggested
that combining ICB with chemotherapy is a potential treat-
ment strategy for melanoma patients.
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Figure 5. Evaluation of scAB’s performance in predicting immunotherapy response, survival rate and drug sensitivity. (A) Comparisons of GSVA scores
calculated using scAB IR cells’ gene signatures between response and non-response groups across three melanoma datasets and one Thymic carcinoma
dataset. The Wilcoxon rank-sum test was used to assess the differences. (B) Progression-free survival curves of patients with low or high risks according to
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Taken together, scAB identified immune-active cell sub-
sets in the melanoma microenvironment that were associ-
ated with ICB response. These cell subsets were character-
ized by enhanced immune activity and low redox activity.
More importantly, the signature genes derived from these
cell subsets can robustly predict ICB response, survival rate
and drug sensitivity in melanoma as well as other types of
cancer.

scAB predicts prognosis signatures of glioma from scATAC-
seq data

Finally, we show scAB’s capability in different modalities by
utilizing a published human glioblastoma (GBM) scATAC-

seq dataset (60) and a bulk RNA-seq dataset of 693 glioma
patients with survival information from CGGA (4). To pre-
dict survival-relevant signatures including chromatin acces-
sible loci and transcription factors (TFs), we first identi-
fied clinically-relevant cells using scAB (Figure 6A). To re-
veal the chromatin accessible sites associated with these
scAB+ cells, we performed differential accessibility analysis
(Materials and Methods). Encouragingly, we observed dis-
tinct chromatin accessibility patterns between scAB+ cells
versus other cells (Figure 6B). By performing GO enrich-
ment analysis of enriched chromatin accessible sites of
scAB+ cells using GREAT tool (61), we revealed GBM- as-
sociated biological processes such as ‘maintenance of un-
folded protein involved in ERAD pathway’ (Figure 6C),
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which contributed to the GBM development (62). In ad-
dition, scAB revealed four fine-grain cell subsets with dis-
tinct chromatin accessibility patterns (Figures 6D–F). GO
analysis of the enriched chromatin accessible sites showed
different biological processes across these four cell subsets.
For example, subset 1 was enriched for ‘leukocyte activa-
tion’ (63) and subset 4 was enriched for ‘fibroblast growth
factor receptor’ (64) (Figure 6G).

Moreover, we performed motif enrichment analysis us-
ing chromVAR and identified a number of motifs exhibit-
ing differential patterns across scAB+ cells and other cells
(Figure 6H). chromVAR (17) calculates the bias corrected
deviations in accessibility. We then evaluated the clinical sig-
nificance of TFs associated with these identified motifs us-
ing additional three bulk RNA-seq datasets. Survival anal-
ysis showed that overexpression of the transcription fac-
tor ELK3 was significantly associated with the poor prog-
nosis of patients with gliomas (Figure 6I), which was in
agreement with the in vitro experiment that ELK3 overex-
pression promoted proliferation and migration of glioma
cells (65). In addition, we predicted a previous unrecognized
transcription factor TFEC that was significantly linked to
the poor prognosis of patients with gliomas, implying that
TFEC could be a candidate target in the prognosis of pa-
tients with gliomas.

Together, these results showed scAB’s capability in pre-
dicting prognosis signatures of glioma from scATAC-seq
data, suggesting that scAB was potentially applicable to dif-
ferent modalities of single-cell genomics.

scAB shows superior performance over existing prognosis
models

Given the superior performance of scAB in predicting pa-
tient survival, we then asked whether it can serve as a better
model over the classical survival models in bulk data anal-
ysis. To demonstrate this point, we first built a degradation
model for bulk RNA-seq data only (Materials and Meth-
ods; For simplicity, we still refer it as scAB) and then ap-
plied it to bulk RNA-seq datasets from six types of can-
cer, including Breast Cancer (BRCA), Lung Adenocarci-
noma (LUAD), Head and Neck Cancer (HNSC), Kidney
Clear Cell Carcinoma (KIRC), Bladder Cancer (BLCA)
and Lung Squamous Cell Carcinoma (LUSC).

