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The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat. For species with multi-
step life cycles, this can be an unjustified oversimplification, as every step of the life cycle can contribute to the overall reproductive
success in a specific way. In particular, this applies to microbes that spend part of their life cycles associated to a host. In this case,
there is a selection pressure not only on the replication rates, but also on the phenotypic traits associated to migrating from the
external environment to the host and vice-versa (i.e., the migration rates). Here, we investigate a simple model of a microbial
lineage living, replicating, migrating and competing in and between two compartments: a host and an environment. We perform a
sensitivity analysis on the overall growth rate to determine the selection gradient experienced by the microbial lineage. We focus
on the direction of selection at each point of the phenotypic space, defining an optimal way for the microbial lineage to increase its
fitness. We show that microbes can adapt to the two-compartment life cycle through either changes in replication or migration
rates, depending on the initial values of the traits, the initial distribution across the two compartments, the intensity of competition,
and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate probing time to
measure fitness). Overall, our model provides a conceptual framework to study the selection on microbes experiencing a host-
associated life cycle.
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INTRODUCTION
Fitness is a central concept in evolutionary biology, of particular
importance for the theory of natural selection. Fitness measures
how well a phenotype performs in terms of reproductive success,
i.e., in terms of its ability to survive and reproduce. Natural
selection, acting through reproduction and inheritance of the
phenotypic traits, then leads to an increase in the population of
the genotypes producing high fitness phenotypes [1].
In any system, fitness emerges mechanistically from birth and

death events [2]. However, when it comes to the study of
particular experimental systems or models, the question of how to
measure fitness is often delicate, and fitness is often defined from
the outset, as a phenomenological parameter. For practical
reasons, fitness is often quantified under controlled laboratory
conditions, using different proxies such as a net replication rate
measured over a limited period of time, or a proportion of habitats
successfully colonized. But none of these fitness components
alone provides a holistic view of what fitness encompasses in
natural conditions. Indeed, in nature, individual lineages within a
species are often subject to multi-step life cycles, during which
they transition across different habitats (e.g., hosts and environ-
ments), which may each favor distinct life-history characteristics.
Some of the steps of these life cycles allow for offspring
production, others may be developmental, or may concern
migration or dispersal to the appropriate environments, or mate
finding – in the case of sexual reproduction (see for example [3]
for multi-step life cycles in animals). Fitness of an individual
lineage is thus a multivariate function of all the life-history traits

characterizing its life cycle, and in particular, its reproduction rates
within the habitats and, importantly, transmission across habitats.
The development of methods to take into account life cycles in

the assessment of fitness has proven important in a variety of
contexts. Historically, age-structured models have been developed
to study human demography [4]. In the context of species
conservation, or, at the other end of the spectrum, pest
management, the focus has been on finding the “Achilles heels”
of species life cycles to design efficient strategies to act upon
them, in order to shape and preserve biodiversity [4]. This idea has
further been developed theoretically, within the conceptual
framework of metapopulation dynamics [5, 6]. Moreover, life
cycle characteristics are also central to the study of the onset of
multicellularity, to understand why and how group replication can
be selected for [7, 8].
The question of how life cycle components contribute to fitness

is of particular relevance for the study of microbial communities
that associate with hosts (i.e., host-associated microbiota). Intricate
life cycles are common in nature, where microbes can for example
use hosts as vectors between different habitats [9, 10]. Having a
living host as a habitat adds complexity to the assessment of
fitness, given that the presence of the microbes may impact the
host fitness and vice-versa. Research has often been biased
towards the host perspective, and has focused on how microbes
can contribute to host fitness by extending the host functional
repertoire, e.g., performing digestive or immune tasks [11–13]. An
exception is epidemiology and parasitology, that have specifically
addressed the impact of the host fitness on the pathogen, in the
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form of trade-offs between transmission and within-host virulence
[14–17]. But what about commensal relationships, where bacteria
do not have a negative impact on the host fitness? In this context,
what are the factors that determine fitness of a microbial lineage?
Here, we focus on a primary aspect of the impact of a host on

