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Species distribution models (SDMs) are an important class of model for
mapping taxa spatially and are a key tool for tackling biodiversity loss.
However, most common SDMs depend on presence–absence data and,
despite the accumulation and exponential growth of biological occurrence
data across the globe, the available data are predominantly presence-only
(i.e. they lack real absences). Although presence-only SDMs do exist, they
inevitably require assumptions about absences of the considered taxa and
they are specified mostly for single species and, thus, do not exploit fully
the information in related taxa. This greatly limits the utility of global biodi-
versity databases such as GBIF. Here, we present a Bayesian-based SDM for
multiple species that operates directly on presence-only data by exploiting
the joint distribution between the multiple ecological processes and, cru-
cially, identifies the sampling effort per taxa which allows inference on
absences. The model was applied to two case studies. One, focusing on tax-
onomically diverse taxa over central Mexico and another focusing on the
monophyletic family Cactacea over continental Mexico. In both cases, the
model was able to identify the ecological and sampling effort processes
for each taxon using only the presence observations, environmental and
anthropological data.
1. Introduction
Estimating the geographical distribution of species, conditioned to their ecologi-
cal niche, is crucial for assessing the risk of species extinctions, habitat
restoration and forecasting the effects of climate change on biodiversity [1,2].
Species distribution models (SDMs) are designed for these purposes and
have become essential tools for diagnosis, decision and policymaking at
regional and global scales [3]. SDMs are effective in characterizing the natural
distributions of species when the sampling observations are properly designed
to fit the model’s assumptions [4,5]. These assumptions typically are: (i) the
probability for a target species (P) to occupy a given area is independent
from other species [6,7] and (ii) P is at equilibrium with its environment. That
is, species are present across all environmentally suitable areas and are absent
in unsuitable environments [8]. While the value of SDMs in decision-
making and environmental assessments is indisputable, the aforementioned
assumptions greatly limit their scope in application.

Research in community ecology has long recognized the interplay between
environmental niche, species interactions and stochastic variability across space
in determining distributions and species dynamics within ecological commu-
nities [9]. Omitting species interactions in SDMs (as when assuming
independence between species) could lead to misrepresentation of species dis-
tributions, as some species are more likely to occur under the presence of
others. Joint SDMs (JSDMs) are designed to address this problem by jointly
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modelling multiple species simultaneously. JSDMs provide
more flexibility for assembling multiple species, resulting in
models with greater support in ecological theory, inferential
and predictive power [10]. For example, JSDMs have been
shown to be effective in modelling rare species. This is
achieved by allowing observations of conspicuous species
to inform the likelihood of the rarest ones [11,12]. In particu-
lar, Bayesian-based hierarchical models have been
demonstrated to be effective in modelling uncertainties for
a wide range of JSDMs [10,13] by specifying random effects
using different hierarchical levels to capture correlations
between distinct taxa and ecological relationships. For
example, Aderhold et al. [14] proposed a model for recon-
structing species interaction networks using Bayesian
change-point frameworks, and Jamil et al. [15] used general-
ized linear mixed models (GLMM) to incorporate the effect
of species traits in response to the environment and other
species occurrences.

Accounting for the simultaneous effect of multiple species
is computationally expensive. In recent times, this limitation
has been circumvented by advances in high-performance
computing and computational statistics, facilitating the infer-
ence of complex statistical models using Markov chain Monte
Carlo (MCMC) and, consequently, the development of more
complex and statistically sound JSDMs. Early approaches
for JSDM include: a hierarchical approach for binary
responses (presence–absence) [16] and a geostatistical
model for co-regionalization [17] to model a spatial effect
per species. Later, Clark et al. [18] proposed a hierarchical
model for abundances and presence–absence for multispecies
using a zero-inflated Poisson process to account for the bias
in the number of zeros related to abundance data. In recent
years, approaches by Thorson et al. [19] and Ovaskainen
et al. [20] used latent factors to model the whole community
level with a single spatial covariance function for each
latent factor. Later, Ovaskainen et al. [21] proposed a frame-
work that uses phylogenetic information to reduce the
number of parameters and gives a comprehensive baseline
for characterizing species assemblages through hierarchical
models. Their research was extended recently in Tikhonov
et al. [22] with the inclusion of spatial latent factors (using
Gaussian predictive processes). The mentioned approaches
provide deeper understanding of ecological processes at
different scales (i.e. from community to species) by relaxing
the assumption of independence between species. This gener-
alization of the model assumptions gives more accurate
representations of the species distributions. Nevertheless, fra-
meworks of this kind keep the assumption of environmental
equilibrium and, therefore, rely on presence–absence
observations.

The assumption of environmental equilibrium is usually
problematic in practice, especially in analyses that cover
large geographical areas. While presence–absence SDMs are
statistically sound and fully characterize the probability of
presences, the input data require a careful sampling design,
specific to the research question. Another consequence of
this assumption is the need for accurate data on absences.
Failure to do so may lead to invalid conclusions, as the mod-
elling assumption will no longer be valid. Obtaining records
of absences that truly represent unsuitable environments is
typically difficult and expensive, as they require intense
sampling effort. As such, the availability of this datatype
reduces their application to only a limited variety of studies.
An alternative to presence–absence SDMs are models
that use presence-only observations. These types of models
typically use data from opportunistic observations. Presence-
only observations are easier to integrate across studies, at the
cost of higher predictive errors, heterogeneous sampling
designs, over-representation of taxonomic groups and bias
across spatial and temporal dimensions, to name a few. See
Dickinson et al. [23], Beck et al. [24], Isaac & Pocock [25], Frank-
lin et al. [26] for more examples. Presence-only SDMs (PO-
SDMs) need to account for the inherently biased nature of
the input data. To do so, PO-SDMs require additional assump-
tions on how absences are conceived. These assumptions are
necessary to fully specify an identifiablemodel and valid prob-
ability distributions [27,28]. As such, both types of models
serve different purposes and complement each other to span
a larger variety of applications. Specifically, PO-SDMs have
made important contributions by facilitating the integration
of data and allowing synthesis of ecological knowledge from
regional to global scales (e.g. [29,30]). The appearance of
global repositories of biodiversity data like the Global Biodi-
versity Information Facility (GBIF) [31], the eBird database
for bird sightings [32], the PREDICTS global database on ter-
restrial biodiversity [33] and the Disease Vector Database
[34] have opened the possibility to easily integrate the large
amount of biodiversity data used in PO-SDMs. Despite this,
to our knowledge, presence-only models for multiple species
distributions have received relatively little attention, arguably
due to demanding computational requirements. This is not the
case, however, for single-species distributionmodels (SSDMs),
where several modelling frameworks have been proposed
within the last decade.