We evaluated scAB against three widely used mod-
els, namely the Cox proportional hazard model with
LASSO penalization (31), the iterative gradient boosting
method CoxBoost, and the tree-based non-linear integra-
tion method RSF (66). For each dataset, samples were ran-
domly divided into the training set (80%) and the test set
(20%). After running each method ten times, we evaluated
the performance on the test set using the C-index met-
ric. scAB consistently exhibited higher C-index values than
other three methods across these datasets except for the
slightly lower values than RSF in the KIRC dataset (Fig-
ure 7A). On the contrast, the performance of other three
methods varied across different datasets. These results indi-
cated the superior performance of scAB over other classic
methods in cancer prognosis.

Furthermore, we applied scAB in a CGGA (4) dataset
and assessed the gene programs identified by scAB in multi-

ple external independent glioma datasets. By clustering the
enriched GO biological processes of signature genes, we ob-
served that ‘telomere’ and ‘vesicle’ were associated with the
survival of gliomas patients (Figure 7B), which was consis-
tent with clinical results that glioma is a disease related to
telomere imbalance (67) and that the changes in the vesicle
transport system affect the growth of glioma (68). In ad-
dition, biological processes such as ‘ubiquitin-dependent’
and ‘mitochondrial’ were identified, which may serve as new
prognostic factors in glioma survival (69,70).

To demonstrate the prognosis ability of scAB in glioma,
we utilized genes from each of 24 enriched KEGG pathways
and performed survival analysis in the training set and three
external independent validation sets. Among the enriched
pathways, the autophagy pathway plays an important role
in providing energy for glioma progression (71). By com-
puting prognostic scores using the autophagy pathway, we
divided patients into high-risk and low-risk groups based on
the median score. Regardless of the training set or the three
validation sets, the survival rates of the high-risk and low-
risk groups presented significant differences (P < 0.0001)
(Figure 7C). Other 23 pathways also showed their ability in
discriminating high-risk and low-risk groups in four data
sets, suggesting the prognostic power of scAB (Supplemen-
tary Figure S4). Together, these results showed that the bi-
ological processes and pathways identified by scAB have
the potential as therapeutic targets to predict prognosis in
glioma, suggesting that scAB could be an effective method
for prognosis in cancer.

DISCUSSION

While many computational methods have been developed
to classify cell populations in single-cell data, including un-
supervised clustering (72) and supervised cell type annota-
tions (73), they have limited ability to identify cell states
associated with phenotype of interest. The high cost of
scRNA-seq limits the number of patients in available single-
cell datasets, making it difficult to associate individual-level
phenotype with single cells. To fill this critical gap, by inte-
grating single-cell genomics and bulk RNA-seq data with
phenotype information, we proposed a unified framework
scAB to systematically dissect both coarse- and fine-grain
phenotype-associated cell states and predictive signatures
for early prognosis and treatments.

scAB is applicable to phenotype information including
both survival information and binary group (e.g. response
vs. non-response, normal vs. disease). By defining a pheno-
type score of each bulk sample, we were able to develop a co-
herent mathematical model regardless of the type of pheno-
type information. We demonstrated the capability of scAB
in these two scenarios using scRNA-seq datasets from liver
cancer with survival information, and melanoma with im-
mune response information. Application to the prognosis of
liver cancer survival, scAB identified a cell subset with high
fatty acid metabolism and suppressed immune system. Us-
ing three bulk datasets, we showed that the signature genes
of this cell subset can more accurately predict the survival
and recurrence risk of liver cancer patients compared to the
pathological stage only. Application to the immunotherapy
of melanoma, scAB revealed a cell subset with immune-
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active program and low redox activity. Interestingly, the sig-
nature genes of this cell subset can better distinguish ICB
responders from non-responders compared to the gene set
from a previous study and the PD-L1 expression. Notably,
this observation is not limited to patients with melanoma.
Moreover, we identified 54 drugs that may have synergistic
therapeutic effects with ICB using the drug sensitivity data,
which could help to enhance the therapeutic effect of ICB.
Together, these results demonstrate the strong potential of
scAB in improving survival prognosis and treatments over
traditional biomarkers.