the overall fitness of a microbial lineage, in that it provides the
microbe with an alternative habitat, where growth conditions are
potentially different from an environmental habitat. We propose a
framework to assess the selection gradient acting upon the life-
history traits of microbes undergoing a biphasic life cycle, in which
they alternate between phases of host association and free-living
environmental phases. Biphasic life cycles are likely to be at the
origin of host-microbiota associations and are still widespread in
current associations [18, 19]. We propose that the overall fitness for
a microbial lineage during such a biphasic life cycle needs to
integrate evolutionary success across the different steps of the life
cycle. It is therefore shaped by reproductive rates in both of
the habitats and additionally by the migration rates between the
habitats. The gradient of selection determines the direction in the
phenotypic space that evolution is expected to follow to maximize
overall fitness. Our general aim is to provide a tool to compare
the relative importance of the different life-history traits of a
microbial lineage, starting only from the equations that describe
the population dynamics experienced throughout the life cycle.
We explore a simple continuous-time two-compartment model
that allows microbes to migrate between a host and an
environment. We use the method of sensitivity analysis [4] to
infer how strongly the overall growth rate depends on the traits we
are considering. In the baseline version of the model, we consider
unconstrained growth. Subsequently, we extend our framework to
include population size constraints. We define the local direction of
the selection gradient as the optimal strategy for a microbial
lineage to adapt to its life cycle, starting from the local values of
the traits. We show the existence of defined regions of different

optimal strategies in the phenotypic space in which it is either
more beneficial to optimize growth or migration. The boundaries
of these regions are driven by modeling assumptions such as
competition, and the probing time chosen to measure fitness.

MODEL
We focus on a single commensal microbial type and ask how the
overall growth rate across its life cycle is affected by its life-history
traits. We consider a simple biphasic life cycle, with two
compartments corresponding to communicating habitats: a host
and an environment. Let us write nH(t) for the number of host-
associated microbes at a given time, and nE(t) for the number of
environmental ones. We define the life-history traits of the
microbial lineage as the rates at which individual microbes
reproduce and die in each compartment, compete, and migrate
from one compartment to another (Fig. 1A). The microbes
reproduce clonally, and the net replication rates in the environ-
ment and within the host are rE and rH, respectively. They could
encompass both offspring production and death, and thus could
be negative. The migration rates from the host to the environment
and from the environment to the host aremE andmH, respectively.
We start with exponential growth. We later introduce intra-specific
competition for space of intensity kij experienced by the microbes
of compartment i due to the abundance of microbes in the
compartment j. We assume that the number of microbes is large
enough to be described by differential equations and assume that
all rates introduced above are constant.

∂nH
∂t ¼ rHnH þmHnE �mEnH � kHEnHnE � kHHn2H
∂nE
∂t ¼ rEnE þmEnH �mHnE � kEHnEnH � kEEn2E:

(
(1)

In the following, we first consider unconstrained growth, where
there is no competition (kEE= kHH= kEH= kHE= 0), before adding

Fig. 1 Optimal strategies in the baseline model (no competition). A Schematic diagram and definition of the rates for a microbial lineage
migrating between a host and an environment and replicating in each compartment. For rE > 0, the total number of microbes increases
exponentially and we ask how the exponential growth rate can be increased by changing the parameters of the model. B Temporal dynamics
of the number of microbes in each compartment, nE(t) and nH(t), for two different sets of traits values, indicated by colored stars in the traits
space of panel C. The overall growth rate λ is the long-term slope of the curves. While the temporal dynamics contain the information on λ,
they do not allow to distinguish between the different strategies on their own. C Overall growth rate λ (color scale) on the trait space
determined by rE= 1 (scaling time), rH (x-axis) and m=mH=mE (y-axis). The overall growth rate λ is maximized for small m or for large rH. In
addition, we focus on sensitivities, which capture how strongly the overall growth rate depends on the traits. The contour line shows the line
of the traits space that equalizes the absolute values of the sensitivities derived analytically from equations [4] and [5], delimiting the regions

of optimality of the two observed optimal strategies. When
smH
srH

��� ���< 1, the optimal strategy is to increase the within-host replication rate rH

(strategy I). When
smH
srH

��� ���> 1, the optimal strategy is to decrease the migration rate towards the host mH (strategy II). The sensitivity to the third

considered trait, smEj j, is never larger than the two others on the considered traits space.
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global competition (kEE= kHH= kEH= kHE= k), competition limited
to one of the compartments (kEH= kHE= 0 and kEE ≠ 0 or kHH ≠ 0),
and finally, equal competition in each of the compartments (kEH=
kHE= 0 and kEE= kHH= k). While in nature it is likely that none of
the kij vanishes and that a wide range of values are possible, the
study of these limit cases gives powerful insights into what is to be
expected in a wide range of situations.