Single-species PO-SDMs aim to infer the relative prob-
abilities of occurrences using external sources of informative
data as a proxy for representing absences [4]. These models
are referred in the literature as presence-background SDMs,
with the maximum entropy (MaxEnt) algorithm [35,36] one
of the most popular approaches. Phillips et al. [37] demon-
strated that using informed background data (one with
similar characteristics to the target data) significantly
increases the model accuracy in terms of the relative prob-
ability of occupancy when observations from similar
species (i.e. collected by similar methods) are used as back-
ground data (called target group). The joint modelling of
both observations (i.e. target group and species of interest)
accounted for the sampling bias, allowing the estimation of
relative probability of occurrence given the target group. Par-
allel to the use of background information, the specification
of spatial random effects for capturing the spatial variation
across the study regions [4,38] provided an important
improvement in SDMs, specifically the use of hierarchical
models as a sound framework for inferring probabilities of
binary variables (i.e. presence–absence). A relevant example
is hierarchical presence–absence models with spatial
random effects [39], implemented in the R package hSDM
(hierarchical Bayesian SDMs) [40]. The combination of jointly
modelling the sampling effort and the environmental niche,
together with the specification of spatial random effects
became, in recent years, a topic of ample research in
SSDMs. Examples of this start with the early work of [41]
accounting for a joint effect of the sampling bias and the eco-
logical suitability (ES) of population counts. Along these
lines, more complex models were proposed. See for example,
Illian et al. [42] using marked point processes or Golding &
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Purse [43] using Gaussian processes. Recently, Gelfand &
Shirota [44] proposed a hybrid approach using presence–
absence data to inform partial realizations given by the
presence-only data under a preferential sampling setting.
These approaches have been shown to be effective in
reducing the sampling bias. Nevertheless, they are designed
for SSDMs, which assume no interactions between other
species outside the environmental equilibrium. Neglecting
these interactions could lead to inconsistent inferences of
the species distribution, as pointed out by Clark et al. [18].

We consider that there is a knowledge gap in JSDMs for
presence-only data. A proposal of this kind would help
environmental and ecological researchers to infer and predict
species distributions in a new variety of applications by inte-
grating opportunistic observations from several sources.
Here, we propose a hierarchical multilevel model for multiple
species distributions using presence-only data. We propose a
generalization of the classical modelling assumptions of
SDMs by allowing the inference of species occurrence, con-
ditioned to the presences of other species and using a
presence-background framework for reducing the sampling
bias of the occurrences. We use the taxonomic tree of the
taxa of interest to obtain an intrinsic informative sample
(i.e. independent from external information) to inform the
likelihood of all taxa. The intrinsic informative sample
serves as background information (in the sense of Ward
et al. [28]) to define an identifiable JSDM based on pres-
ence-only data using the evolutionary (taxonomic) structure
of the natural classification [45]. In contrast with traditional
PO-SDMs, where the background sample is selected by the
modeller given the characteristics of the studied taxa, our
approach uses the available information to derive an
informed background sample (hereafter called complemen-
tary sample) without the need for the modeller’s
intervention. It is worth noting that the model’s specification
and the algorithm for deriving complementary samples are
independent and, therefore, it is possible for the modeller
to use other sources for defining background data.

The paper is structured as follows. A description of the
model is presented in §2. Section 3 tests the model perform-
ance on simulated data. The model was applied to two
case studies, one located in central Mexico and using diverse
taxonomic occurrences (§4) and, a second one, focusing on
cactii across all Mexico (§4.2). Finally, §5 discusses the
implementation, findings in the study cases, and future
research, which builds on the fundamental approach
introduced here.
2. Methods
Our model assumes that records of observed organisms are
determined by the joint effect of two types of random com-
ponents: an ecological process Pi that determines the suitability
of each taxon i (e.g. species) to settle in (or occupy) a given
location, and a process S that identifies a preferential sampling
that biases the records of observed occurrences. This process is
assumed to be the same for all the taxa of interest. Regarding
their general structure, both type of process share similar specifi-
cations. That is, a linear term (i.e. fixed effect) and a random
effect with spatial autocorrelation. Despite their similarity, both
processes represent distinct phenomena and, therefore, their
likelihood and covariates are different. To give an overview of
the model’s structure we present a directed acyclic graph
(figure 1) representing the model’s conditional dependencies
and its parameters. Hence, the model’s joint probability distri-
bution can be factorized into the following product of
independent terms:

½y, Q, P, S, G, a, bp, bs, t
2, lG; de, da, W�¼

Yn

i¼1

½yijQi�½ycjS, G, bs; da�

½QijPi, S, ai�½PijG, b pi ; dei �½SjG, bs; da�
½GjlG, t2; W�½b pi �½bs�½lG�½t2�:

ð2:1Þ

The left-hand term includes all the parameters of the model.
To ease readability, symbols in bold on the left-hand side refer to
the union of all taxa (i.e. i∈ {1,…, n}). In this sense, y represents
the observations of all (n) taxa of interest (yi are the observations
of a specific taxon i) plus the observations of the complementary
sample (yc). That is, y = [y1,…, yn, y

c]. Following this rule, the
linear coefficients and environmental covariates are written as
bp ¼ ½b p1 , . . . , b pn � and de ¼ ½de1 , . . . , den �, respectively. The vec-
tors βs and da are the equivalent terms for the sampling effort
process. Additionally, data-related variables are written in
lower-case letters (e.g. yi or da), while latent variables are written
in upper case (e.g. Pi). Latent variables P and S correspond to the
ecological and preferential sampling process, respectively. The
combinations (also called mixture) of both processes are rep-
resented by the latent variables Q. The spatial random effect is
represented by G and uses a spatial lattice for identification.
The spatial lattice is a structure represented by a graph (i.e. a
set of vertices and edges) composed of a finite number of non-
overlapping areal units (also called cells) that cover a geographi-
cal region (i.e. a spatial lattice is a tessellation). Each area unit
represents a spatial polygon and it is mapped one-to-one with
a node in the graph. As such, any edge in the graph connects
two area units. In the case of spatial lattices, the connection rep-
resents two neighbouring areas (i.e. areas that share a common
border). Here, we denote the adjacency matrix of the aforemen-
tioned graph (i.e. the spatial lattice) with W. Additional
parameters of the latent variables are shown in Greek letters.
For a full description of the model refer to the electronic sup-
plementary material. The design of the model assumes that the
ecological and sampling effort processes generate random
binary outcomes that are registered as presence or absence of
taxa. As such, the corresponding specification of processes Pi

and S is given by a logistic regression. Let us first describe the
ecological process Pi as follows:

logit (½PiðxkÞjGðxkÞ, bi; dei �) ¼ bt
Pi
deiðxkÞ þ GðxkÞ, ð2:2Þ

where bPi
[ Rr is a vector of linear coefficients for the fixed

effect, dei ðxkÞ [ Rr the r-dimensional vector of environmentally
related (i.e. scenopoetic) covariates, corresponding to location
xk and G the spatial random effect that describes the spatial
autocorrelation.

