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Ankylosing spondylitis (AS) is an autoimmune disease that mainly affects the spinal joints, sacroiliac joints, and adjacent soft
tissues. We conducted bioinformatics analysis to explore the molecular mechanism related to AS pathogenesis and uncover
novel potential molecular targets for the treatment of AS. The profiles of GSE25101, containing gene expression data extracted
from the blood of 16 AS patients and 16 matched controls, were acquired from the Gene Expression Omnibus (GEO) database.
The background correction and standardization were carried out utilizing the transcript per million (TPM) method. After
analysis of AS patients and the normal groups, we identified 199 differentially expressed genes (DEGs) with upregulation and
121 DEGs with downregulation by the limma R package. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) biological process enrichment analysis revealed that the DEGs with upregulation were
mainly associated with spliceosome, ribosome, RNA-catabolic process, electron transport chain, etc. And the DEGs with
downregulation primarily participated in T cell-associated pathways and processes. After analysis of the protein-protein
interaction (PPI) network, our data revealed that the hub genes, comprising MRPL13, MRPL22, LSM3, COX7A2, COX7C,
EP300, PTPRC, and CD4, could be the treatment targets in AS. Our data furnish new hints to uncover the features of AS and
explore more promising treatment targets towards AS.

1. Background

Ankylosing spondylitis (AS), which mostly occurs in the
sacroiliac joints, spine, and external joints (1), is a rheumatic
immune disease with an incidence of 0.3% in China (2). AS
patients are mostly young men (3). Most patients have early
symptoms like dull pain in the waist, buttocks, and sacroiliac
areas, later with complications in the heart, eyes, ears, and
nervous system (4). The specific pathogenic mechanism of
AS is not yet clear. It is only understood that genetic factors
play major roles in AS pathogenesis (5). Besides, environ-
mental, immune, metabolic, and other factors are also com-
mon causes of AS (6). Presently, AS cannot be completely
cured. Most patients can be treated with nonsteroidal drugs
and exercise. In severe cases, surgery is required (7). It should
be noted that AS does not affect the survival of patients, but it
will gradually ruin their lives (4). Therefore, to avoid the

aggravation of AS patients, new treatment methods need to
be developed as soon as possible.

Bioinformatics is a new interdisciplinary subject that
takes computer as a tool to store, retrieve, and analyze biolog-
ical information in the study of life sciences (8). At present,
the research focus of bioinformatics is mainly embodied in
genomics and proteomics (9), which is to analyze the biolog-
ical information of the structure and function expressed in
the sequence from the point of view of nucleic acid and pro-
tein sequences. Bioinformatics also plays an important role in
the study of human diseases (10). Such as the establishment
of disease-related bioinformatics database (11), isolation
and identification of human genes and disease-related genes
(12), and accelerating the development of gene drugs (13),
these have an important and positive impact on the preven-
tion and treatment of human diseases. We here executed bio-
informatics analysis to investigate the molecular mechanism

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2021, Article ID 7471291, 11 pages
https://doi.org/10.1155/2021/7471291

https://orcid.org/0000-0001-9929-3867
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7471291


0

2

4

6

−0.37851162325373 0 0.37851162325373
Log2 (fold change)

-L
og

10
 P

 v
al

ue

Downregulation
None
Upregulation

(a)

Figure 1: Continued.
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of AS pathogenesis and dig out the unclear details and prob-
able treatments towards AS. GSE25101 was utilized to detect
the differentially expressed genes (DEGs) in the specimens of
AS patients and normal controls. Then, the molecular mech-
anism of AS was obtained after analyzing the pathway and
functional enrichment. Finally, with the use of these DEGs,
we established the protein-protein interaction (PPI) network
to seek prospective genes in targeting AS.

2. Material and Methods

2.1. Data Source.GSE25101 (14), as the RNA expression pro-
files, was downloaded from the Gene Expression Omnibus
database (GEO, https://www.ncbi.nlm.nih.gov/geo/) in
NCBI. GSE25101 contained RNA expression data extracted
from the blood of 16 AS patients and 16 matched controls
using PAXgene tubes (15).