RESULTS
Baseline model: no competition
We start by assuming no competition and consider unconstrained
growth in each of the two compartments. In this case, the
equations describing our model become linear and can be
rewritten in matrix form [4] as

∂nH
∂t
∂nE
∂t

 !
¼ rH �mE mH

mE rE �mH

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

projectionmatrix

nH
nE

� �
(2)

The dominant eigenvalue λ of the above-defined projection
matrix gives the asymptotic overall growth rate of the considered
microbial lineage. This quantity is an appropriate measure of
fitness [4] insofar as it measures reproductive as well as
transmission success and recapitulates the effects of all the life-
history traits (rE, rH,mE, and mH, also defining the phenotype in our
model). Overall microbial fitness is thus integrated across
the different steps of the life cycle, thereby considering the
reproductive rates (i.e., replication rates) within each of the
compartments and importantly transmission rates (i.e., migration
rates) across the compartments. The dominant right eigenvector
represents the stable distribution of microbes in the two
compartments, and the number of microbes in each of the
compartments grows exponentially with rate λ. The value of λ can
be calculated at each point of the phenotypic space defined by
the ranges of possible values that could be taken by the life-
history traits rE, rH,mE, and mH. The dependence of λ on these traits
tells us at which points of the phenotypic space fitness is
maximized and how it can be increased at all other points.
From the projection matrix, we calculate the dominant

eigenvalue as

λ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rE þ rH �mE �mHð Þ2 � 4 rErH � rEmE � rHmHð Þ

q
þ rE þ rH �mE �mH

� �
:

(3)

Note that if microbes replicate at the same rate in the host and
in the environment, i.e., if rE= rH= r, λ simplifies to r, regardless of
the migration rates mH and mE. When there is an asymmetry
between the two replication rates however, which is very likely to
be the case in nature, then the migration rates also affect the
overall growth rate. In the following sections, we study this effect
compared to the effect of the replication rates. We arbitrarily set
rH ≤ rE, and rE > 0 – otherwise the lineage goes extinct. In biological
terms, this corresponds to the situation where the microbial
lineage is initially more adapted to the environment than to the
host and thus grows faster in the environment. But mathemati-
cally, in this model, host and environment are symmetrical, i.e.,
they only differ by the rates defined above. Thus, the chosen
direction of this inequality does not carry any strong meaning, and
there is no loss of generality in making this choice. In particular,
one can access the opposite biological situation where microbes
replicate faster in the host than in the environment – as is the case
for viruses, that can only replicate in the host (rH > 0) but decay in
the environment (rE < 0) – by a single switch of the index E and H.
Let us first study the case where the migration rates from

and towards the environment are equal, i.e., mE=mH=m > 0.
Setting rE= 1 to scale time (and thus, measuring all other

rates in units of the replication rate of the microbe in the
environment), λ reduces to

λsym ¼ 1
2

1þ rH � 2mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rHð Þ2 þ 4m2

q� �
(4)

For any fixed positive value of m, λsym is a strictly increasing
function of rH, which reflects the fact that increasing rH allows for
additional growth within the host. We will limit ourselves to the
study of rH ≥−1, which ensures a positive value for λsym. For any
fixed value of rH, λsym is a decreasing function of m, which reflects
the fact that for increasing m, microbes are increasingly lost
towards the host, where growth is slower than in the environ-
ment. Figure 1C shows the value of λsym on the reduced
phenotypic space defined by rH and m. The maximum possible
value for λ is 1 (in units of rE). This value is achieved either by
increasing the ratio of replication rates between host and
environment, so that the replication rates in both compartments
are identical (strategy I), or by reducing migration between host
and environment, and in particular, by reducing mH (strategy II).
This second strategy allows microbes to spend a longer time in
the environment on average. Note however, that this strategy is
limited, since setting m to zero decouples the two compartments
completely, in which case the microbial lineage is no longer
subject to a multi-step life cycle.
How strong is the selection on these traits? This question can be

approached by inferring how strongly the overall growth rate
depends on the traits we are considering. One standard approach
to measure this is sensitivity analysis [4]. One defines the
sensitivity of the overall growth rate λ achieved by the phenotype
described by the vector x= (x1,…, xN) in the trait space to its ith
life-history trait as

si xð Þ ¼ ∂λ

∂xi

����
x

(5)

This quantity gives the change in the value of λ that results from
a small increment of the trait i. It is a local property that can be
calculated for each point x of the trait space. The vector of the
sensitivities at point x gives the direction of the selection gradient
on the fitness landscape. In other words, to achieve efficient
phenotypic adaptation, the lineage should move in the trait space
following the direction of this gradient.
If the lineage can invest in phenotypic adaptation only by