The sampling effort (S) is modelled in a similar form

logit (½SðxkÞjGðxkÞ, bs; da�) ¼ bt
sdaðxkÞ þ GðxkÞ: ð2:3Þ

In this case, bs [ Rs is a vector of linear coefficients for the fixed
effect of the sample and daðxkÞ [ Rs an s-dimensional vector of
anthropological (or sample-related) covariates corresponding to
location xk. While the likelihood of each Pi depends directly on
the presence (and absence of evidence) of a specific taxon i, the
likelihood of S could rely, as we will expose later, on aggregated
observations from other complementary taxa. This has the purpose
to provide an informed guess of a sampling process common to all
taxa of interest.

The model specifies a convex combination of Pi and S to
express the combined effect between the ecological process and
the preferential sampling. This combined effect is denoted by
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Figure 1. Directed acyclic graph representing the multi-species model. Nodes in squares indicate data. Grey squares are observed records and circular grey nodes
represent the parameters used by the latent variables. yi is the presence of species i and y

c is the complementary records of
Sn

i¼1 yi , i.e. the records that are not
from species 1,… nor n, relative to the available dataset (V) or a subselection of it. Orange squares are covariates, dei for environmental based and da for
anthropological based, associated with the sampling effort (dark blue block). Nodes in blue circles represent latent variables where: Qi is the mix between
the sampling effort S and the corresponding ecological suitability process Pi. The node G represents the spatial random effect, specified as a conditional autore-
gressive (CAR) model. The data object W is the associated adjacency matrix of the spatial lattice, while parameters λG and τ

2 define the process’s overall spatial
dependency and variance, respectively. G is shared between both the sampling effort components (dark blue block) and the ecological components (green block).
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Qi and is formally defined as

½QiðxkÞjPiðxkÞ, SðxkÞ, ai� ¼ aiPiðxkÞ þ ð1� aiÞSðxkÞ, ð2:4Þ
where 0≤ αi≤ 1. This parameter can be interpreted as the pro-
portion of variation attributable to the ecological process.
Throughout this text, we refer to this parameter as the contri-
bution to ecological suitability for a given taxon i (i ∈ {i,…, n}) in
location xk [ W.
2.1. Shared spatial effect
The spatial autocorrelation between observations is specified as a
latent variable G shared between all taxa (Pi), including the
sampling process (S). The shared random effect in the model spe-
cification (i.e. G) captures the spatial variability by correlating
observations that are within neighbouring locations. That is,
locations that share a border (or a vertex) are correlated to each
other (i.e. a correlation different from zero), while locations that
do not share borders (or vertices) are assumed to be independent
(i.e. correlation equal to zero). Here, the term location refers to
areas bounded by a closed polygon and, therefore, the set of
all locations in a given region is a finite set of areas. This set,
together with the neighbour relationship defines a spatial lattice
(denoted by the symbol W). The lattice structure is equivalent to
a simple graph (using the areas as vertices and the neighbour
relations as edges). The process that generates G over the spatial
lattice structure is specified with a proper conditional autoregres-
sive model (CAR) [46]. In this specification, the spatial lattice
(through its adjacency matrix representation) serves as a
correlation structure to define the covariance matrix of a zero-
centred multivariate normal distribution (MVN). In this context,
G is called a Gaussian–Markov random field [47].

The CAR specification restricts the applicability of the model
to observations aggregated on each area element of the spatial lat-
tice. As such, all observations contained in a given area are
projected into a single value to represent presence, absence or
missing information. This methodology eases the computational
complexity during inference, given the sparse form of the
adjacency-matrix. The resulting implementation uses fast and
efficient numerical methods that reduce the processing time by
several orders of magnitude. Additionally, the shared specifica-
tion of G (i.e. G is shared with all Pi and S) allows the random
effect to act as a source of information exchange between all
the taxa, as the inference of each individual taxon affects the
inference of the rest of the processes. For a full description of the
model and its common spatial random effect refer to the electronic
supplementary material.
2.2. Support for missing data
The model allows inference on locations where information
about the presence or absence of a given taxa (or sampling
effort) is unknown. This approach treats missing observations
as additional parameters to the model. The approach is similar
to the data augmentation scheme proposed by Tanner & Wong
[48]. It uses the information provided by the latent variables
(Q, P, S and G) to sample posterior distributions at the locations
with missing information. The scheme is incorporated into
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the MCMC-based inference, along with the rest of the par-
ameters. Aided by the spatial autocorrelation structure (G) and
the data from nearby areas, the fitted posterior distribution can
provide information about the presence (or absence) at sites
with missing data. Refer to the electronic supplementary material
for a formal specification of the posterior distribution on sites
with missing data.

2.3. Using complementary taxa to fit the sampling
effort

The identification of the model using presence-only data requires
the specification of additional assumptions about absences [28].
In this model, we follow a similar approach to presence-
background SDMs [37] by using the presence of other taxa (i.e.
complementary to the taxa of interest) as informative back-
ground data. Its associated observations (referred as yc in
figure 1) are used to fit the sampling process S, conditional to
the common spatial effect G. Here, we propose the use of the
natural taxonomic classification of life (a classification based on
the evolutionary relationships between organisms) to determine
the set of background data. The informative set, hereafter called
complementary sample (yc), serves as a basis to define pseudo-
absences and fit the sampling effort process using a different
set of covariates specific to the sampling effort (see equation
(2.1)). In previous work, we demonstrated that the use of an
external informative sample and a common random spatial
effect increased the model’s predictive accuracy in single PO-
SDM [49]. In this work, we generalized a similar approach for
multispecies models.

We begin by defining a universal set of taxa (hereafter called
V) as the basis for the analysis. The selection of V will depend on
each application, as it could be restricted at convenience to fit a
given region, a given group of taxa or during a certain period
of time. Given that each taxon is a node of the tree of life
(ToL), the set V induces a subtree (referred as TV) by inheriting
the taxonomy of the ToL. In this setting, the taxa of interest
(Ny) is a subset of the nodes of TV. We denote the subtree of
interest as TNy . The corresponding complementary tree of TNy

(denoted by Tc
Ny
) is obtained by the difference between TNy and

the subtree of TV generated by selecting the lowest common
node of Ny (LCA(Ny)) in TV. The nodes of the complementary
tree (i.e. Tc

Ny
) correspond to the complementary taxa. This set is

denoted as Nc
y. A detailed explanation of the methodology

used for obtaining V, TV, TNy , T
c
Ny

and Nc
y as well as how

to root the taxonomic tree (TV) is provided in the electronic
supplementary material.

The presented methodology is motivated by the assumption
that the disjoint set of closely related occurrences (in a phyloge-
netic or taxonomic sense) gives information about a sampling
effort common to all the taxa of interest. The characterization
of this common sampling effort would serve to reduce the bias
in presence-only data by including taxonomically related taxa
sampled in the same region. The observations of the complemen-
tary taxa Nc

y support the likelihood of the sampling effort S with
informative data derived entirely by the taxonomic classification.
It is important to mention that this methodology for generating a
complementary sample is not a requisite for implementing the
proposed model. The practitioner could use any other type of
informative data to fit the sampling effort process. Additionally,
to avoid ambiguity, we assume a unique taxonomic tree of life in
space and time.