The successful performance of scAB lies in utilizing a
novel knowledge-guided matrix factorization model that
incorporates phenotype information. Nonnegative ma-
trix factorization (NMF) has been successfully applied
to recover meaningful hidden patterns in bioinformatics
and other fields (74,75). We treat the identification of
phenotype-associated cells as a feature selection problem by
assessing the contribution of each cell to the phenotype in-
formation of patients. As a part-based decomposition tech-
nique, NMF provides a natural way to reveal distinct pat-
terns (76), that is the fine-grain phenotype-associated cell
states in scAB. We showed that the identified distinct fine-
grain cell subsets were characterized by shared or unique
cancer and immunotherapy hallmarks in liver cancer and
melanoma datasets. Moreover, these distinct cell subsets
also exhibited distinct clinical significance. These results
confirmed the known heterogeneity of tumors or other dis-
eases in clinical implications. Combing all fine-grain cell
subsets into one coarse-grain cell state allowed scAB to
identify the conserved signatures and biological processes
compared to other cells that are not highly correlated with
phenotype of interest. Therefore, scAB provides a multires-
olution dissection of phenotype-relevant cell subsets, which
could offer new insights into the clinical significance of sin-
gle cells compared to other methods like Scissor, scProgno-
sis and DEGAS.

In addition, scAB shows superior performance over the
widely used survival models such as Cox regression model.
There are two possible reasons. First, Cox regression model
uses lasso penalty regularization for survival prognosis pre-
diction, where lasso tends to select one gene or cell from
a group of correlated genes or cells. However, genes or
cells often coordinate together for biological functions and
life activities. In contrast, the NMF utilized by scAB tend
to recover biologically meaningful modules. When apply-
ing scAB to single-cell datasets, we also observed bet-
ter performance of scAB in discriminating ICB respon-
ders from non-responders in melanoma and other cancer
types, compared to the lasso-based method Scissor. Sec-
ond, scAB adopts the penalty term of phenotype scores,
that is the relative survival score in survival analysis. In-
stead of directly using the survival data of patients like in
Scissor, we transformed the survival data to relative sur-
vival score of patients, which showed better performance
than the Cox model in a previous study (12). Compared
with the loss function of the Cox model, the relative survival
score does not require the proportional hazard assumption
and importantly includes two additional survival cases (i.e.
early-censored–late-uncensored pairs and early-censored–
late-censored pairs).

To establish a bridge between bulk data and single-cell
data, scAB calculates a similarity matrix via Pearson corre-
lation. We also explored the use of other similarity calcula-
tion strategies, including Spearman correlation, mutual in-
formation (MI), Euclidean similarity (ES1) and Euclidean
similarity in the PCA-space (ES2). The comparisons of pre-
diction performance among different similarity metrics in-
dicate that Pearson correlation is a promising metric when
integrating scRNA-seq data with bulk RNA-seq data (see
details in Supplementary Text; Supplementary Figure S5).
On the other hand, by randomly generating pseudo bulk
RNA-seq datasets, we found that correlation-based metrics
rather than Euclidean-based metrics can discriminate the
real bulk data from the pseudo bulk data (see details in Sup-
plementary Text; Supplementary Table S3), suggesting that
correlation-based metrics can help to determine whether a
bulk dataset was suitable to use for integrating single-cell
genomics data. Taken together, while Pearson correlation
was a simple measurement, these results indicated that it
was suitable for the task of predicting clinically relevant cell
subsets by linking single-cell genomics data with bulk data.
This observation was consistent with the successful appli-
cation of Pearson correlation or linear regression to link-
ing single-cell and bulk data in many application scenar-
ios from previous studies (9,77). However, instead of us-
ing these simple similarity metrics, more advanced methods
such as transfer learning are likely better to link single-cell
data with phenotype-annotated bulk data.