tuning one of its life-history traits at a time, then it should act
upon the trait that has the largest (absolute) sensitivity at the
current position of the lineage in the trait space. In our model, in
all generic cases (i.e., when m > 0), the largest sensitivity is always
associated to the increase of the trait rE, the replication rate in the
fast-growing compartment. However, we assume that the
considered microbial lineage is initially fully adapted to
the environment, so that it has reached its evolutionary limit,
and we can essentially ignore the sensitivity to rE throughout the
manuscript to focus on the sensitivity to the other traits. This
reasoning allows to divide the trait space into regions of distinct
optimal strategies, as shown in Fig. 1C. In the regime of high
migration rates (i.e., when the switch between the compartments
is so rapid that the microbial lineage is almost experiencing a
habitat having average properties between the host and the
environment), strategy I (increasing rH) becomes almost always
optimal, except for small replication ratios, where there is almost
no replication in the host. In summary, migration rates are
important when replication in the host is slow compared to the
environment, and when migration itself is slow. These conclusions
remain qualitatively unchanged with asymmetric migration rates,
although a third optimal strategy (increasing mE) appears for an
intermediate region of the traits space when the asymmetry is
important (see electronic Supplementary Material (ESM) section 1
and Supplementary Fig. S1).
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Model with global competition between all microbes
In the baseline model, there are no constraints on growth. In nature,
however, microbes do face limits to their growth. Since the
equations above are linear and can only give rise to exponential
growth or exponential decay, they can only describe the microbial
dynamics over a limited period of time. In order to account for
saturation and competition during growth, we thus need to
introduce non-linear terms to the equations (1). The study of this
kind of systems often focus on long-term dynamics, yet it can be of
high practical relevance to study the transient optimal strategies, as
shorter timescales are often relevant in the real world – whether it
be due to experimental constraints or to ecological disturbances and
perturbations [20]. Since we are going to consider some out-of
equilibrium dynamics, in particular in the section with competition
limited to one of the compartments, and because we are also
interested in transient properties, we will adopt a numerical
approach based on the number of microbes [21, 22].
In this section, we study the case of a microbial lineage

constrained by global competition occurring at rate k= kHH=
kEE= kEH= kHE. This situation could correspond to a host-
associated microbe living in direct contact with an external
environment, e.g., on the surface of an organism. Alternatively,

what we call the “environment” in our model could represent
another host compartment in direct contact with the other, like
the gut lumen and the colonic crypts. In that case, microbes
living in association with the host are in direct contact with
those in the environment and can mutually impact each other’s
growth. This is of particular relevance if microbes living in both
compartments rely on and are limited by the same nutrients for
growth.
From the microbial abundances in the two compartments

obtained by numerically solving the equations, one can build a
proxy for the overall growth rate of the microbial lineage. To
remain consistent with the previous section, we define

Λ xð Þ ¼ 1
tmax

log
nE tmaxð Þ þ nH tmaxð Þ

nE 0ð Þ þ nH 0ð Þ
� �

(6)

i.e., the effective exponential growth rate of the microbial lineage
over a chosen period of time [0, tmax]. Figure 2A provides a
graphical explanation for the expression of Λ. There are indeed
several fundamental differences between the effective exponen-
tial growth rate Λ in a non-linear system and the asymptotic
growth rate λ in a linear system, the dominant eigenvalue of the

Fig. 2 Optimal strategies in the model with global competition. A Temporal dynamics of the total number of microbes nE(t)+ nH(t) for three
different sets of traits values, differing only by their intensity of competition k= kHH= kEE= kEH= kHE. Other parameter values are: rH= 0.1,
mE=mH= 0.5. The effective overall growth rate Λ is calculated numerically by taking the slope of the straight line that connects the
abundances in t= 0 and in tmax, thus making Λ a quantity that strongly depends on tmax. B Change in the contour line delimiting the regions
of optimality of the two optimal strategies (strategy I: increasing rH; strategy II: decreasing mH) with tmax, the time chosen to measure the final
number of microbes, measured in units of 1/rE. Initially the microbes are equally distributed between the host and the environment.
Supplementary Fig. S2 shows how this is modified with different initial conditions. Because in this model all the microbes are equally
impacted by competition, with tmax large enough, one recovers the contour line of the baseline model calculated analytically (black line).
Continuous lines: k= 0, i.e., no competition. Dashed lines: increasing values of k (competition intensity). C, D Change in the fitness landscape
with tmax (panel C: tmax= 0.7 and panel D: tmax= 3). The colored lines show the contour delimiting the regions of optimality of strategies I and
II for three different values of k, as shown on panel B. Black line: long-term limit of no competition from the base model.
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projection matrix as defined in the baseline model. First, Λ
provides a measure of growth for the whole lineage, but is not an
asymptotic growth rate (as compared to λ in the baseline model):
in the case of global saturation, replication stops when the
carrying capacity is reached, and the asymptotic growth rate for
the whole lineage would thus be zero. Therefore, the choice of the
probing time tmax has an impact on Λ, as shown in Fig. 2A. Second,
the choice of the exact form of Λ now implies biological
assumptions on the selection pressure experienced by the
microbial lineage: choosing the effective exponential growth rate
over the whole lineage as we do implies that selection is acting on
both compartments evenly. There may be some situations in
which the microbes in one of the compartments only are
artificially selected for (e.g., as part of the protocol of an evolution
experiment). In such cases, it would make sense to define Λ as the
effective exponential growth rate over just this compartment. This
may lead to different conclusions, in particular at the transient
scale. One must thus adapt Λ to the specifics of the modeled
system. In addition, the choice of tmax itself has a biological
meaning, and should in particular not exceed the time upon
which the dynamics of the system are accurately described by the
set of equations. This may also be determined by experimental
times.
We now calculate the sensitivity of Λ in the direction of the trait