2.3.1. Obtaining the complementary sample
The complementary sample is defined as the binary response
vector yc∈ {0, 1}k that represents presence or absence of the
complementary taxa over the lattice W (composed of k unit
areas). The response yi is defined in algorithm 1. An
implementation for obtaining TV, TNy , Tc
Ny
, LCAðNyÞ and Nc

y
was achieved with the software Biospytial [50], a graph-based
knowledge engine for ecological data. A script for obtaining
the taxonomic trees and complementary sample is included in
the electronic supplementary material.
2.4. Model implementation
The model was implemented in STAN [51], a Turing complete
probabilistic programming language for specifying statistical
models. STAN performs full Bayesian inference using Markov
chain Monte Carlo methods such as Hamiltonian Monte Carlo
sampling. It also includes the R̂ statistic [52] as a robust diagnos-
tic for chain convergence. The implementation code is located in
the electronic supplementary material.
3. Validation with simulated data
To validate the model implementation, we generated a syn-
thetic dataset following the specification of the model. The
model was fitted using a Hamiltonian Monte Carlo approach
that resulted in posterior samples for each model’s par-
ameters. All the parameters used for generating the
synthetic dataset were inside the 95% credible interval of
their corresponding fitted posterior sample. The complete
specification, analysis, results of the simulation and work
related to data acquisition are described in the electronic
supplementary material.
4. Application
To illustrate the applicability of the model, we provide two
case studies with different selections of the taxa of interest
(ToI); a first case where the ToI are taxonomically distant
and a second case where the selected taxa are closely related
(i.e. all are from the same family).

4.1. Case study 1: occurrences of taxonomically diverse
taxa

In this study, the selection of the taxa of interest was based on
the following criteria: (i) Each taxon should be abundant and
distributed widely across the region. (ii) The selected taxa
should respond to known environmental factors, in particu-
lar elevation and precipitation. (iii) Documented mutualistic
relationships between the taxa exist. (iv) Taxonomic diversity
of the taxa should be preferred to ensure a diverse comp-
lementary sample. The main motivation for these criteria
was to assess the model’s capabilities to produce realistic
results based on abundant and well-studied taxa. In addition,
to find a balance between these criteria, the taxa were
constrained to family or genus.
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Based on an exploratory analysis, we selected a set of
abundant genera and families that satisfied the aforemen-
tioned criteria. This set was composed of: leadtrees (genus:
Leucaena, family: Fabaceae), oaks (genus: Quercus, family:
Fagales), pines (family: Pinacea), leafnose bats (family: Phyl-
lostomidae) and woodpeckers (family: Picidae). The three
groups of plants respond to gradients of elevation and pre-
cipitation, while the two selected animals respond to
ecological relationships with the associated biomes where
the chosen plants are abundant. All the taxa have implicit
ecological relevance as they shelter and support the existence
of other species.

Leadtrees are shrubs associated with tropical semi-
deciduous forests and seasonal lowland forest. They can
live between the 0m to 1400m.a.s.l. [53]. Oaks comprise
trees and shrubs. They are frequently distributed between
1200 to 2800 m.a.s.l. and between 600 to 1200mm of precipi-
tation per year. They are commonly associated with pines in
mixed forests. However, it is also common to find them in
mesophyl forests, grasslands and woodlands [54]. Pines
prefer to live between temperate to cold dry climates, moder-
ately moist and acid soils. Apart from being associated with
oaks in mixed forests, they are also found with cypresses
and spruces. Pines have affinity to live between 1500 to
3600 m.a.s.l. and tolerate a wide range of precipitation con-
ditions. Depending on the species this restriction can range
from 350mm to 1000m [54]. leafnose bats constitute the
most diverse family of bats (Order: Chiroptera) and include
frugivorous, insectivorous and haematophagous. The family
Phyllostomidae, in particular, is a taxon of high ecological
importance, as they provide key ecosystem functions like pol-
lination, seed dispersal, nutrient cycling and arthropod
suppression [55,56]. Woodpeckers are the most abundant
group of birds. The selection of this group was due to its
strong association with woodland forests, in particular with
oaks and pines.
4.1.1. Explanatory variables
The covariates used as explanatory variables for the ecologi-
cal process were elevation and annual mean precipitation.
The elevation data were obtained from the Global Relief
Model ETOPO1 at 1 arc-minute resolution [57]. The precipi-
tation data were obtained from the World Climatic Data
WorldClim version 2 [58]. These data are distributed as a 12
band raster model with ca 1 km spatial resolution averaged
across months to produce a mean temperature value per
pixel. The anthropological covariates, used to explain the
sample process, were distance to the closest road and popu-
lation density. The distance to the closest road was
generated in two steps. First, we rasterized the National
Road Network for Mexico (Red Nacional de Caminos (RNC)
INEGI, Instituto Mexicano del Transporte and Gobierno de
Mexico [59], scale: 1:250 000) at 1 km spatial resolution.
Later, we used this raster dataset to calculate its proximity
to the closest road (pixels flagged as road) using the function
gdal_proximity [60]. The road network data were
obtained from Vázquez [61]. The population dataset was
obtained from the WorldPop project [62] for the year 2010.
The dataset consists of population counts on each areal
element, each with a spatial resolution of 3 arc-seconds (ca
100m). All the explanatory variables were spatially overlaid
and aggregated by mean on each areal element.
4.1.2. Study region
The study area covers approximately 112 000 km2 and inter-
sects several Mexican states (e.g. Veracruz, Puebla, Hidalgo,
Mexico City and Oaxaca). It includes heterogeneous land-
scapes with variability in geomorphological and climatic
features as well as distinct biomes such as coastal dunes, cha-
parrales, mesophyl forests, evergreen rain forest, grasslands,
mangroves, broad-leaf forests and coniferous forests [54,63].
Figure 2l shows the region over Mexico. The region under
study is of ecological importance due to the confluence of
the two biogeographic realms in the American continent;
neartic and neotropical [64]. Consequently, the region is rich
in biodiversity at several taxonomic levels and, therefore, of
high scientific interest. Additionally, the collection of GBIF
records is highly abundant facilitating the acquisition of
informative complementary samples.

4.1.3. Geographic lattice W
The lattice W used was obtained from a polygon intersected
on a geographical grid of approximately 4 km spatial resol-
ution. The region comprises the inland area of a circular
polygon centred at 19 N–97 E with radius of 2° (ca 200 km).
The area covers approximately 112 000 km2 and is composed
of 4061 spatial units (see figure 2l in electronic supplementary
materials I). To derive the associated adjacency matrix W we
performed a topological analysis on the grid to determine the
corresponding neighbours for each areal unit. To ease the
processing work on data acquisition and transformation to
the adjacency matrix representation, we used Biospytial [65].