2.2. Data Preprocessing and the DEG Screening. The expres-
sion data of the GSE25101 data set was normalized by the
transcript per million (TPM) method. Ensembl transcript
IDs were transformed into the symbols of genes. The mean
value was regarded as the expression level of genes if diverse

probes were annotated to the same genes. Then, we utilized
the limma R package to screen the DEGs between AS patients
and normal control groups. The cut-off setting was P < 0:05
and ∣log2 fold change ∣ >0:378511 based on the Benjamini
and Hochberg (BH) procedure. Morpheus was applied to
draw the heat map based on the website (https://software
.broadinstitute.org/morpheus/).

2.3. Analysis of Pathway and Functional Enrichment. Metas-
cape was applied to analyze the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology (GO)
biological process enrichment (16) by accessing at https://
metascape.org/gp/index.html#/main/step1. All genomic
genes are thought of as enriched background. We obtained
the top 20 significantly enriched terms with regard to the P
values which were obtained on the basis of the accumulative
hypergeometric distribution.

2.4. Analysis of the PPI Network. The Search Tool for the
Retrieval of Interacting Genes (17) (STRING, https://string-
db.org) was executed to analyze and visualize the PPI net-
work of upregulated and downregulated DEGs. A medium
confidence score > 0:400 indicated there was a great
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Figure 1: (a) Volcano plot and (b) heat map show the DEGs between AS patients and normal controls. Blue indicates low expression values,
and red represents high expression values. G1 and G2 represent AS patients and the normal control group, respectively.

3Computational and Mathematical Methods in Medicine

https://www.ncbi.nlm.nih.gov/geo/
https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://string-db.org
https://string-db.org


Alzheimer disease

Autophagy-animal

Cardiac muscle contraction

Endocytosis

Ferroptosis

Huntington disease

Mitophagy-animal

Nonalcoholic fatty liver disease (NAFLD)

Oxidative phosphorylation

PPAR signaling pathway

Parkinson disease

Proteasome

Protein export

RNA degradation

Retrograde endocannabinoid signaling

Ribosome

SNARE interactions in vesicular transport

Salmonella infection

Spliceosome

Thermogenesis

0.05 0.10
Enrichment ratio

1

2

3

4

5

−Log10 (P adjust)

Count
5
10

KEGG pathway (up)

(a)

Figure 2: Continued.

4 Computational and Mathematical Methods in Medicine



difference. Moreover, hub genes, as pivotal candidate genes
with essential physiological regulatory use, were selected
based on their degree of importance.

3. Results

3.1. Data Preprocessing and the DEG Screening. TPM was
exploited to standardize the transcriptome expression data
of the GSE126118 dataset. The limma R package was taken
to screen the DEGs between AS patients and matched control
groups. The volcano plot showed the identified DEGs
(Figure 1(a)). According to the critical criteria of P value <
0.05 and ∣log2 ðfold changeÞ ∣ >0:378511, 320 DEGs were
screened. Among these, 199 DEGs were increased and 121
DEGs were decreased. In addition, we also constructed the
gene expression heat map with color patterns to indicate
the difference of gene expression existing in AS patients
and normal groups (Figure 1(b)).

3.2. Analysis of Pathway and Functional Enrichment. Given
the ontology sources, including KEGG pathways and GO bio-
logical processes, we analyzed pathways and functional
enrichment of the DEGs by Metascape. All genes were