i at the point x of the phenotypic space as

Si ¼ Λ x1; x2; ¼ ; xi�1; xi þ δxi; xiþ1; ¼ ; xNð Þ � Λ x1; x2; ¼ ; xNð Þ
δxi

(7)

with δxi the discretization interval, and N the number of traits
defining a phenotype x.
For this numerical approach, additional choices need to be

made. First, the trait space needs to be discretized. Then, to
calculate Eq. (7), one needs to choose a set of initial conditions
and a probing time at which to measure the microbial
abundances, as exposed in detail for the linear case in [20].
Finally, we need to choose the discretization interval δxi. In the
following, we always choose δxi sufficiently small for convergence,
i.e., so that it does not significantly impact the numerical values of
the sensitivities, and focus on the choices of the other parameters
(probing time and initial conditions) and the influence of the
competition intensity k. One strategy to explore the possible
impact of initial conditions is to use “stage biased vectors” [20], i.e.,
extreme initial distributions of microbes across the two compart-
ments. This corresponds to initial conditions where microbes
either exist only in the host or only in the environment.
In Fig. 2B, we show how the contour lines delimiting the two

optimal strategies change with the final time tmax chosen to
measure the overall growth rate and with the intensity of
competition k, for a mixed initial condition (nE(0)= 0.5,nH(0)= 0.5),
and Supplementary Fig. S2 shows how this is modified with stage
biased vectors. In all cases, with sufficiently long tmax, the contours
converge to the contour plot of the baseline model shown in the
previous section. This is expected, since competition here affects all
the microbes in the same way, so that the equilibrium distribution is
the same as the asymptotic distribution of the baseline model (given
by the dominant eigenvector). Mathematically, global competition
can be seen as a modification of the baseline projection matrix by
subtracting an identity matrix times a scalar depending on time. This
does neither affect the eigenvectors nor the dependence of the
dominant eigenvalue on the traits.
In the case where all the microbes are initially in the

environment (Supplementary Fig. S2A), there is no transient
effect and whichever tmax is chosen, all the contour lines
collapse to the limit of the baseline case. In the case where all
the microbes are initially in the host (Supplementary Fig. S2B), a
third optimal strategy transiently appears (increasing mE) and

remains at long times around m= 0. In this unfavorable
condition (m= 0 and an initially empty environment), increasing
the microbial flux towards the environment becomes more
important than limiting the flux of microbes leaving it (which is
nonexistent when m= 0).
Finally, we observe that the intensity of competition has only a

small effect on the contours (Fig. 2B and S2B), but increasing k
appears to slightly accelerate convergence to the baseline
contour. By limiting growth in the host compartment – when it
is initially relatively more populated than in the asymptotic
distribution – competition facilitates the convergence to the
baseline asymptotic distribution, where most of the microbes live
in the environment.

Model with competition within one of the compartments only
In this section we consider competition happening inside one of
the compartments only (i.e., kEH= kHE= 0 and kEE ≠ 0 or kHH ≠ 0).
We will start by considering competition in the host only (the
slow-replicating compartment). In a second step we also look at
the case with competition limited to the environment. One should
bear in mind that it also covers the case of competition limited to
a host where replication is faster than in the environment (rH > rE),
provided a switch of the H and E index.
In the case where competition is limited to only one of the

compartments, we do not expect an equilibrium to exist for all
traits combination of the phenotypic space. If migration is not
sufficiently important, the number of microbes in the uncon-
strained compartment keeps increasing exponentially faster than
the number of microbes in the constrained compartment, which
contribution to the whole lineage thus becomes rapidly negligible.
At sufficiently high migration rates however, an equilibrium is
expected, because microbes switch habitats sufficiently rapidly for
competition to be globally effective, although it directly affects
only one of the compartments.