4.1.4. Occurrence and taxonomic data
The biodiversity data used were all the available GBIF occur-
rences [31] registered before January 2015, constrained to the
studied region (4.1.3). The raw data were downloaded from
GBIF (doi:10.15468/dl.oflvla). For further information on
this dataset, including data attributions, see GBIF.org [66].

The GBIF dataset was cleaned to procure consistent
querying of taxonomic trees and the correct execution of
graph-based and geospatial algorithms. The cleansing pro-
cedure included: removal of records with incomplete
taxonomic information, removal of records with incomplete
geospatial coordinates and removal of records with incom-
plete acquisition dates. As such, each GBIF record includes
full taxonomic and spatio-temporal information. The occur-
rences contained inside each area were parsed into a
taxonomic-tree structure using the taxonomic classification
of the GBIF Taxonomic Backbone [67]. Therefore, for the
4061 area elements in the lattice (W) we obtained the same
number of taxonomic trees (hereafter referred to local taxo-
nomic trees). To obtain the complementary sample (§2.4), all
the local taxonomic trees were merged into a single regional
tree (i.e. T*(Ny)). The complementary sample was generated
by applying algorithm 1.

To obtain the vector of observations (Yi) for each taxon of
interest i a point in polygon test was performed. That is: Yi(x) =
1 if taxon i is present in areal element x, otherwise Yi(x) = 0. In
this case study, we assume no missing information on the
sample effort to reduce to a minimum the amount of
sample-dependent parameters introduced by the data aug-
mentation methodology. Sample-dependent parameters
increase the model uncertainty. Assessing the model per-
formance subject to these treatments is out of the scope of

http://dx.doi.org/10.15468/dl.oflvla
http://GBIF.org
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Figure 2. Comparison of ecological suitability (ES.) processes Pi (a,b,c,h,g) and the corresponding mixing effect (ME.) Qi (d,e,f,j,k) in the study area (l ). Qi is the
convex combination of Pi with the sampling effort process S (i). All figures show the respective mean posterior on each unit element of the lattice W in the study
area (l ).
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Table 1. Posterior means, 95% credible intervals and convergence diagnostic R̂ for the first case study using taxonomic diverse taxa in the eastern part of
Mexico. Ecological suitability and sampling effort corresponds to the processes P and S defined in the main text. The row with the contribution to ecological
suitability describes the parameter αi defined in the mixing process Qi, for each taxon i.

credible intervals

mean 2.5% 50% 97.5% n.eff R̂

ecological

suitability (P)

intercept Leucaena −9.06 −15.39 −8.64 −5.23 725 1.0

Phyllostomidae −10.13 −16.42 −9.67 −6.39 900 1.01

Picidae −30.35 −57.26 −28.07 −15.59 218 1.02

Quercus −11.84 −17.67 −11.46 −8.16 1176 1.0

Pinacea −18.0 −26.15 −17.48 −12.82 1172 1.0

elevation Leucaena −1.7 × 10−3 −2.9 × 10−3 −1.6 × 10−3 −9.3 × 10−4 1185 1.0

Phyllostomidae −8.0 × 10−4 −1.4 × 10−3 −7.7 × 10−4 −3.6 × 10−4 1675 1.0

Picidae 4.9 × 10−4 −3.8 × 10−4 4.5 × 10−4 1.6 × 10−3 1068 1.0

Quercus 1.9 × 10−3 1.3 × 10−3 1.9 × 10−3 2.8 × 10−3 1453 1.0

Pinacea 3.5 × 10−3 2.5 × 10−3 3.5 × 10−3 5.1 × 10−3 1194 1.0

precipitation Leucaena −0.01 −0.03 −0.01 −4.0 × 10−3 2770 1.0

Phyllostomidae 9.8 × 10−3 3.1 × 10−3 9.5 × 10−3 0.02 1487 1.0

Picidae 0.04 0.02 0.03 0.07 243 1.01

Quercus −3.6 × 10−3 −0.01 −3.5 × 10−3 3.8 × 10−3 4234 1.0

Pinacea 0.03 0.02 0.03 0.04 1375 1.0

sampling effort

(S)

intercept 2.56 2.37 2.56 2.76 309 1.02

distance to road −1.5 × 10−4 −1.9 × 10−4 −1.5 × 10−4 −1.1 × 10−4 976 1.01

population density 4.3 × 10−4 3.2 × 10−4 4.3 × 10−4 5.5 × 10−4 858 1.01

contribution to

ecological

suitability (α)

Leucaena 0.44 0.28 0.44 0.62 866 1.0

Phyllostomidae 0.44 0.29 0.44 0.6 1031 1.01

Picidae 0.2 0.1 0.2 0.33 331 1.01

Quercus 0.51 0.36 0.51 0.65 1350 1.0

Pinacea 0.58 0.42 0.59 0.74 1520 1.0

spatial effect λg 0.13 0.05 0.12 0.23 1149 1.0

τ 0.1 0.09 0.1 0.12 113.0 1.03
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this particular case study. The data processing pipeline, as
well as the generation of local and regional taxonomic trees
was also undertaken with Biospytial.
4.1.5. Model fitting
The response vectors, together with their respective covariates,
were arranged in a design matrix with shape (4061 * 6) × (2 * 2),
where 4061 is the number of areal elements of the lattice W

and 6 corresponds to the five taxa plus the sample. The 2 * 2
columns correspond to two columns for the ecological covari-
ates and two columns for the anthropological covariates.

For fitting the model, we used our implementation in the
STAN language (see electronic supplementary material). We
obtained posterior samples through MCMC using the NUTS
sampler on four independent chains with default parameters
of step size and tree depth. The posterior sample was run for
35 000 iterations with a burn-in size of 17 500 and thinning of
35. The prior distributions for βi∈{1,… ,n} are distributed N(0,
10 000). The prior distribution for parameters αi (mixing
process Qi) and λG (proper CAR model) are β(5, 5) and the
parameter τ is distributed as Inv. Γ(1, 0.01).

4.1.6. Results
The posterior means and credible intervals of the model’s
parameters are shown in table 1. In all the MCMC chains
(4), all parameters converged (R̂ , 1:1) according to the R̂
diagnostic for convergence [68]. Analysis among taxa
showed that leadtrees (Leucaena) obtained significant nega-
tive correlation with elevation and precipitation while
leafnose bats (Phyllostomidae) showed positive correlation
for precipitation and negative correlation for elevation.
Oaks (Quercus) and pines (Pinacea) showed significant prefer-
ence for higher elevations below the tree line. However, pines
also showed significant preference for precipitation. Wood-
peckers (Picidae) showed preference for higher precipitation
but no significant preference for elevation.

The sampling effort was found to be significant for both
covariates (i.e. distance to closest road and population den-
sity) with an increasing probability for getting samples in
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places close to roads (negative correlation) and with high
population density (positive correlation).