Given that clear positive correlations between the
scRNA-seq data and the real bulk data rather than the
pseudo bulk data were observed (Supplementary Table
S3), one should select bulk data from closely related bi-
ological conditions and tissues, and most of bulk sam-
ples should be positively correlated with single cells. In ad-
dition, we explored the effect of the sample size of the
bulk data on scAB’s performance. We thus constructed
the bulk training set by randomly sampling n samples
(n = 50,100,150,200,250,300) in the liver cancer bulk
dataset (TCGA-LIHC), and then integrated each of them
with single-cell data. We performed this procedure ten times
and evaluated the predictive accuracy in the independent
test set of bulk data (ICGC-LIRI). We found that the C-
index values increased with the increase of the number of
bulk samples, particularly when the number of bulk sam-
ples was greater than 200 (Supplementary Figure S6). These
results showed that the increase of the sample size in the
bulk training set can improve the prognostic performance
of scAB model, and that few number of samples may re-
duce the prediction accuracy.

Although scAB exhibits good performance in identify-
ing phenotype-related cell subsets and their signatures from
single-cell genomics, further improvements could be done
for linking single cells and bulk samples and for reducing the
redundant fine-grain cell subsets with similar cancer hall-
marks. To reduce the redundant cell subsets, orthogonal-
ity regularization may be helpful by adding it to the NMF
model (78). In addition, scAB was tested on scRNA-seq
and scATAC-seq data, but it is likely applicable to other
modalities like single-cell proteomics. The scAB framework
could be also coupled with our previous tool CellChat (79)
to identify phenotype-associated cell-cell communication.
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Together, we anticipate that scAB will be widely used in the
ever-growing single-cell studies and pave the way towards
guiding the selection of effective therapeutic strategies tar-
geting subsets of cells in precision medicine.
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Chaudhary,O., Masilionis,I., Egger,J., Chow,A., Walle,T. et al. (2021)
Signatures of plasticity, metastasis, and immunosuppression in an
atlas of human small cell lung cancer. Cancer Cell, 39, 1479–1496.

7. Li,X., Liu,L., Goodall,G.J., Schreiber,A., Xu,T., Li,J. and Le,T.D.
(2020) A novel single-cell based method for breast cancer prognosis.
PLOS Comput. Biol., 16, e1008133.

8. Cao,Y., Lin,Y., Patrick,E., Yang,P. and Yang,J.Y.H. (2022)
scFeatures: Multi-view representations of single-cell and spatial data
for disease outcome prediction. Bioinformatics, 38, 4745–4753.

9. Sun,D., Guan,X., Moran,A.E., Wu,L.-Y., Qian,D.Z., Schedin,P.,
Dai,M.-S., Danilov,A.V., Alumkal,J.J., Adey,A.C. et al. (2021)
Identifying phenotype-associated subpopulations by integrating bulk
and single-cell sequencing data. Nat. Biotechnol., 40, 527–538.

10. Johnson,T.S., Yu,C.Y., Huang,Z., Xu,S., Wang,T., Dong,C., Shao,W.,
Zaid,M.A., Huang,X., Wang,Y. et al. (2022) Diagnostic evidence
GAuge of single cells (DEGAS): a flexible deep transfer learning
framework for prioritizing cells in relation to disease. Genome Med.,
14, 11.

11. Li,Y., Ma,L., Wu,D. and Chen,G. (2021) Advances in bulk and
single-cell multi-omics approaches for systems biology and precision
medicine. Brief. Bioinform., 22, bbab024.

12. Guan,Y., Li,H., Yi,D., Zhang,D., Yin,C., Li,K. and Zhang,P. (2021)
A survival model generalized to regression learning algorithms. Nat.
Comput. Sci., 1, 433–440.

13. Butler,A., Hoffman,P., Smibert,P., Papalexi,E. and Satija,R. (2018)
Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol., 36, 411–420.

14. Lee,D.D. and Seung,H.S. (1999) Learning the parts of objects by
non-negative matrix factorization. Nature, 401, 788–791.