Competition in the host only (slow-replicating compartment).
When there is competition in the host only, there is no (positive)
equilibrium for all mH < rE= 1 (Fig. 3B). In this case, replication
inside the host should have less importance for the lineage
because the number of microbes associated to the host becomes
negligible compared to the ones present in the environment. In
this region of the phenotypic space we thus expect the sensitivity
of Λ to the parameter rH to tend to zero with increasing probing
times tmax or intensity of competition k= kHH, whatever be the
other parameters (initial conditions, intensity of competition).
When migration out of the environment is sufficiently important
for an equilibrium to exist, we can derive the expression of the
number of microbes at equilibrium analytically and perform a
sensitivity analysis to determine the limit of the contour line
separating the regions of optimality of the different strategies.
Figure 3 verifies these verbal arguments. As expected, for a

fixed tmax, we recover the shape of the fitness landscape of the
baseline model for small values of k= kHH. When increasing k, the
values of Λ become smaller overall: growth is slower due to
competition. For small k values, the contour delimiting strategy I
from II is close to the baseline limit: the effect of competition is
negligible. With increasing values of k, strategy I (increasing rH)
sees its area of optimality reduced out of the mH < rE= 1 region,
until the contour converges to the limit of equal sensitivities of the
number of microbes at equilibrium (Fig. 3A, B, and Supplementary
Fig. S3).
When initially the microbes are in the host only (Supplementary

Fig. S3A, C), we can again observe the appearance of the third
strategy (increasing mE), around m= 0. Indeed, when m=mE=
mH= 0 initially, decreasing mH (strategy II) has no effect, while
increasing mE will allow the colonization of the initially empty
environment.
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Finally, the impact of increasing the probing time tmax at fixed k
is similar in every way to increasing the competition intensity k at
fixed tmax (Supplementary Fig. S3B, C).

Competition in the environment only (fast-replicating compartment).
When there is competition in the environment only, there is no
(positive) equilibrium for all mE < rH. In this region of the
phenotypic space, the number of microbes in the environment
becomes substantially smaller than the number present in the
host after some time. As a consequence, strategy I (increasing the
replication rate within the host) becomes more important, so that
we see its area of optimality extend, see Supplementary Fig. S4.
For a fixed tmax, with a small value of k we recover the shape of the
fitness landscape from the baseline model with no competition,
but increasing k shifts the contour line to lower rH until the
strategy II (decreasing mH) disappears from the mE < rH region and
the delimitation of the strategies approaches the contour of equal
sensitivities of the number of microbes at equilibrium, calculated
analytically. Remarkably, we also observe the appearance of a
fourth optimal strategy around m= 0, increasing mH. Intuitively,
initial conditions where all the microbes are initially located in the
(fast-replicating) environment are less favorable when there is
competition in the environment, so that migration towards the
host (where growth remains unconstrained) becomes more
important when the migration rates are initially small. Similar to
the previous case, when initially microbes are in the host only

(Supplementary Fig. S5A, C), the third strategy (increasing mE)
prevails around m= 0. As before, the impact of increasing the
probing time tmax at fixed k is similar in every way to increasing
the competition intensity k at fixed tmax (Supplementary Fig. S5B,
C).

Competition of equal intensity within each compartment
When there is competition of equal intensity in the host and the
environment (i.e., kEH= kHE= 0 and kEE= kHH= k), we observe
very similar results to the previous section, with competition in the
environment only (see Fig. 4 and Supplementary Fig. S6):
increasing k or increasing tmax leads to the disappearance, at
long times, of the area of optimality of strategy II (decreasing mH),
except for a distinct region of small rH and intermediate m,
predicted by the contour of equal sensitivities of the number of
microbes at equilibrium. Strategy IV (increasing mH) is optimal
around m= 0. This implies that the effect of competition in the
fast-replicating compartment has a dominating effect on the
overall growth rate.

DISCUSSION
Out in the wild, microbial lineages are often subject to multi-step
life cycles, where they alternate between at least two habitats.
Each of the steps of these life cycles can contribute to the overall
reproductive success. In general, microbial fitness is thus more