In relation to the ES associated with each taxon, we found
that pines obtained the largest contribution with respect to
the sampling effort (mean 0.58 with 0.42, 0.78 at 95% CI).
This was followed by oaks (mean 0.51 with 0.35, 0.65 at
95% CI). Leadtrees and bats obtained similar results (mean
0.44, 0.28,0.62 at 95% CI) while woodpeckers obtained the
smallest value (mean 0.2, 0.1, 0.3 at 95% CI).

The posterior means for the spatial effect showed low
spatial dependence (λG) of 0.13 ranged from 0.05 to 0.23 at
95% CI with an overall variance (τ−1) of 10 ranged from
0.833 to 11.11 at 95% CI.

To show the model’s capability to discriminate between
the sampling effort process (S) and the ES (Pi) of each
taxon, we compared side-by-side the spatial process Pi with
its corresponding mixed process (Qi, figure 2). It is remark-
able that all the ES processes show smoother (less noisy
patterns) than their corresponding mixed processes.
Additionally, the probability of occurrences in urban areas,
specifically the metropolitan area of Mexico City (see largest
grey polygon in figure 2l ) are attenuated in the ecological
process. This effect is different for each taxa and is discussed
in §4.2. Leadtrees, bats and woodpeckers are mostly distribu-
ted on the eastern side of the mountain ridge (Sierra Madre
Oriental) while oaks and pines overlap and are distributed
in higher areas of the mountain ridges.

The k-fold cross-validation resulted in high predictive
accuracy with an AUC of 0.916 (0.914−0.916). The used
method and the resulting ROC curves are shown in the
electronic supplementary material.
4.2. Case study 2: predicting cactii in Mexico
This case study aims to predict the underlying ES of four
genera of cactii using the rest of the family Cactacea as comp-
lementary taxa. A key distinction with the former case study
is the use of missing data (observations) in the sampling
effort. In this case, missing data are defined in places where
neither the presence of the taxa of interest nor the comp-
lementary sample exist. That is, there is no known record of
any occurrence and, consequently, no arguable proof of
absence of the taxa or an associated sample.

Cactii comprise all members of the family Cactacea. This
group is likely to be a monophyletic, that is, all known
species share a single common ancestor [69]. The evolution-
ary lineage of cactii suggests commonality in their traits
and adaptations to the environment. However, there are
some members of this group that, despite their limited toler-
ance to humid environments, have evolved to develop
strategies for living in tropical ecosystems with intense pre-
cipitation. An example of this is the genus Disocactus that
developed an epiphyte habit and, therefore, gathers water
and other nutrients from the air.

In this case study, we analyse the capability of the model
to discriminate the ES of the taxa distributed between two
distinct ecosystems: shrublands–deserts (SD) and tropical
rain forests (TRF). The group representing the SD ecosystems
is composed of the genera: Mammilaria, Coryphantha and
Echinocactus, the group corresponding to TRFs is represented
by the genera Disocactus.

The habitat of the three chosen genera in the SD group
overlaps significantly [70]. However, the data availability of
the three genera differs significantly, partly due to the
sampling effort and the ecological rareness of each genus.
This study also demonstrates the capacity of the model to
improve the inference of rare species given the information
of more common taxa.

4.2.1. Study region
This case study covers all Mexico, approximately 3200 km in
length over an area of 1 972 550 km2. According to the
Köppen classification, the country has 15 different climate
types. The variety of these climates, its large geographical
extent and complex geomorphology distinguish the country
as a megadiverse region, hosting two biogeographic realms:
Neartic and Neotropical.

4.2.2. Explanatory variables
The explanatory variables (i.e. covariates) used in the ecologi-
cal process were: annual mean temperature, annual mean
precipitation and elevation. As in the first case study, these
variables were obtained from the World Climatic Data World-
Clim version 2 [58] and the Global Relief Model ETOPO1 [57].
Compared with the first case study, the wider geographical
extent and coarser spatial resolution required the use of
different covariates to fit the sampling effort process. Recal-
ling that these covariates should represent general
differences between surveys, we opted to use two sources
of land cover classification: the Terrestrial Ecoregions of the
World [71] and Conabio’s typology of human settlements
by municipality (Tipología municipal por asentamiento
humano, CONABIO [72]). As these two datasets are categori-
cal, we transformed each category into a binary column
(dummy variable). The resulting number of covariates for
both categorical datasets was 18.

4.2.3. Geographic lattice
The lattice used in this study was obtained by overlapping
the Marco Geoestadístico de Mexico [73] with a regular rec-
tangular grid with approximately 20 km resolution. The
resulting spatial lattice is composed of 2941 cells and only
considers the continental portion of the country (i.e. all
islands have been excluded). The observations of the
sampling effort were aggregated to a coarser resolution of
40 km2 approx. The resulting composition of areas consisted
of: 1659 presences (56%), 356 pseudo-absences (12%) and 926
missing observations (31%). For a graphical description, see
figure 3j.

4.2.4. Occurrence data
Similarly to case study 1 (§4.1), the data used for occurrences
were the complete set of GBIF occurrences [31] registered
before January 2015 contained in continental Mexico. The
raw data were downloaded from GBIF (DOI:10.15468/dl.
oflvla) and have the same metadata as in case study 1. For
further information on this dataset, including data attribu-
tions, see GBIF.org [66]. The occurrences contained inside
each area were parsed into a taxonomic-tree structure using
the taxonomic classification of the GBIF Taxonomic Backbone
[67]. The complementary sample was generated by algorithm
1 upon previous selection of the taxa of interest and their
LCA (in this case, the taxonomic node Cactacea). The process
for obtaining observations was the same as in case study
1. However, a key difference in this study is the definition

http://dx.doi.org/10.15468/dl.oflvla
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of missing observations in places where no information of
both the complementary sample and the observations was
obtained (see algorithm 1). This methodology allows infer-
ence on more realistic assumptions about the absence of
observations at the expense of increasing the model complex-
ity and the overall uncertainty. The data processing pipeline,
as well as the generation of local and regional taxonomic
trees, was also undertaken with Biospytial.

4.2.5. Model fitting
The response vectors, together with their respective covari-
ates, were arranged in a design matrix similar to the
specifications of case study 1 (§4.1) this time with shape
(2941 * 5) × (3 * 2), where 2941 is the number of areal elements
of the lattice W and 5 corresponds to the four taxa plus the
sample. The 3 * 2 columns correspond to three columns
for the ecological covariates and two columns for the
anthropological covariates.

For fitting the model we used our implementation in the
STAN language (see electronic supplementary material). We
obtained posterior samples through MCMC using the NUTS
sampler on four independent chains with default parameters
of step size and tree depth. The posterior sample was run for
35 000 iterations with a burn-in size of 17 500 and thinning of
35. The data were normalized previously and the prior distri-
butions of the parameters βi∈{1,… ,n} were distributed N(0,
100). For the parameters αi (mixing process Qi) and λG
(proper CAR model), the prior distribution were beta(5, 5).
The parameter τ had a prior distribution of Inv. Γ(1, 0.01).