regarded as the enrichment background. According to the cal-
culated P values in the light of accumulative hypergeometric
distribution, the top 20 with statistically obvious KEGG path-
ways and GO biological processes associated with upregulated
and downregulated DEGs were presented in Figures 2 and 3,
respectively. It could be observed that the DEGs with upregu-
lation primarily participated in RNA- and protein-associated
pathways, such as spliceosome, ribosome, oxidative phosphor-
ylation, proteasome, RNA degradation, and protein export
(Figure 2(a)). The enriched biological process of upregulated
DEGs was related to energy production such as respiratory
electron transport chain, oxidative phosphorylation, cyto-
chrome c to oxygen mitochondrial ATP synthesis coupled
electron transport, and ATP synthesis coupled electron trans-
port (Figure 2(b)). The downregulated DEGs were enriched in
pathways and processes associated with the immune response,
especially Th17, Th1, and Th2 cell differentiation; T cell recep-
tor signaling pathway; antigen processing and presentation;
positive T cell selection; lymphocyte differentiation; lympho-
cyte activation touching upon the immune response; immune
response-activating cell surface receptor signaling pathway;
antigen receptor-mediated signaling pathway; T cell selection;
and activation and differentiation (Figures 3(a) and 3(b)).
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Figure 2: (a) KEGG pathway and (b) GO biological process enrichment analysis of upregulated DEGs using Metascape. The top 20
significantly enriched terms are presented.
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3.3. PPI Network Analysis. The STRING software for con-
structing the PPI network was utilized to investigate the
interplay among the DEGs. Data from the STRING database
revealed that these DEGs interacted with each other. Figure 4
showed that the PPI network of upregulated DEGs was com-
posed of 198 nodes and 734 edges. Among the 198 nodes,
MRPL13 (degree = 26), LSM3 (degree = 25), COX7A2
(degree = 24), COX7C (degree = 24), and MRPL22
(degree = 23) were the top 5 significant hub node genes. Also,
the PPI network of downregulated DEGs (Figure 5) con-
tained 120 nodes and 159 edges. Among the 120 nodes,
EP300 (degree = 15), PTPRC (degree = 15), and CD4
(degree = 14) were the top 3 significant hub node genes.

4. Discussion

AS is a complex disease that involves many factors (6). For
patients with AS, there is currently no complete cure. The
only way for patients to improve the poor prognosis is to
actively cooperate with treatment and perform some rehabil-
itation exercises. Besides, early detection and early treatment
are very necessary for patients. There is evidence showing
that some lncRNAs are also involved in the development of

AS. Some research shows that HLA-B27 may be involved in
the pathogenesis (18). For example, Li et al. reported that
the expression of lncRNA MEG 3 was downregulated in AS
(19), which affected the length of the patient’s hospital stay.
Tan et al. proposed that the pathogenesis of AS might be
related to insufficient autophagy and downregulation of
lncRNA GAS 5, and lncRNA GAS 5 might have clinical
application value (20). Our discovery gives a new hint of
uncovering the traits of AS and exploiting a prospective tar-
get for AS treatment.

Our study attempted to explore the underlying mecha-
nisms related to the AS. Public gene expression data from
the GEO database GSE25101 were applied to analyze the
data. To be first, we normalized the raw data and dug
out the DEGs existing in AS patients and normal controls.
Then, we performed the KEGG and GO analyses to detect
these DEG-related pathways and biological processes. We
identified 199 DEGs with increase and 121 DEGs with a
reduction from a PPI network. The data of enrichment
analysis revealed that the DEGs with upregulation majorly
participated in the spliceosome, ribosome, RNA-catabolic
process, electron transport chain, and so on. The DEGs
with downregulation mostly took part in T cell-
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Figure 3: (a) KEGG pathway and (b) GO biological process enrichment analysis of downregulated DEGs using Metascape. The top 20
significantly enriched terms are presented.
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associated pathways and processes. Studies have shown
that some new congenital or physical diseases are related
to mutations in secondary spliceosome components (21),
such as cerebellar ataxia, myelodysplastic syndrome, spon-
dyloepiphyseal dysplasia tarda, amyotrophic lateral sclero-
sis, and spinal muscular atrophy. The generation of
reactive oxygen species (ROS) by the mitochondrial elec-

tron transport chain (ETC) is thought to be important in
the pathogenesis of neurodegenerative diseases such as
the aging process and Parkinson’s disease (22). The PPI
network analysis revealed that MRPL13, MRPL22, LSM3,
COX7A2, and COX7C were the hub upregulated genes
in AS, and EP300, PTPRC, and CD4 were the hub genes
with downregulation in AS.
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Nuclear genes encode MRPL13 and MRPL22 which are
the members of mitochondrial ribosomal proteins (MRPs).
MRPL13 and MRPL22 are generated in the cytoplasm and
then transported to mitochondria to assemble mitochondrial
ribosomes (23). MRPs are essential for mitochondrial oxida-
tive phosphorylation and exhibit crucially in regulating
apoptosis-inducing factors (24). Aberrant MRP expressions
will result in multiple dysregulations, such as disordered
mitochondrial metabolism and dysfunctional cell (25). Here,
we report abnormally expressed MRPs in AS.