Fig. 3 Optimal strategies in the model with competition in the host only. A Change in the fitness landscape with the within-host
competition intensity k= kHH. Colored lines: contours of equal sensitivities delimiting the optimal strategies (as shown in panel C). Black lines:
limit contours (solid line: limit of no competition, from the baseline model; dashed line: limit derived from the number of microbes at
equilibrium). Other parameters: tmax= 30, nE(0)= 1, nH(0)= 0. B Number of microbes in function of time, for the parameter combinations
indicated by colored stars in panel A. When there is competition in the host only, there is an equilibrium only if migration is important
enough. C Change in the contour lines delimiting the regions of optimality of the strategies with increasing k (within-host competition
intensity). All the microbes are initially in the environment (nE(0)= 1, nH(0)= 0). Solid colored lines: limit between the regions of optimality of
strategy I (increasing rH) and II (decreasing mH). Other parameter: tmax= 30. The region of optimality of strategy I tends to narrow down and
shifts out of the m < 1 region to converge to the contour of equal sensitivities of the number of microbes at equilibrium (thin dashed line).
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complex than the common approximation of growth yield used in
the lab. This is particularly true for microbes with life cycles that
involve a host-associated phase and a free-living phase, as
commonly observed for many host-associated microbiota mem-
bers [19]. In this case, selection should favor traits which ensure
both high reproductive rates within each habitat, but also
successful transmission between them. A framework to study
fitness in all its complexity is needed in the field of microbiota
studies, which could benefit from some of the mathematical tools
first introduced in demography, as the ones used in this work.
Here, we investigate a model of a microbial lineage living,
replicating, migrating, and competing in and between two
compartments: a host – assumed to be, throughout the paper, a
compartment where replication is slower – and an environment.
To analyze the selection gradient experienced by the microbial
lineage going through this biphasic life cycle – with phases in the
environment and phases in the host – we perform sensitivity
analysis. We focus on the leading direction of the selection
gradient at each point of the phenotypic space, thereby defining
an optimal strategy for the microbial lineage to maximize its
fitness.
We show that in the case of unconstrained exponential growth

in both the compartments, there are two optimal strategies:

increasing the replication rate in the host compared to the
environment (strategy I), and decreasing the migration rate to the
host (strategy II) to maximize the time spent in the fast-replicating
compartment. The first strategy is optimal at initially high within-
host replication rates and high migration rates, while the second
strategy is optimal at initially small migration rates and small
within-host replication rates.
Next, we extend the model to a scenario where microbial

growth is limited by competition. We start with global competi-
tion, a case which could describe competition for a resource
homogeneously shared between the host and the environment.
Biologically, this corresponds to communities of microbes that are
associated with hosts, but have extensive contact with the
environment, as the skin or other epithelial microbiota for
example [23, 24]. In this case, we show that apart from a transient
effect, the optimality of the strategies is conserved from the case
without competition. With competition in the host only (the slow-
replicating compartment), at longer probing times, or at higher
competition intensities, the strategy I (increasing the ratio of
replication rates) is disfavored when migration out of the
environment is slower than replication in the environment, i.e.,
where there is no equilibrium. Strategy II (decreasing migration to
the host) thus increases its area of optimality. Inversely, with

Fig. 4 Optimal strategies in the model with equal intensity of competition within each compartment. A Change in the fitness landscape
with the competition intensity k= kHH= kEE. Colored lines: contours of equal sensitivities delimiting the optimal strategies (as shown in panel
C): solid line, between strategies I and II; dashed line, between I and IV. Black lines: limit contours (solid line: limit of no competition, from the
baseline model; dashed and dotted lines: limit derived from the number of microbes at equilibrium). Other parameters: tmax= 30, nE(0)= 1,
nH(0)= 0. B Number of microbes in the two compartments in function of time, for the parameters combinations indicated by colored stars in
panel A. When there is competition of same intensity in each of the compartments, there always exists a positive equilibrium. C Change in the
contour lines delimiting the regions of optimality of the strategies with increasing k (competition intensity). All the microbes are initially in the
environment (nE(0)= 1, nH(0)= 0). Solid colored lines: limit between the regions of optimality of strategy I (increasing rH) and II (decreasing
mH); dashed colored lines: between strategy I and IV. Other parameter: tmax= 30. The region of optimality of strategy I tends to expand until it
converges to the contour of equal sensitivities of the number of microbes at equilibrium (black dashed line). The black dotted line is also
derived from the number of microbes at equilibrium and delimits the area of optimality of strategy IV.
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competition in the environment only (the fast-replicating com-
partment), or with competition of equal intensity within the host
and within the environment, the strategy II is disfavored when
migration out of the host is slower than replication in the host,
leaving strategy I as the only optimal strategy in this region of the
parameter space. Unsurprisingly, this suggests that competition
within the fast-replicating compartment dominates the effect on
the selection gradient.
While this analysis provides crucial information on the selection