4.2.6. Results
The posterior means and credible intervals of the fitted par-
ameters are shown in table 2. The R̂ diagnostic for
convergence [68] showed that all parameters in all the
MCMC chains (4) converged.

Overall, in terms of the ES of the taxa, the model showed
consistent results with their natural history. Precipitation was
found to be significant in all selected taxa. Moreover, a posi-
tive correlation for Disocactus was found, a species reported
to inhabit tropical rain forests (TRF), and negative correlation
for all the genera associated with shurblands and deserts
(SD). Elevation showed significant positive correlation in
the ES of the taxa associated with shrublands and deserts
(SD). Slightly different was the case of the mean annual temp-
erature; although a variable commonly correlated with
elevation, it showed to be non-significant for the presence
of Disocactus or Mammilaria.

In the case of the sampling effort, and particularly among
the terrestrial ecoregions, only the dry broadleaf forests and
forests woodlands and scrubs were found to be significant
for characterizing the sampling effort. By contrast, the
majority of typologies for human settlements were significant
(i.e. metropolitan, urban and rural areas).

In relation to the contribution to the ES process (par-
ameter: αi), we found that for Echinocactus, Disocactus and
Coryphantha a high proportion of their variation was attribu-
table to the environmental niche (i.e. ES), while the presence
of Coryphantha was heavily dependent on the overall
sampling effort (α = 0.41).

In the case of the spatial random effect, the posterior
means for parameters associated with this effect showed a
maximal spatial dependence (λG = 0.99 ± (0.995, 0.998) at
95% CI) and the overall variance (τ−1) was found to be mod-
erate 0.46 ± (0.36, 0.58) at 95% CI.

A side-by-side comparison between the ES (Pi) of each
taxon (i) and the corresponding mixed process (Qi) is shown
in figure 3. The spatial distribution, obtained from the posterior
sample of the ES process, is consistent with the ecology of the
four taxa. That is, Mammilaria, Coryphantha and Echinocactus,
have a common spatial distribution consistent with the distri-
bution of deserts and shrublands (Central and Northern
Mexico). As expected, the distribution ofDisocactus is different
from the others. While the taxa associated with the group SD
are prevalent in the central-west and northern regions of the
country (arid shrublands and deserts), Disocactus presents
the highest prevalence in South Mexico, a region with high
precipitation and presence of tropical rain forests.
5. Discussion
The analyses of both case studies suggest that the variance of
the model (driven by the parameters τ2 and λg) is a determin-
ing factor for the precision of the model (range of the credible
intervals) and the greater the values of the parameters, the
harder it is to identify accurately the spatial effect. Although
the results presented correspond to a single simulation, they
indicate the precision that may be expected for real data.

The findings in case study 1 showed that leadtrees
(Leucaena) have negative preference for elevation and precipi-
tation. This result is consistent with ecological theory as it is a
plant that thrives in warm and semi-arid environments
[53,54]. Interestingly, pines and oaks obtained similar esti-
mates for their contribution to their respective ES (and
sampling effort). These two taxa are often considered a
single type of vegetation due to their complex network of
dependencies and similar ecological niches [54]. The fact
that both taxa have similar contributions as well as an over-
lapping geographical space (i.e. middle to high elevated
areas of the Sierra Madre Oriental) is indicative of their
common ecological niche and suggests that the presence of
one taxon is informative of the other.

Leafnose bats have a preference to roost in warm subtro-
pical regions [74]. Consistent with ecological theory, areas
with higher ES for bats were the subtropical regions between
the coast and the foothills of the Sierra Madre Oriental
(figure 2b). Moreover, constrained to the study area, the high-
est levels of ES coincide remarkably with the neotropical
realm, suggesting that the model is capable of capturing
macroecological patterns.

The fixed effect for the common sampling effort was sig-
nificant for both covariates (i.e. distance to closest road and
population density) supporting the idea that these two cov-
ariates are important for characterizing the sampling process.

The low contribution to ES for Leadtrees, bats and wood-
peckers, in particular, suggests that the observations of these
taxa are mostly biased by the sampling process. This is con-
sistent with the fact that birds and mammals are among the
most overrepresented taxa in biodiversity occurrence data
[75]. Leadtrees have many agricultural and industrial
uses such as: shade for coffee plantations, forage for cattle
and their seeds and resin are used for fabricating perfumes
and soaps [53]. Their extensive use explains the strong
contribution of the sampling effort, mostly driven by
anthropological covariates.
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In the second study case, the model demonstrated
its capacity to infer locations with missing observations. Con-
sistent with their ecology, the taxa associated with SD
ecosystems present similar spatial distributions with varying
degrees of intensity, arguably dependent of the number of
observations of each taxa. By contrast, Disocactus presents a
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distinctive spatial distribution. In this case, the regions with
higher intensity are located in the southern regions of the
country, predominantly to the west of the Tehuantepec Isth-
mus and the state of Chiapas (figure 3g). Consistent with
the ecology of the genus, the regions with high-intensity
overlap with tropical rain forests.
5.1. Reduction of the sampling effort bias
The contribution to the ES of each taxon i (i.e. parameter αi)
can be interpreted as the proportion of variation attributable
to the ecological process given the overall process Qi. Alter-
natively, 1− αi can related to the proportion of variation
attributable to the sampling effort. This parameter allows
the identification of two processes: one determined by the
specific environmental niche of each taxon and another,
driven by the commonality dictated by an abstract sampling
effort. In both case studies, the parameter α showed to be a
useful measure of the sampling bias. Additionally, α allowed
the identification of processes P and S, reducing the sampling
bias in the ecological niche, and providing more information
on the underlying sampling effort. For example, an interest-
ing result was the attenuation of the ES process (P) in large
urban areas. When compared with the mixed process (Q), P
showed reduced probability in those areas, despite the over-
represented observations in areas close to metropolitan areas.
The attenuation effect suggests that the signal of scientific
interest (i.e. the ES) can be recovered from observations
affected by the mixed effect between the ecological and
sampling signals. The signal recovery varies depending on
the taxon. For example, woodpeckers (figure 2c) were less
likely to occur in the metropolitan area of Mexico City
(middle western part of the study area), once the signal
from the sampling process was removed (see figure 2f for
comparison). This result is consistent with the reported pre-
ference of woodpeckers and other forest birds to nest in
natural and semi-urban areas rather than urban and densely
populated areas [76].