LSM3, as a constituent of the precatalytic spliceosome,
participates in the assembly of the spliceosome (26). It func-
tions essentially in the process of pre-mRNA splicing as a

part of the U4/U6-U5 tri-snRNP (27). Pre-mRNA splicing
displays an essential role in the generation of mature mRNAs
in eukaryotic cells to regulate gene expression (28). Com-
bined with the enrichment analysis, our results suggested
that the AS exhibited a relation with the spliceosome.
COX7A2 and COX7C are the components of the cytochrome
c oxidase (COX) which is the terminal enzyme of the mito-
chondrial respiratory chain. COX is responsible for catalyz-
ing the reduction of oxygen to water, which is critical for
energy production in all organisms (29). The COX-related
pathway contains ATP synthesis, respiratory electron trans-
port, heat production, and so on, consistent with our enrich-
ment analysis.
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Ep300 encodes a p300 transcriptional coactivator associ-
ated with adenovirus E1A (30). Histone acetyltransferase
Ep300 mediates the modulation of transcription via remodel-
ing chromatin, cell proliferation, and differentiation (31).
Ep300 has also been reported as a coactivator of HIF1A (hyp-
oxia-inducible factor 1 alpha) thus activating VEGF which is
a hypoxia-induced gene (32). Diseases associated with EP300
contain Menke-Hennekam Syndrome 2 and Rubinstein-
Taybi Syndrome 2 (33). Pathways related to EP300 contain
regulating TP53 activity through acetylation and Nur77 sig-
naling in the T cell. Protein Tyrosine Phosphatase Receptor
Type C (PTPRC) belongs to the tyrosine phosphatase family,
generally functioning as a regulator of several cellular pro-
cesses, i.e., mitosis, cell proliferation and differentiation,
and oncogenic transformation (34). PTPRC is shown to be
a fundamental molecule in regulating T cell and B cell anti-
gen receptor signaling (35). PTPRC-related signaling works
via direct interaction with the antigen receptor complex or
through motivating several kinases of the Src family. CD4
membrane glycoprotein, also named as the CD4 antigen, is
encoded by the CD4 gene of T lymphocytes (36). Not only
do T lymphocytes express CD4 genes, but also macrophages,
B cells, granulocytes, and various regions of the brain do. The
CD4 membrane glycoprotein along with T cell receptors
works together as receptors to recognize antigens presented
by antigen-presenting cells under the circumstance of class
II MHC molecules (37). It can activate or enhance the early
stage of T cell activation and exhibit as a central mediator
of indirect neuronal damage in infectious and immune-
mediated diseases of the central nervous system. To sum
up, these three genes are associated with T cells which are
consistent with our enrichment analysis of downregulated
genes and could be the treatment targets.

The study has some limitations. The expression level of
the hub gene in AS needs further verification. In the follow-
ing study, we will collect clinical samples and determine the
expression level of the hub gene through TaqMan Real-
Time PCR. We will further explore the correlation between
hub gene expression and clinical parameters (including clin-
ical stage, age, and survival time).

5. Conclusion

This study used the bioinformatics method to analyze gene
expression data of GSE25101 to unearth the considerable
points and promising targets in AS treatment. In total, we
screened 199 DEGs with upregulation and 121 DEGs with
downregulation after analyzing AS patients and normal con-
trol ones. KEGG and GO enrichment analyses demonstrated
that the upregulated DEGs were largely associated with spli-
ceosome, ribosome, RNA-catabolic process, and electron
transport chain. And the DEGs with downregulation were
generally enriched in T cell-associated pathways and pro-
cesses. PPI network analysis revealed that MRPL13,
MRPL22, LSM3, COX7A2, COX7C, EP300, PTPRC, and
CD4 were the hub genes in AS and could be the treatment
targets. Our data furnish new hints to uncover the features
of AS and explore more promising treatment targets towards

AS. In the medical field, it has positive and important signif-
icance for the future treatment of AS.
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