gradient that shapes microbial adaptation to life cycles involving
host association, it does not take into account the evolvability of
the traits themselves. Although the selection gradient is a good
indicator of the expected evolutionary path in the phenotypic
space, the underlying genotype/phenotype mapping does not
always allow for this path to be taken [25–28], and the outcome of
evolution may thus be different. The discrete nature, the non-
additivity and non-linearity of genetic information, as well as the
existence of costs, trade-offs and evolutionary constraints may
prevent the predicted continuous change on the phenotypic trait.
In addition, using sensitivities is built on the assumption that
adaptation generates additive changes in life-history traits.
Although this is a common assumption, different choices are
sometimes made. For example, multiplicative changes of the traits
are assumed in elasticity analysis [4, 21, 27, 29], which presents the
advantage of manipulating only proportional changes and thus
non-dimensional quantities, but deals poorly with traits that can
take the value of zero. These fundamental assumptions can
sometimes result in different inferred selection gradients, as was
shown for example in the context of age-classified populations
[30].
Stepping back, we can evaluate the predictions of our model in

the light of biological observations. Evolution experiments where
microbial lineages are serially passaged through a host and an
environment are of particular interest here, to assess the response
to selection resulting from biphasic life cycles. The key role of
microbial immigration during the initial adaptation to their
zebrafish host has for example been highlighted in [31]. In
Drosophila [32] and in C. elegans [33], experimental selection
towards host association resulted in adaptive changes in microbial
life history with a direct impact on host fitness. In detail, in the first
case, there is evolution towards by-product mutualism, and in the
second, which concerns an initially pathogenic population,
evolution towards less virulence and an increased carrying
capacity.
Conceptually, using an integrative, overall growth rate as a

measure of fitness across the life cycle provides a complementary
insight to invasion fitness approaches [34, 35] developed to
analyze such evolution experiments, for example in [36, 37]. While
invasion fitness analysis relies on assessing the long term chances
of successful invasion of an established population at equilibrium
by a new mutant strain of defined traits values, sensitivity analysis
of the overall growth rate provides a systematic framework that
can be applied to out-of-equilibrium systems, and provides
information on shorter time scales. Both frameworks rely on
different proxies to assess a fitness capturing its different
components - in one case, the frequency of patches where the
microbe is present, and in the other, the overall growth rate, but
both frameworks converge on the key role of migration between
compartments. In fact, in many common cases like global
competition, the long-term predictions of invasion fitness are
recovered with the sensitivity analysis of the effective growth rate
by setting tmax sufficiently large [21].
In future work, our framework could be extended in different

directions to capture additional characteristics of microbial life
cycles in host association. The first extension could be to increase
the number of compartments. While the question of fluctuating
environments has been studied before, in discrete times or in a
different context [8, 21], in our context it may be profitable to

consider and include host population dynamics. This would
notably allow us to include microbial traits that affect host fitness
in our analysis. A second direction could be to include non-
homogeneities and stochasticity. A first step could be to introduce
several interacting taxa with different life-history traits, and assess
how the presence of additional taxa potentially modifies the
selection on the taxon of focus. Secondly, our deterministic
description is valid only if the number of microbes is sufficiently
large at all times and can only describe the average selection
gradient experienced by the lineage. Introducing stochasticity
would crucially allow the study of differentiation, which may play
an essential role in the response to multi-step life cycles which
include replication in several steps. Differentiation, in the form of
speciation, phenotypic plasticity, or bet-hedging is indeed
observed in evolution experiments and natural microbial popula-
tions [38–43]. It is also observed in host-associated populations
[44] and may thus be expected in evolution experiments that
include a host-association phase. In a stochastic setting with
mutation of the life-history traits, it could be important to also
incorporate other mechanisms of transfer of genetic information,
such as horizontal gene transfer and recombination, which could
decelerate or even prevent differentiation [45, 46]. Finally, a key
aspect that we have so far excluded is spatiality. Effects of
spatiality on the selection gradient are known for example in a
simple Petri dish system, where the existence of an optimal
expansion speed for a given habitat size is shown [47, 48].
Generally, hosts are highly structured habitats with variation in
nutrients and chemical and physical gradients shaping for
example the gut [49–51], which may also favor differentiation.
The introduction of several compartments or sub-compartments
within the hosts could represent a first step in this direction.
In conclusion, the framework we introduce here with a minimal

model provides a basis to study the consequences of habitat
switching for microbes, and will allow to explore additional
aspects of host association in the future. It meets the need to
conceptualize fitness as a holistic measure that captures all the
aspects of microbial life cycles. With the development of this
framework, we aim to contribute to a better understanding of the
mutual benefits that microbes and hosts can retrieve from such
associations.

DATA AVAILABILITY
The Mathematica files to produce the figures are available at https://github.com/
flobansept/microbes_life_history_selection.
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