In the case of cactii, the mixed processes Q showed higher
probability values when compared against their respective P
(figure 3) in the same location. That is, given a fixed location x
the estimated probability of Qi(x) was higher than Pi(x) for
taxon i. This phenomenon was present in all taxa. However,
the effect was notable in Disocactus, where the intensity
across the arid regions in the northern part of Mexico
(PDisocactus) was greatly reduced when compared with its
mixed process QDisocactus (figure 3g and 3h, respectively).
Another interesting case is the genus Mammilaria, in which
the ecological process (figure 3a) was attenuated in regions
with high precipitation, despite the relative higher proportion
of occurrences and consequently, higher intensity surface of
QMammilaria (figure 3b).



Table 2. Posterior means, 95% credible intervals and convergence diagnostic R̂ for the second case study (cactii) in continental Mexico. Ecological suitability and
sampling effort correspond to the processes P and S defined in the main text. The row with contribution to ecological suitability describes the parameter αi
defined in the mixing process Qi, for each taxon i. Taxa in bold indicate a significant effect (95% CI) of the respective variable. In the case of the sampling
effort, only the significant variables are shown.

Credible intervals

mean 2.5% 50% 97.5% n.eff R̂

ecological

suitability (P)

elevation Disocactus 0.81 −0.38 0.79 2.08 4627 1.0

Mammilaria 2.41 1.59 2.39 3.31 1716 1.0

Coryphantha 3.41 2.46 3.4 4.38 1156.0 1.0

Echinocactus 3.19 2.11 3.19 4.3 1275 1.0

precipitation Disocactus 1.8 1.39 1.8 2.24 509 1.0

Mammilaria −2.08 −2.81 −2.08 −1.37 2184 1.0

Coryphantha −2.8 −3.77 −2.78 −1.88 1198 1.0

Echinocactus −3.1 −4.31 −3.08 −1.98 1414 1.0

mean temperature Disocactus −0.33 −1.52 −0.35 0.88 4735 1.0

Mammilaria 0.63 −0.24 0.63 1.53 4012 1.0

Coryphantha 1.24 0.29 1.24 2.21 4208 1.0

Echinocactus 1.64 0.47 1.64 2.78 3715 1.0

sampling effort (S) intercept 6.57 4.77 6.59 8.33 828 1.0

forests woodlands and

scrubs

2.25 0.48 2.24 4.0 4103 1.0

dry broadleaf forests 1.38 0.09 1.37 2.72 4223 1.0

metropolitan 2.09 0.82 2.09 3.37 3846 1.0

rural 1.71 0.5 1.7 2.95 4043 1.0

urban 1.72 0.49 1.71 3.0 4073 1.0

contribution to ecological

suitability (α)

Disocactus 0.71 0.62 0.71 0.8 282 1.0

Mammilaria 0.41 0.36 0.41 0.47 241 1.0

Coryphantha 0.68 0.58 0.68 0.77 309 1.0

Echinocactus 0.78 0.67 0.78 0.87 425 1.0

spatial effect λg 0.99 0.99 0.99 0.99 4031 1.0

τ 0.46 0.36 0.45 0.58 1675 1.0

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210681

13
5.2. Computational limitations and scalability
The model presented here is a type of hierarchical multilevel
model. As such, its scalability is limited by the computational
complexity of the model and its implementation. In case
study 2 (cactii), the numbers of parameters to be estimated
were: 2943 spatial parameters (areal elements of the lattice),
10 coefficients of mixed proportions (α), 356 missing
observations, 15 anthropological and three environmental
covariates; giving a total of 3327 parameters. This specifica-
tion was implemented in a computer with a quad-core
Xeon 9 CPU and 9 GB of RAM. The posterior sample con-
sisted of 35 000 iterations on four independent chains and
took 12.5 h to complete.

Scaling the model to k more taxa will increment the
number of parameters to k × n; where n is the number of
areal elements of the lattice (in case study 2 n = 2943).
Additionally, a specification in which the number of missing
data is larger than the total number of observations (pre-
sences and pseudo-absences) would induce problems of
parametric identification and divergences and, therefore, we
recommend to perform an exploratory analysis prior to the
implementation of the approach.

An alternative for specifying a more parsimonious spatial
random effect could be the use of a geostatistical approach
(e.g. Gaussian process) that reduces the number of spatial
parameters to three or four (e.g. Diggle et al. [77]). Although
this approach is sensible, the implementation could yield a
much higher computational complexity due to the operations
involved in dense matrix inversion against sparse matrix fac-
torization defined by lattice-based models [78]. We welcome
new contributions that could reduce the complexity of the
presented model.
5.3. Roads for future research
The use of missing data in case study 2 allowed the examin-
ation of the model’s predictive capacity in areas with missing
observations, that is, areas with no known presences nor
pseudo–absences of the complementary sample. The results
show that, in sites with missing observations (figure 3j ), the
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predicted underlying intensity surface was lower (dark
regions in figure 3i) than in sites with presence or pseudo-
absences. Although these regions present higher uncertainty,
given by the data augmentation methodology, they represent
an interesting phenomenon worth to be explored in the
future. Additionally, the study alone of the sampling effort
process gives an idea of the state of the sample given an arbi-
trary set of taxa, the role of the anthropological factors
affecting the distribution of the overall sampling effort and
its spatial correlation. We think that exploring this model’s
feature could aid in detecting gaps in biodiversity collections
as well as prioritizing study sites.

There are other potential routes for future research. A
strong assumption of the presented model is that the spatial
random effect (G) is shared between all the taxa of interest
and the sampling effort. While this model is able to capture
spatial interactions between taxa, we think that these inter-
actions could be more ecologically meaningful if the spatial
effect is modelled jointly, accounting for correlated spatial
components between the sampling process and one (or mul-
tiple) ecological suitability(ies). A way to move forward in
this direction is to specify a multivariate CAR (MCAR)
model [79] for the spatial effect (G) to account for joint and
marginal spatial effects for each Pi and S.

The complementary sample approach may not be appro-
priate for all types of taxa of interest due to the high
complexity of phylogenetic, phenotypic and environmental
relationships, specifically in the role of interspecific compe-
tition and facilitation (see [80] review and [81]). As such,
we suggest caution when applying the complementary
sample algorithm on any group of taxa without analysing
previously possible relations of spatial exclusion due to
potential competition. Increasing the taxonomic resolution
to subranks (e.g. subfamilies, tribes, subgenera) can be a
first step in obtaining more informative complementary
samples. However, an improved algorithm aimed at integrat-
ing phylogenetic relationships in theoretically consistent
assemblages of ecological communities should account for
both spatial and phylogenetic effects, of overdispersion and
clustering (see [82] for a conceptual definition and [83] for a
semantic methodology).
Data accessibility. The library is available in: https://github.com/
molgor/JSDM4POD/. It includes the implemented Python and
STAN models, working examples on both case studies, data (com-
pressed) and interactive Jupyter notebooks [84]. We intend to put
the code and data in a long term curated repository such as Dryad
or FigShare. The data are provided in the electronic supplementary
material [85]. The model is available as an Open Source (GPL)
Python library called JSDM4POD (i.e. a joint species distribution
model for presence-only data).
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