15. Jin,S., Zhang,L. and Nie,Q. (2020) scAI: an unsupervised approach
for the integrative analysis of parallel single-cell transcriptomic and
epigenomic profiles. Genome Biol., 21, 25.

16. Zhang,L., Zhang,J. and Nie,Q. (2022) DIRECT-NET: an efficient
method to discover cis-regulatory elements and construct regulatory
networks from single-cell multiomics data. Sci. Adv., 8, eabl7393.

17. Schep,A.N., Wu,B., Buenrostro,J.D. and Greenleaf,W.J. (2017)
chromVAR: inferring transcription-factor-associated accessibility
from single-cell epigenomic data. Nat. Methods, 14, 975–978.

18. Yu,G., Wang,L.-G., Han,Y. and He,Q.-Y. (2012) clusterProfiler: an r
package for comparing biological themes among gene clusters. Omi.
A J. Integr. Biol., 16, 284–287.

19. Goldman,M.J., Craft,B., Hastie,M., Repečka,K., McDade,F.,
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Fagerberg,L., Edfors,F., Uhlén,M., Egyhazi Brage,S. and
Maddalo,G. (2021) Inflammation and apolipoproteins are potential
biomarkers for stratification of cutaneous melanoma patients for
immunotherapy and targeted therapy. Cancer Res., 81, 2545–2555.

54. Luo,M., Wang,F., Zhang,H., To,K.K.W., Wu,S., Chen,Z., Liang,S.
and Fu,L. (2020) Mitomycin c enhanced the efficacy of PD-L1
blockade in non-small cell lung cancer. Signal Transduct. Target.
Ther., 5, 141.

55. Voorwerk,L., Slagter,M., Horlings,H.M., Sikorska,K., van de
Vijver,K.K., de Maaker,M., Nederlof,I., Kluin,R.J.C., Warren,S.,
Ong,S. et al. (2019) Immune induction strategies in metastatic
triple-negative breast cancer to enhance the sensitivity to PD-1
blockade: the TONIC trial. Nat. Med., 25, 920–928.

56. Gao,F., Zhang,C., Qiu,W.-X., Dong,X., Zheng,D.-W., Wu,W. and
Zhang,X.-Z. (2018) PD-1 blockade for improving the antitumor
efficiency of polymer-doxorubicin nanoprodrug. Small, 14, 1802403.

57. Miglietta,G., Russo,M., Duardo,R.C. and Capranico,G. (2021)
G-quadruplex binders as cytostatic modulators of innate immune
genes in cancer cells. Nucleic Acids Res., 49, 6673–6686.

58. De Magis,A., Manzo,S.G., Russo,M., Marinello,J., Morigi,R.,
Sordet,O. and Capranico,G. (2019) DNA damage and genome
instability by G-quadruplex ligands are mediated by r loops in human
cancer cells. Proc. Natl. Acad. Sci. U.S.A., 116, 816–825.

59. Laino,A.S., Betts,B.C., Veerapathran,A., Dolgalev,I., Sarnaik,A.,
Quayle,S.N., Jones,S.S., Weber,J.S. and Woods,D.M. (2019) HDAC6
selective inhibition of melanoma patient T-cells augments anti-tumor
characteristics. J. Immunother. Cancer, 7, 33.

60. Guilhamon,P., Chesnelong,C., Kushida,M.M., Nikolic,A.,
Singhal,D., MacLeod,G., Madani Tonekaboni,S.A., Cavalli,F.M.,
Arlidge,C., Rajakulendran,N. et al. (2021) Single-cell chromatin
accessibility profiling of glioblastoma identifies an invasive cancer
stem cell population associated with lower survival. Elife, 10, e64090.

61. McLean,C.Y., Bristor,D., Hiller,M., Clarke,S.L., Schaar,B.T.,
Lowe,C.B., Wenger,A.M. and Bejerano,G. (2010) GREAT improves



12130 Nucleic Acids Research, 2022, Vol. 50, No. 21

functional interpretation of cis-regulatory regions. Nat. Biotechnol.,
28, 495–501.
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